
Stream ciphers (reminder)
A stream cipher is a pair of deterministic polynomial-time algorithms

• Init: takes a n-bit seed s, and possibly a n-bit initialization vector (IV), and outputs a state st

• Next: takes a state st and outputs a bit y and a new (updated) state st′

* In practice, Next can output multiple bits at once (e.g., a byte)

Init

s (IV)

st0 Next Nextst1 Nextst2 st3 . . .

y1 y2 y3

Idea: we can generate as many random bits as desired, by repeatedly calling Next

Stream ciphers (reminder)

If the stream cipher does not support IVs, then it should behave like a PRG

• For a key chosen u.a.r., its output should be indistinguishable (to poly-time adversaries)
from a uniform stream of random bits chosen independently at random (as long as the
output length is polynomial)

If the stream cipher does support IVs, then the stream cipher should behave like a PRF

• For any key (chosen u.a.r.) the output streams generated from multiple IVs (chosen u.a.r.)
should be indistinguishable (to poly-time adversaries) from multiple streams of random
bits, where each bit is chosen u.a.r.

• This must still be true even if the adversary is given the IVs!

• We don’t know if (secure) stream ciphers exist (we don’t know if PRGs / PRFs exist)

• In practice we have some candidate stream cipher constructions that are conjectured to be secure

• These construction have withstood years of public scrutiny and attempted cryptanalysis

• Trivium: optimized for hardware

• RC4 (insecure): optimized for software

• ChaCha20: replacement of RC4

• Some popular practical constructions of stream ciphers:

Stream ciphers (reminder)

Trivium

• Stream cipher selected as part of the eSTREAM portfolio

European project to “identify new stream ciphers suitable
for widespread adoption”

Trivium

• Stream cipher selected as part of the eSTREAM portfolio

European project to “identify new stream ciphers suitable
for widespread adoption”

• Designed to be easy to implement in hardware

• “designed as an exercise in exploring how far a stream cipher can be simplified without sacrificing its
security, speed or flexibility”

Trivium

• Stream cipher selected as part of the eSTREAM portfolio

European project to “identify new stream ciphers suitable
for widespread adoption”

• Designed to be easy to implement in hardware

• No cryptanalytic attacks better than exhaustive search are currently known

• “designed as an exercise in exploring how far a stream cipher can be simplified without sacrificing its
security, speed or flexibility”

Although some attacks against “reduced” versions Trivium are known

Trivium

• Stream cipher selected as part of the eSTREAM portfolio

European project to “identify new stream ciphers suitable
for widespread adoption”

• Designed to be easy to implement in hardware

• No cryptanalytic attacks better than exhaustive search are currently known

• Based on feedback shift registers (FSR)

• “designed as an exercise in exploring how far a stream cipher can be simplified without sacrificing its
security, speed or flexibility”

Although some attacks against “reduced” versions Trivium are known

Trivium

• Stream cipher selected as part of the eSTREAM portfolio

European project to “identify new stream ciphers suitable
for widespread adoption”

• Designed to be easy to implement in hardware

• No cryptanalytic attacks better than exhaustive search are currently known

• Based on feedback shift registers (FSR)

• “designed as an exercise in exploring how far a stream cipher can be simplified without sacrificing its
security, speed or flexibility”

Although some attacks against “reduced” versions Trivium are known

Shift Registers

• Shift register with n bits

clock

in out1 0 0 1 0

Shift Registers

• Shift register with n bits

clock

in out1 0 0 1 0

• The stored bits update (their values shift to the right) at each clock tick

Shift Registers

• Shift register with n bits

clock

in out1 0 0 1 0

• The stored bits update (their values shift to the right) at each clock tick

• The output is the bit stored in the last register

Shift Registers

• Shift register with n bits

clock

in out1 0 0 1 0

• The stored bits update (their values shift to the right) at each clock tick

• The output is the bit stored in the last register

• The leftmost bit is updated to the value of the “in” input line

Shift Registers

• Shift register with n bits

clock

in out1 0 0 10

• The stored bits update (their values shift to the right) at each clock tick

• The output is the bit stored in the last register

• The leftmost bit is updated to the value of the “in” input line

Shift Registers

• Shift register with n bits

clock

in out1 0 0 10

• The stored bits update (their values shift to the right) at each clock tick

• The output is the bit stored in the last register

• The leftmost bit is updated to the value of the “in” input line

Shift Registers

• Shift register with n bits

clock

in out1 0 00 0

• The stored bits update (their values shift to the right) at each clock tick

• The output is the bit stored in the last register

• The leftmost bit is updated to the value of the “in” input line

Shift Registers

• Shift register with n bits

clock

in out1 0 00 0

• The stored bits update (their values shift to the right) at each clock tick

• The output is the bit stored in the last register

• The leftmost bit is updated to the value of the “in” input line

Shift Registers

• Shift register with n bits

clock

in out1 01 0 0

• The stored bits update (their values shift to the right) at each clock tick

• The output is the bit stored in the last register

• The leftmost bit is updated to the value of the “in” input line

Shift Registers

• Shift register with n bits

clock

in out1 01 0 0

• The stored bits update (their values shift to the right) at each clock tick

• The output is the bit stored in the last register

• The leftmost bit is updated to the value of the “in” input line

0

Shift Registers

• Shift register with n bits

clock

in out1 01 0 0

• The stored bits update (their values shift to the right) at each clock tick

• The output is the bit stored in the last register

• The leftmost bit is updated to the value of the “in” input line

We use a simplified graphical depiction:

