
Stream ciphers (reminder)
A stream cipher is a pair of deterministic polynomial-time algorithms

• Init: takes a n-bit seed s, and possibly a n-bit initialization vector (IV), and outputs a state st

• Next: takes a state st and outputs a bit y and a new (updated) state st′

* In practice, Next can output multiple bits at once (e.g., a byte)

Init

s (IV)

st0 Next Nextst1 Nextst2 st3 . . .

y1 y2 y3

Idea: we can generate as many random bits as desired, by repeatedly calling Next



Stream ciphers (reminder)

If the stream cipher does not support IVs, then it should behave like a PRG

• For a key chosen u.a.r., its output should be indistinguishable (to poly-time adversaries)
from a uniform stream of random bits chosen independently at random (as long as the
output length is polynomial)

If the stream cipher does support IVs, then the stream cipher should behave like a PRF

• For any key (chosen u.a.r.) the output streams generated from multiple IVs (chosen u.a.r.)
should be indistinguishable (to poly-time adversaries) from multiple streams of random
bits, where each bit is chosen u.a.r.

• This must still be true even if the adversary is given the IVs!



• We don’t know if (secure) stream ciphers exist (we don’t know if PRGs / PRFs exist)

• In practice we have some candidate stream cipher constructions that are conjectured to be secure

• These construction have withstood years of public scrutiny and attempted cryptanalysis

• Trivium: optimized for hardware

• RC4 (insecure): optimized for software

• ChaCha20: replacement of RC4

• Some popular practical constructions of stream ciphers:
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Shift Registers

• Shift register with n bits

clock

in out1 01 0 0

• The stored bits update (their values shift to the right) at each clock tick

• The output is the bit stored in the last register

• The leftmost bit is updated to the value of the “in” input line
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Shift Registers

• Shift register with n bits

clock

in out1 01 0 0

• The stored bits update (their values shift to the right) at each clock tick

• The output is the bit stored in the last register

• The leftmost bit is updated to the value of the “in” input line

We use a simplified graphical depiction:

1 0 1 0in out
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The value of the “in” line is the XOR of a subset of the bits in the register

⊕

the number of bits is called
the degree of the FSR

| {z }
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Linear Feedback Shift Registers (LFSR)

01 0 1 1in out

The value of the “in” line is the XOR of a subset of the bits in the register

⊕

The content of the register is called the state of the register

At each clock tick:

• The state is updated

• One bit is output

Sequence of states and output bits in the above example:

10011• States:

• Outputs: 1

→ 11001→ 01100

1

→ 10110

0

→ 01011

0

→ . . .
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The subset of bits that are XOR-ed together can be described by n coefficients c0, c1, . . . , cn−1

s2sn−1 s3 s1 s0in
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c0=1c1=0c2=0c3=1cn=0 . . .

• s′n−1 =
n−1M

i=0

cisi

• s′i = si+1 for i < n− 1

At each clock tick, the state is updated from sn−1 . . . s1s0 to s′n−1 . . . s
′
1s

′
0:

• If ci = 0 then si is ignored (equivalently, 0 is XOR-ed in place of si)

• If ci = 1 then si is XOR-ed

0 = cisi

si = cisi

The coefficients are part of the
construction of the LFSR.

By Kerckhoffs’ principle they should not
be considered secret
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⊕

LFSRs as stream ciphers

• Init(s): set the bits of the shift register to the bits of s

• Next(st): corresponds to one clock tick from state st. It returns the bit from the “out” line, and
the new state after the shift

A necessary (but not sufficient) condition for stream ciphers to be secure is that the time it takes for
repeats to happen must be long

Since the number of states is finite (i.e., 2n), the output sequence must eventually repeat
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100
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always has a self-loop

A LFSR with degree n is a
maximum length LFSR if its state
graph has a cycle though all 2n − 1
non-zero states.
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For any n, it is known how to set
the coefficients to obtain a
maximum length LFSR of degree n
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Multiple options:

• Nonlinear feedback: on state update, choose the new value of the leftmost register sn−1 as
some non-linear function g(s0, s1, . . . , sn−1) of the current registers