1 0 1 0in out

Linear Feedback Shift Registers (LFSR)

01 0 1 1in out

The value of the “in” line is the XOR of a subset of the bits in the register

Linear Feedback Shift Registers (LFSR)

01 0 1 1in out

The value of the “in” line is the XOR of a subset of the bits in the register

⊕

Linear Feedback Shift Registers (LFSR)

01 0 1 1in out

The value of the “in” line is the XOR of a subset of the bits in the register

⊕

the number of bits is called
the degree of the FSR

| {z }

Linear Feedback Shift Registers (LFSR)

01 0 1 1in out

The value of the “in” line is the XOR of a subset of the bits in the register

⊕

The content of the register is called the state of the register

Linear Feedback Shift Registers (LFSR)

01 0 1 1in out

The value of the “in” line is the XOR of a subset of the bits in the register

⊕

The content of the register is called the state of the register

At each clock tick:

• The state is updated

• One bit is output

Linear Feedback Shift Registers (LFSR)

01 0 1 1in out

The value of the “in” line is the XOR of a subset of the bits in the register

⊕

The content of the register is called the state of the register

At each clock tick:

• The state is updated

• One bit is output

Sequence of states and output bits in the above example:

10011• States:

• Outputs:

Linear Feedback Shift Registers (LFSR)

01 0 1 1in out

The value of the “in” line is the XOR of a subset of the bits in the register

⊕

The content of the register is called the state of the register

At each clock tick:

• The state is updated

• One bit is output

Sequence of states and output bits in the above example:

10011• States:

• Outputs: 1

→ 11001

Linear Feedback Shift Registers (LFSR)

01 0 1 1in out

The value of the “in” line is the XOR of a subset of the bits in the register

⊕

The content of the register is called the state of the register

At each clock tick:

• The state is updated

• One bit is output

Sequence of states and output bits in the above example:

10011• States:

• Outputs: 1

→ 11001→ 01100

1

Linear Feedback Shift Registers (LFSR)

01 0 1 1in out

The value of the “in” line is the XOR of a subset of the bits in the register

⊕

The content of the register is called the state of the register

At each clock tick:

• The state is updated

• One bit is output

Sequence of states and output bits in the above example:

10011• States:

• Outputs: 1

→ 11001→ 01100

1

→ 10110

0

Linear Feedback Shift Registers (LFSR)

01 0 1 1in out

The value of the “in” line is the XOR of a subset of the bits in the register

⊕

The content of the register is called the state of the register

At each clock tick:

• The state is updated

• One bit is output

Sequence of states and output bits in the above example:

10011• States:

• Outputs: 1

→ 11001→ 01100

1

→ 10110

0

→ 01011

0

→ . . .

Linear Feedback Shift Registers (LFSR)

The subset of bits that are XOR-ed together can be described by n coefficients c0, c1, . . . , cn−1

s2sn−1 s3 s1 s0in

⊕

. . .

c0=1c1=0c2=0c3=1cn=0 . . .

Linear Feedback Shift Registers (LFSR)

The subset of bits that are XOR-ed together can be described by n coefficients c0, c1, . . . , cn−1

s2sn−1 s3 s1 s0in

⊕

. . .

c0=1c1=0c2=0c3=1cn=0 . . .

• If ci = 0 then si is ignored (equivalently, 0 is XOR-ed in place of si)

Linear Feedback Shift Registers (LFSR)

The subset of bits that are XOR-ed together can be described by n coefficients c0, c1, . . . , cn−1

s2sn−1 s3 s1 s0in

⊕

. . .

c0=1c1=0c2=0c3=1cn=0 . . .

• If ci = 0 then si is ignored (equivalently, 0 is XOR-ed in place of si)

• If ci = 1 then si is XOR-ed

Linear Feedback Shift Registers (LFSR)

The subset of bits that are XOR-ed together can be described by n coefficients c0, c1, . . . , cn−1

s2sn−1 s3 s1 s0in

⊕

. . .

c0=1c1=0c2=0c3=1cn=0 . . .

• If ci = 0 then si is ignored (equivalently, 0 is XOR-ed in place of si)

• If ci = 1 then si is XOR-ed

0 = cisi

si = cisi

Linear Feedback Shift Registers (LFSR)

The subset of bits that are XOR-ed together can be described by n coefficients c0, c1, . . . , cn−1

s2sn−1 s3 s1 s0in

⊕

. . .

c0=1c1=0c2=0c3=1cn=0 . . .

At each clock tick, the state is updated from sn−1 . . . s1s0 to s′n−1 . . . s
′
1s

′
0:

• If ci = 0 then si is ignored (equivalently, 0 is XOR-ed in place of si)

• If ci = 1 then si is XOR-ed

0 = cisi

si = cisi

Linear Feedback Shift Registers (LFSR)

The subset of bits that are XOR-ed together can be described by n coefficients c0, c1, . . . , cn−1

s2sn−1 s3 s1 s0in

⊕

. . .

c0=1c1=0c2=0c3=1cn=0 . . .

• s′n−1 =
n−1M

i=0

cisi

• s′i = si+1 for i < n− 1

At each clock tick, the state is updated from sn−1 . . . s1s0 to s′n−1 . . . s
′
1s

′
0:

• If ci = 0 then si is ignored (equivalently, 0 is XOR-ed in place of si)

• If ci = 1 then si is XOR-ed

0 = cisi

si = cisi

Linear Feedback Shift Registers (LFSR)

The subset of bits that are XOR-ed together can be described by n coefficients c0, c1, . . . , cn−1

s2sn−1 s3 s1 s0in

⊕

. . .

c0=1c1=0c2=0c3=1cn=0 . . .

• s′n−1 =
n−1M

i=0

cisi

• s′i = si+1 for i < n− 1

At each clock tick, the state is updated from sn−1 . . . s1s0 to s′n−1 . . . s
′
1s

′
0:

• If ci = 0 then si is ignored (equivalently, 0 is XOR-ed in place of si)

• If ci = 1 then si is XOR-ed

0 = cisi

si = cisi

The coefficients are part of the
construction of the LFSR.

By Kerckhoffs’ principle they should not
be considered secret

01 0 1 1in out

⊕

LFSRs as stream ciphers

• Init(s): set the bits of the shift register to the bits of s

01 0 1 1in out

⊕

LFSRs as stream ciphers

• Init(s): set the bits of the shift register to the bits of s

• Next(st): corresponds to one clock tick from state st. It returns the bit from the “out” line, and
the new state after the shift

01 0 1 1in out

⊕

LFSRs as stream ciphers

• Init(s): set the bits of the shift register to the bits of s

• Next(st): corresponds to one clock tick from state st. It returns the bit from the “out” line, and
the new state after the shift

Since the number of states is finite (i.e., 2n), the output sequence must eventually repeat

01 0 1 1in out

⊕

LFSRs as stream ciphers

• Init(s): set the bits of the shift register to the bits of s

• Next(st): corresponds to one clock tick from state st. It returns the bit from the “out” line, and
the new state after the shift

A necessary (but not sufficient) condition for stream ciphers to be secure is that the time it takes for
repeats to happen must be long

Since the number of states is finite (i.e., 2n), the output sequence must eventually repeat

State Graph

01 0in

⊕
Given a FSR

State Graph

01 0in

⊕

We can create a state graph G = (V,E) in which each vertex is a state, i.e., V = {0, 1}n. . .
. . . and there is a directed edge labelled y ∈ {0, 1} from st to st′ iff Next(sf) = (y, sf ′).

Given a FSR

State Graph

01 0in

⊕

000

010 101

110

111
011

001

We can create a state graph G = (V,E) in which each vertex is a state, i.e., V = {0, 1}n. . .
. . . and there is a directed edge labelled y ∈ {0, 1} from st to st′ iff Next(sf) = (y, sf ′).

Given a FSR

100

0

0

0

1

11

1

0

State Graph

01 0in

⊕

000

010 101

110

111
011

001

We can create a state graph G = (V,E) in which each vertex is a state, i.e., V = {0, 1}n. . .
. . . and there is a directed edge labelled y ∈ {0, 1} from st to st′ iff Next(sf) = (y, sf ′).

Given a FSR

100

In a LFSR, state 00 . . . 0
always has a self-loop

0

0

0

1

11

1

0

State Graph

01 0in

⊕

000

010 101

110

111
011

001

We can create a state graph G = (V,E) in which each vertex is a state, i.e., V = {0, 1}n. . .
. . . and there is a directed edge labelled y ∈ {0, 1} from st to st′ iff Next(sf) = (y, sf ′).

Given a FSR

100

In a LFSR, state 00 . . . 0
always has a self-loop

A LFSR with degree n is a
maximum length LFSR if its state
graph has a cycle though all 2n − 1
non-zero states.

0

0

0

1

11

1

0

State Graph

01 0in

⊕

000

010 101

110

111
011

001

We can create a state graph G = (V,E) in which each vertex is a state, i.e., V = {0, 1}n. . .
. . . and there is a directed edge labelled y ∈ {0, 1} from st to st′ iff Next(sf) = (y, sf ′).