• Combination generators: use multiple LFSRs and combine their outputs in some nonlinear way
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Nonlinear feedback: on state update, choose the new value of the leftmost register sn−1 as some
non-linear function g(s0, s1, . . . , sn−1) of the current registers

s2s4 s3 s1 s0

∧

Adding nonlinearity

• In the example: g(s0, s1, . . . , sn−1) = (s0 ⊕ s1) ∧ s4

• Care must be taken to ensure that g(·) = 1 with probability ≈ 1
2

The function g above is not a great choice, since its is 0 whenever at least one of s0 ⊕ s1 and s4 is 0

If we heuristically think of the state as a uniformly random string, then g(·) will be zero 75% of the
time!
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Nonlinear output: the output bit is some function g(s0, s1, . . . , sn−1) of the current state (rather
than simply s0)

s2s4 s3

⊕

s1 s0

∧

Adding nonlinearity

In the example: g(s0, s1, . . . , sn−1) = s2 ∧ s3

• The function g(·) is called filter

• Care must be taken to ensure that g(·) = 1 with probability ≈ 1
2

• A better function: g(s0, s1, . . . , sn−1) = (s2 ∧ s3)⊕ s0

⊕



Adding nonlinearity

Combination generators: use multiple LFSRs and combine their outputs in some nonlinear way

s2s5 s3

⊕

s1 s0s4

s2s3 s1 s0

⊕

s2 s1 s0

⊕

nonlinear
part



Adding nonlinearity

Combination generators: use multiple LFSRs and combine their outputs in some nonlinear way

s2s5 s3

⊕

s1 s0s4

s2s3 s1 s0

⊕

s2 s1 s0

⊕

⊕



Adding nonlinearity

Combination generators: use multiple LFSRs and combine their outputs in some nonlinear way

s2s5 s3

⊕

s1 s0s4

s2s3 s1 s0

⊕

s2 s1 s0

⊕

⊕

• The LFSRs do not need to have the same degrees (in fact, it is better if they have different degrees)



Adding nonlinearity

Combination generators: use multiple LFSRs and combine their outputs in some nonlinear way

s2s5 s3

⊕

s1 s0s4

s2s3 s1 s0

⊕

s2 s1 s0

⊕

⊕

• The LFSRs do not need to have the same degrees (in fact, it is better if they have different degrees)

• Ideally, if the degrees are d1, d2, d3, . . . , we would like attacks to take time ≈ 2d1+d2+d3+...



Correlation attacks on combination generators

Care must be taken to ensure that the output bit is not biased towards the output of any of the LFSRs

A bad example:
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Correlation attacks on combination generators

Care must be taken to ensure that the output bit is not biased towards the output of any of the LFSRs

A bad example:

s2s5 s3 s1 s0s4

s2s3 s1 s0

s2 s1 s0

⊕

a1a2a3 . . .

b1b2b3 . . .

c1c2c3 . . .

yi = (ai ∧ bi)⊕ ci

• 75% of the time (ai ∧ bi) is 0

• When this happens, yi = ci

• We can run a bruteforce attack on C:

A

B

C

• Try all possible initial states. For every state generate a stream of bits c′1, c
′
2, c

′
3, . . .

• When the initial state is correct, ≈ 3/4 of the bits cis match with the corresponding c′is
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Back to Trivium

• Three FSRs (say A, B, C) of degrees 93, 84, and 111 (overall, the state is 288 bits long)

a2a93 a3 a1 a0a4. . .

b2b3 b1 b0b4. . .

c2c3 c1 c0c4. . . . . .

b84

c110

• The output of each FSR is the XOR of its rightmost bit plus the content of another register

• The output of Trivium is the XOR of the outputs of the single FSRs

⊕
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Trivium takes a 80-bit key and a 80-bit IV. . .

Init:

• Set the leftmost 80 registers of A to the key, and other registers to 0

• Set the leftmost 80 registers of B to the IV, and other registers to 0

• Set the rightmost 3 registers of C to 1, and other registers to 0

• Run for 4 · 288 clock ticks and discard the output

Trivium: Init

and generates up to 264 bits of output
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registers

input
(leftmost bit) shift
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of the output
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Extra: Implementing LFSRs in hardware

Q5

⊕

Q3Q2

⊕

Q1 Q4 Q6 Q7Q0

clock