Given a FSR

100

In a LFSR, state 00 . . . 0
always has a self-loop

A LFSR with degree n is a
maximum length LFSR if its state
graph has a cycle though all 2n − 1
non-zero states.

0

0

0

1

11

1

0

For any n, it is known how to set
the coefficients to obtain a
maximum length LFSR of degree n

Key recovery attacks on LFSRs

Linear Feedback Shift Registers are not secure stream ciphers!

Key recovery attacks on LFSRs

Linear Feedback Shift Registers are not secure stream ciphers!

• The first n bits y0y1y2 . . . yn−1 output by the LFSR are exactly the seed (right to left)!

Key recovery attacks on LFSRs

Linear Feedback Shift Registers are not secure stream ciphers!

• The first n bits y0y1y2 . . . yn−1 output by the LFSR are exactly the seed (right to left)!

• Since the coefficients are known, an adversary can generate the same stream of bits.

Key recovery attacks on LFSRs

Linear Feedback Shift Registers are not secure stream ciphers!

• The first n bits y0y1y2 . . . yn−1 output by the LFSR are exactly the seed (right to left)!

One might try to use the seed to set the feedback coefficients...

• The adversary can still recover all the coefficients!

• Since the coefficients are known, an adversary can generate the same stream of bits.

Key recovery attacks on LFSRs

Linear Feedback Shift Registers are not secure stream ciphers!

• The first n bits y0y1y2 . . . yn−1 output by the LFSR are exactly the seed (right to left)!

One might try to use the seed to set the feedback coefficients...

• The adversary can still recover all the coefficients!

• Since the coefficients are known, an adversary can generate the same stream of bits.

• The adversary also observes the second group of n bits ynyn+1yn+2 . . . y2n−1 output by the LFSR

Key recovery attacks on LFSRs

Linear Feedback Shift Registers are not secure stream ciphers!

• The first n bits y0y1y2 . . . yn−1 output by the LFSR are exactly the seed (right to left)!

One might try to use the seed to set the feedback coefficients...

• The adversary can still recover all the coefficients!

• Since the coefficients are known, an adversary can generate the same stream of bits.

• The adversary also observes the second group of n bits ynyn+1yn+2 . . . y2n−1 output by the LFSR

yn = cn−1yn−1⊕cn−2yn−2⊕· · ·⊕c0y0

Key recovery attacks on LFSRs

Linear Feedback Shift Registers are not secure stream ciphers!

• The first n bits y0y1y2 . . . yn−1 output by the LFSR are exactly the seed (right to left)!

One might try to use the seed to set the feedback coefficients...

• The adversary can still recover all the coefficients!

• Since the coefficients are known, an adversary can generate the same stream of bits.





• The adversary also observes the second group of n bits ynyn+1yn+2 . . . y2n−1 output by the LFSR

yn = cn−1yn−1⊕cn−2yn−2⊕· · ·⊕c0y0

yn+1 = cn−1yn⊕cn−2yn−1⊕· · ·⊕c0y1

Key recovery attacks on LFSRs

Linear Feedback Shift Registers are not secure stream ciphers!

• The first n bits y0y1y2 . . . yn−1 output by the LFSR are exactly the seed (right to left)!

One might try to use the seed to set the feedback coefficients...

• The adversary can still recover all the coefficients!

• Since the coefficients are known, an adversary can generate the same stream of bits.





• The adversary also observes the second group of n bits ynyn+1yn+2 . . . y2n−1 output by the LFSR

yn = cn−1yn−1⊕cn−2yn−2⊕· · ·⊕c0y0

yn+1 = cn−1yn⊕cn−2yn−1⊕· · ·⊕c0y1

yn+2 = cn−1yn+1⊕cn−2yn⊕· · ·⊕c0y2
...

y2n−1 = cn−1y2n−2⊕cn−2y2n−3⊕· · ·⊕c0yn−1

Key recovery attacks on LFSRs

Linear Feedback Shift Registers are not secure stream ciphers!

• The first n bits y0y1y2 . . . yn−1 output by the LFSR are exactly the seed (right to left)!

One might try to use the seed to set the feedback coefficients...

• The adversary can still recover all the coefficients!

• Since the coefficients are known, an adversary can generate the same stream of bits.





• The adversary also observes the second group of n bits ynyn+1yn+2 . . . y2n−1 output by the LFSR

yn = cn−1yn−1⊕cn−2yn−2⊕· · ·⊕c0y0

yn+1 = cn−1yn⊕cn−2yn−1⊕· · ·⊕c0y1

yn+2 = cn−1yn+1⊕cn−2yn⊕· · ·⊕c0y2
...

y2n−1 = cn−1y2n−2⊕cn−2y2n−3⊕· · ·⊕c0yn−1

Key recovery attacks on LFSRs

Linear Feedback Shift Registers are not secure stream ciphers!

• The first n bits y0y1y2 . . . yn−1 output by the LFSR are exactly the seed (right to left)!

One might try to use the seed to set the feedback coefficients...

• The adversary can still recover all the coefficients!

• Since the coefficients are known, an adversary can generate the same stream of bits.





• The adversary also observes the second group of n bits ynyn+1yn+2 . . . y2n−1 output by the LFSR

yn = cn−1yn−1⊕cn−2yn−2⊕· · ·⊕c0y0

yn+1 = cn−1yn⊕cn−2yn−1⊕· · ·⊕c0y1

yn+2 = cn−1yn+1⊕cn−2yn⊕· · ·⊕c0y2
...

y2n−1 = cn−1y2n−2⊕cn−2y2n−3⊕· · ·⊕c0yn−1

• n linear equations (over Z2)

• n variables

• If the LFSR has maximum length*, then
the equations are linearly independent

*If the LFSR does not have maximum length, variants of the attack still apply

Key recovery attacks on LFSRs

Linear Feedback Shift Registers are not secure stream ciphers!

• The first n bits y0y1y2 . . . yn−1 output by the LFSR are exactly the seed (right to left)!

One might try to use the seed to set the feedback coefficients...

• The adversary can still recover all the coefficients!

• Since the coefficients are known, an adversary can generate the same stream of bits.





• The adversary also observes the second group of n bits ynyn+1yn+2 . . . y2n−1 output by the LFSR

yn = cn−1yn−1⊕cn−2yn−2⊕· · ·⊕c0y0

yn+1 = cn−1yn⊕cn−2yn−1⊕· · ·⊕c0y1

yn+2 = cn−1yn+1⊕cn−2yn⊕· · ·⊕c0y2
...

y2n−1 = cn−1y2n−2⊕cn−2y2n−3⊕· · ·⊕c0yn−1

• n linear equations (over Z2)

• n variables

• If the LFSR has maximum length*, then
the equations are linearly independent⇒

Unique solution! Solve the system and
recover all coefficients

*If the LFSR does not have maximum length, variants of the attack still apply

Key recovery attacks on LFSRs: example

The output of a maximum-length LFSR of degree 4 is:

Recover the length and the coefficients of the LFSR

0, 0, 1, 1, 1, 1, 0, 1

y0y1y2y3y4y5y6y7

Key recovery attacks on LFSRs: example

The output of a maximum-length LFSR of degree 4 is:

01

Recover the length and the coefficients of the LFSR

0, 0, 1, 1, 1, 1, 0, 1

y0y1y2y3y4y5y6y7

1 0

c0c1c2c3⊕ ⊕ ⊕

Key recovery attacks on LFSRs: example

The output of a maximum-length LFSR of degree 4 is:

01

Recover the length and the coefficients of the LFSR

0, 0, 1, 1, 1, 1, 0, 1

y0y1y2y3y4y5y6y7

1 0

c0 c1 c2 c3

c0c1c2c3⊕ ⊕ ⊕

Key recovery attacks on LFSRs: example

The output of a maximum-length LFSR of degree 4 is:

01





Recover the length and the coefficients of the LFSR

1 = c2 ⊕ c3

0, 0, 1, 1, 1, 1, 0, 1

y0y1y2y3y4y5y6y7

1 0

c0 c1 c2 c3

c0c1c2c3⊕ ⊕ ⊕

Key recovery attacks on LFSRs: example

The output of a maximum-length LFSR of degree 4 is:

01





Recover the length and the coefficients of the LFSR

1 = c2 ⊕ c3

0, 0, 1, 1, 1, 1, 0, 1

y0y1y2y3y4y5y6y7

1 0

c0c1c2c3

c0 c1 c2 c3

⊕ ⊕ ⊕

Key recovery attacks on LFSRs: example

The output of a maximum-length LFSR of degree 4 is:

01





Recover the length and the coefficients of the LFSR

1 = c2 ⊕ c3

0, 0, 1, 1, 1, 1, 0, 1

y0y1y2y3y4y5y6y7

1 = c1 ⊕ c2 ⊕ c3 1 0

c0c1c2c3

c0 c1 c2 c3

⊕ ⊕ ⊕

Key recovery attacks on LFSRs: example

The output of a maximum-length LFSR of degree 4 is:

01





Recover the length and the coefficients of the LFSR

1 = c2 ⊕ c3

0, 0, 1, 1, 1, 1, 0, 1

y0y1y2y3y4y5y6y7

1 = c1 ⊕ c2 ⊕ c3 1 0

c0c1c2c3

c0 c1 c2 c3

⊕ ⊕ ⊕

Key recovery attacks on LFSRs: example

The output of a maximum-length LFSR of degree 4 is:

01





Recover the length and the coefficients of the LFSR

1 = c2 ⊕ c3

0, 0, 1, 1, 1, 1, 0, 1

y0y1y2y3y4y5y6y7

1 = c1 ⊕ c2 ⊕ c3

0 = c0 ⊕ c1 ⊕ c2 ⊕ c3

1 0

c0c1c2c3

c0 c1 c2 c3

⊕ ⊕ ⊕

Key recovery attacks on LFSRs: example

The output of a maximum-length LFSR of degree 4 is:

01





Recover the length and the coefficients of the LFSR

1 = c2 ⊕ c3

0, 0, 1, 1, 1, 1, 0, 1

y0y1y2y3y4y5y6y7

1 = c1 ⊕ c2 ⊕ c3

0 = c0 ⊕ c1 ⊕ c2 ⊕ c3

1 0

c0c1c2c3

c0 c1 c2 c3

⊕ ⊕ ⊕

Key recovery attacks on LFSRs: example

The output of a maximum-length LFSR of degree 4 is:

01





Recover the length and the coefficients of the LFSR

1 = c2 ⊕ c3

0, 0, 1, 1, 1, 1, 0, 1

y0y1y2y3y4y5y6y7

1 = c1 ⊕ c2 ⊕ c3

0 = c0 ⊕ c1 ⊕ c2 ⊕ c3

1 = c0 ⊕ c1 ⊕ c2

1 0

c0c1c2c3

c0 c1 c2 c3

⊕ ⊕ ⊕

Key recovery attacks on LFSRs: example

The output of a maximum-length LFSR of degree 4 is:

01





Recover the length and the coefficients of the LFSR

1 = c2 ⊕ c3

0, 0, 1, 1, 1, 1, 0, 1

y0y1y2y3y4y5y6y7

1 = c1 ⊕ c2 ⊕ c3

0 = c0 ⊕ c1 ⊕ c2 ⊕ c3

1 = c0 ⊕ c1 ⊕ c2

=⇒





c0 = 1

c1 = 0

c2 = 0

c3 = 1

1 0

c0c1c2c3⊕ ⊕ ⊕

Key recovery attacks on LFSRs: example

The output of a maximum-length LFSR of degree 4 is:

01





Recover the length and the coefficients of the LFSR

1 = c2 ⊕ c3

0, 0, 1, 1, 1, 1, 0, 1

y0y1y2y3y4y5y6y7

1 = c1 ⊕ c2 ⊕ c3

0 = c0 ⊕ c1 ⊕ c2 ⊕ c3

1 = c0 ⊕ c1 ⊕ c2

=⇒





c0 = 1

c1 = 0

c2 = 0

c3 = 1

1 0

⊕

Nonlinear Feedback Shift Registers (NLFSRs)

To avoid this weakness, we need to add some non-linear component

Nonlinear Feedback Shift Registers (NLFSRs)

To avoid this weakness, we need to add some non-linear component

Multiple options:

• Nonlinear feedback: on state update, choose the new value of the leftmost register sn−1 as
some non-linear function g(s0, s1, . . . , sn−1) of the current registers

Nonlinear Feedback Shift Registers (NLFSRs)

To avoid this weakness, we need to add some non-linear component

Multiple options:

• Nonlinear feedback: on state update, choose the new value of the leftmost register sn−1 as
some non-linear function g(s0, s1, . . . , sn−1) of the current registers

• Nonlinear output: the output bit is some function g(s0, s1, . . . , sn−1) of the current state (rather
than simply s0)

Nonlinear Feedback Shift Registers (NLFSRs)

To avoid this weakness, we need to add some non-linear component

Multiple options:

• Nonlinear feedback: on state update, choose the new value of the leftmost register sn−1 as
some non-linear function g(s0, s1, . . . , sn−1) of the current registers

• Combination generators: use multiple LFSRs and combine their outputs in some nonlinear way

• Nonlinear output: the output bit is some function g(s0, s1, . . . , sn−1) of the current state (rather
than simply s0)

Nonlinear feedback: on state update, choose the new value of the leftmost register sn−1 as some
non-linear function g(s0, s1, . . . , sn−1) of the current registers

s2s4 s3 s1 s0

∧

Adding nonlinearity

• In the example: g(s0, s1, . . . , sn−1) = (s0 ⊕ s1) ∧ s4

⊕

Nonlinear feedback: on state update, choose the new value of the leftmost register sn−1 as some
non-linear function g(s0, s1, . . . , sn−1) of the current registers

s2s4 s3 s1 s0

∧

Adding nonlinearity

• In the example: g(s0, s1, . . . , sn−1) = (s0 ⊕ s1) ∧ s4

• Care must be taken to ensure that g(·) = 1 with probability ≈ 1
2

⊕

Nonlinear feedback: on state update, choose the new value of the leftmost register sn−1 as some
non-linear function g(s0, s1, . . . , sn−1) of the current registers

s2s4 s3 s1 s0

∧

Adding nonlinearity

• In the example: g(s0, s1, . . . , sn−1) = (s0 ⊕ s1) ∧ s4

• Care must be taken to ensure that g(·) = 1 with probability ≈ 1
2

The function g above is not a great choice, since its is 0 whenever at least one of s0 ⊕ s1 and s4 is 0

If we heuristically think of the state as a uniformly random string, then g(·) will be zero 75% of the
time!

⊕

Nonlinear output: the output bit is some function g(s0, s1, . . . , sn−1) of the current state (rather
than simply s0)

s2s4 s3

⊕

s1 s0

∧

Adding nonlinearity

In the example: g(s0, s1, . . . , sn−1) = s2 ∧ s3

Nonlinear output: the output bit is some function g(s0, s1, . . . , sn−1) of the current state (rather
than simply s0)

s2s4 s3

⊕

s1 s0

∧

Adding nonlinearity

In the example: g(s0, s1, . . . , sn−1) = s2 ∧ s3

• The function g(·) is called filter

Nonlinear output: the output bit is some function g(s0, s1, . . . , sn−1) of the current state (rather
than simply s0)

s2s4 s3

⊕

s1 s0

∧

Adding nonlinearity

In the example: g(s0, s1, . . . , sn−1) = s2 ∧ s3

• The function g(·) is called filter

• Care must be taken to ensure that g(·) = 1 with probability ≈ 1
2

Nonlinear output: the output bit is some function g(s0, s1, . . . , sn−1) of the current state (rather
than simply s0)

s2s4 s3

⊕

s1 s0

∧

Adding nonlinearity

In the example: g(s0, s1, . . . , sn−1) = s2 ∧ s3

• The function g(·) is called filter

• Care must be taken to ensure that g(·) = 1 with probability ≈ 1
2

• A better function: g(s0, s1, . . . , sn−1) = (s2 ∧ s3)⊕ s0

⊕

Adding nonlinearity

Combination generators: use multiple LFSRs and combine their outputs in some nonlinear way

s2s5 s3

⊕

s1 s0s4

s2s3 s1 s0

⊕

s2 s1 s0

⊕

nonlinear
part

Adding nonlinearity

Combination generators: use multiple LFSRs and combine their outputs in some nonlinear way

s2s5 s3

⊕

s1 s0s4

s2s3 s1 s0

⊕

s2 s1 s0

⊕

⊕

Adding nonlinearity

Combination generators: use multiple LFSRs and combine their outputs in some nonlinear way

s2s5 s3

⊕

s1 s0s4

s2s3 s1 s0

⊕

s2 s1 s0

⊕

⊕

• The LFSRs do not need to have the same degrees (in fact, it is better if they have different degrees)

Adding nonlinearity

Combination generators: use multiple LFSRs and combine their outputs in some nonlinear way

s2s5 s3

⊕

s1 s0s4

s2s3 s1 s0

⊕

s2 s1 s0

⊕

⊕

• The LFSRs do not need to have the same degrees (in fact, it is better if they have different degrees)

• Ideally, if the degrees are d1, d2, d3, . . . , we would like attacks to take time ≈ 2d1+d2+d3+...

Correlation attacks on combination generators

Care must be taken to ensure that the output bit is not biased towards the output of any of the LFSRs

A bad example:

s2s5 s3 s1 s0s4

s2s3 s1 s0

s2 s1 s0

⊕

a1a2a3 . . .

b1b2b3 . . .

c1c2c3 . . .

yi = (ai ∧ bi)⊕ ci

A

B

C

Correlation attacks on combination generators

Care must be taken to ensure that the output bit is not biased towards the output of any of the LFSRs

A bad example:

s2s5 s3 s1 s0s4

s2s3 s1 s0

s2 s1 s0

⊕

a1a2a3 . . .

b1b2b3 . . .

c1c2c3 . . .

yi = (ai ∧ bi)⊕ ci

• 75% of the time (ai ∧ bi) is 0

• When this happens, yi = ci

A

B

C

Correlation attacks on combination generators

Care must be taken to ensure that the output bit is not biased towards the output of any of the LFSRs

A bad example:

s2s5 s3 s1 s0s4

s2s3 s1 s0

s2 s1 s0

⊕

a1a2a3 . . .

b1b2b3 . . .

c1c2c3 . . .

yi = (ai ∧ bi)⊕ ci

• 75% of the time (ai ∧ bi) is 0

• When this happens, yi = ci

• We can run a bruteforce attack on C:

A

B

C

• Try all possible initial states. For every state generate a stream of bits c′1, c
′
2, c

′
3, . . .

• When the initial state is correct, ≈ 3/4 of the bits cis match with the corresponding c′is

Back to Trivium

• Three FSRs (say A, B, C) of degrees 93, 84, and 111 (overall, the state is 288 bits long)

a2a93 a3 a1 a0a4. . .

b2b3 b1 b0b4. . .

c2c3 c1 c0c4.

b84

c110

Back to Trivium

• Three FSRs (say A, B, C) of degrees 93, 84, and 111 (overall, the state is 288 bits long)

a2a93 a3 a1 a0a4. . .

b2b3 b1 b0b4. . .

c2c3 c1 c0c4.

b84

c110

• The FSRs are coupled: the input of each FSR is a non-linear function of a register from that FSR,
and of 4 registers from another FSR

Back to Trivium

• Three FSRs (say A, B, C) of degrees 93, 84, and 111 (overall, the state is 288 bits long)

a2a93 a3 a1 a0a4. . .

b2b3 b1 b0b4. . .

c2c3 c1 c0c4.

b84

c110

• The FSRs are coupled: the input of each FSR is a non-linear function of a register from that FSR,
and of 4 registers from another FSR

⊕
⊕

⊕

⊕

Back to Trivium

• Three FSRs (say A, B, C) of degrees 93, 84, and 111 (overall, the state is 288 bits long)

a2a93 a3 a1 a0a4. . .

b2b3 b1 b0b4. . .

c2c3 c1 c0c4.

b84

c110

• The FSRs are coupled: the input of each FSR is a non-linear function of a register from that FSR,
and of 4 registers from another FSR

⊕

⊕

⊕

Back to Trivium

• Three FSRs (say A, B, C) of degrees 93, 84, and 111 (overall, the state is 288 bits long)

a2a93 a3 a1 a0a4. . .

b2b3 b1 b0b4. . .

c2c3 c1 c0c4.

b84

c110

• The FSRs are coupled: the input of each FSR is a non-linear function of a register from that FSR,
and of 4 registers from another FSR

⊕

⊕

⊕

⊕

Back to Trivium

• Three FSRs (say A, B, C) of degrees 93, 84, and 111 (overall, the state is 288 bits long)

a2a93 a3 a1 a0a4. . .

b2b3 b1 b0b4. . .

c2c3 c1 c0c4.

b84

c110

• The FSRs are coupled: the input of each FSR is a non-linear function of a register from that FSR,
and of 4 registers from another FSR

⊕
⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

Back to Trivium

• Three FSRs (say A, B, C) of degrees 93, 84, and 111 (overall, the state is 288 bits long)

a2a93 a3 a1 a0a4. . .

b2b3 b1 b0b4. . .

c2c3 c1 c0c4.

b84

c110

• The output of each FSR is the XOR of its rightmost bit plus the content of another register

⊕
⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

Back to Trivium

• Three FSRs (say A, B, C) of degrees 93, 84, and 111 (overall, the state is 288 bits long)

a2a93 a3 a1 a0a4. . .

b2b3 b1 b0b4. . .

c2c3 c1 c0c4.

b84

c110

• The output of each FSR is the XOR of its rightmost bit plus the content of another register

• The output of Trivium is the XOR of the outputs of the single FSRs

⊕
⊕

⊕

⊕ ⊕

⊕

⊕

⊕

Trivium takes a 80-bit key and a 80-bit IV. . .

Init:

• Set the leftmost 80 registers of A to the key, and other registers to 0

• Set the leftmost 80 registers of B to the IV, and other registers to 0

• Set the rightmost 3 registers of C to 1, and other registers to 0

• Run for 4 · 288 clock ticks and discard the output

Trivium: Init

and generates up to 264 bits of output

Extra: Implementing LFSRs in hardware

8 bit shift register

Extra: Implementing LFSRs in hardware

8 bit shift register

Extra: Implementing LFSRs in hardware

8 bit shift register

registers

Extra: Implementing LFSRs in hardware

8 bit shift register

registers

Extra: Implementing LFSRs in hardware

8 bit shift register

registers output

Extra: Implementing LFSRs in hardware

8 bit shift register

registers

input
(leftmost bit)

output

Extra: Implementing LFSRs in hardware

8 bit shift register

registers

input
(leftmost bit) shift

clock

output

Extra: Implementing LFSRs in hardware

8 bit shift register

registers

input
(leftmost bit) shift

clock

update state
of the output

pins

output

Extra: Implementing LFSRs in hardware

XOR gates

Extra: Implementing LFSRs in hardware

Q5

⊕

Q3Q2

⊕

Q1 Q4 Q6 Q7Q0

Extra: Implementing LFSRs in hardware

Q5

⊕

Q3Q2

⊕

Q1 Q4 Q6 Q7Q0

Extra: Implementing LFSRs in hardware

Q5

⊕

Q3Q2

⊕

Q1 Q4 Q6 Q7Q0

Extra: Implementing LFSRs in hardware

Q5

⊕

Q3Q2

⊕

Q1 Q4 Q6 Q7Q0

Extra: Implementing LFSRs in hardware

Q5

⊕

Q3Q2

⊕

Q1 Q4 Q6 Q7Q0

clock

