
Stream ciphers (reminder)

A stream cipher is a pair of deterministic polynomial-time algorithms

• Init: takes a n-bit seed s, and possibly a n-bit initialization vector (IV), and outputs a state st

• Next: takes a state st and outputs a bit y and a new (updated) state st′

* In practice, Next can output multiple bits at once (e.g., a byte)

Init

s (IV)

st0 Next Nextst1 Nextst2 st3 . . .

y1 y2 y3

Idea: we can generate as many random bits as desired, by repeatedly calling Next

RC4
• Stands for Rivest Cipher 4

Ron Rivest (the R in RSA)

• Designed for performance in software

RC4
• Stands for Rivest Cipher 4

Ron Rivest (the R in RSA)

• Designed for performance in software

• Construction does not use (L)FSRs

• Very simple (fits one slide!)

RC4
• Stands for Rivest Cipher 4

Ron Rivest (the R in RSA)

• Designed for performance in software

• No longer considered secure (especially if misused)!

• Construction does not use (L)FSRs

. . . but still used in practice

WEP Encryption

• Very simple (fits one slide!)

RC4
• Stands for Rivest Cipher 4

Ron Rivest (the R in RSA)

• Designed for performance in software

• No longer considered secure (especially if misused)!

• Construction does not use (L)FSRs

• We will see how to attack it

. . . but still used in practice

WEP Encryption

• Very simple (fits one slide!)

RC4

The state consists of:

• An array S of 256 bytes, which will always be a permutation of {0, . . . , 255}

• A pair of integers i, j ∈ {0, . . . , 255}

RC4

The state consists of:

• An array S of 256 bytes, which will always be a permutation of {0, . . . , 255}

• A pair of integers i, j ∈ {0, . . . , 255}

Init(k : array of 16 bytes):

• S ← [0, 1, 2, . . . , 255]

• k ← k ∥ k ∥ . . . ∥ k
︸ ︷︷ ︸

16 times

• For i← 0, 1, . . . , 255:

• j ← 0

• j ← j + S[i] + k[i] (mod 256)

• Swap S[i] and S[j]

• Return ⟨S, i = 0, j = 0⟩

RC4

The state consists of:

• An array S of 256 bytes, which will always be a permutation of {0, . . . , 255}

• A pair of integers i, j ∈ {0, . . . , 255}

Init(k : array of 16 bytes):

• S ← [0, 1, 2, . . . , 255]

• k ← k ∥ k ∥ . . . ∥ k
︸ ︷︷ ︸

16 times

• For i← 0, 1, . . . , 255:

• j ← 0

• j ← j + S[i] + k[i] (mod 256)

• Swap S[i] and S[j]

• Return ⟨S, i = 0, j = 0⟩

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return the byte y and the new state st′ = ⟨S, i, j⟩

(returns a byte)

[Demo]

Test vectors

Output bias

Empirical distribution of the value of the 2nd output byte over 50000 samples (with keys chosen u.a.r.)

Expected: 1
256 ≈ 0.0039Observed

There is a bias towards 0 in the second byte output by RC4 (about twice as likely to be 0)

Output bias: analysis

• Consider the state immediately after Init

• For simplicity, think of S as a uniform permutation over {0, 1, . . . , 255}

i = 0

j = 0
.

0 1 2 255

Output bias: analysis

• Consider the state immediately after Init

• For simplicity, think of S as a uniform permutation over {0, 1, . . . , 255}

• With probability ≈ 1
256 we have S[2] = 0. Assume that S[1] ̸= 2 (happens with probability ≈

254

255
≈ 1)

i = 0

j = 0
.

0 1 2 255

0

Output bias: analysis

• Consider the state immediately after Init

• For simplicity, think of S as a uniform permutation over {0, 1, . . . , 255}

• With probability ≈ 1
256 we have S[2] = 0. Assume that S[1] ̸= 2 (happens with probability ≈

254

255
≈ 1)

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return the byte y and the new state st′ = ⟨S, i, j⟩

(returns a byte)

i = 0

j = 0
.

0 1 2 255

0

Output bias: analysis

• Consider the state immediately after Init

• For simplicity, think of S as a uniform permutation over {0, 1, . . . , 255}

• With probability ≈ 1
256 we have S[2] = 0. Assume that S[1] ̸= 2 (happens with probability ≈

254

255
≈ 1)

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return the byte y and the new state st′ = ⟨S, i, j⟩

(returns a byte)

i = 0

j = 0
.

0 1 2 255

0

Output bias: analysis

• Consider the state immediately after Init

• For simplicity, think of S as a uniform permutation over {0, 1, . . . , 255}

• With probability ≈ 1
256 we have S[2] = 0. Assume that S[1] ̸= 2 (happens with probability ≈

254

255
≈ 1)

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return the byte y and the new state st′ = ⟨S, i, j⟩

(returns a byte)

j = 0
.

0 1 2 255

0

i = 1

Output bias: analysis

• Consider the state immediately after Init

• For simplicity, think of S as a uniform permutation over {0, 1, . . . , 255}

• With probability ≈ 1
256 we have S[2] = 0. Assume that S[1] ̸= 2 (happens with probability ≈

254

255
≈ 1)

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return the byte y and the new state st′ = ⟨S, i, j⟩

(returns a byte)

j = 0
.

0 1 2 255

0

i = 1

Output bias: analysis

• Consider the state immediately after Init

• For simplicity, think of S as a uniform permutation over {0, 1, . . . , 255}

• With probability ≈ 1
256 we have S[2] = 0. Assume that S[1] ̸= 2 (happens with probability ≈

254

255
≈ 1)

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return the byte y and the new state st′ = ⟨S, i, j⟩

(returns a byte)

.

0 1 2 255

0

i = 1
Xj = X

Output bias: analysis

• Consider the state immediately after Init

• For simplicity, think of S as a uniform permutation over {0, 1, . . . , 255}

• With probability ≈ 1
256 we have S[2] = 0. Assume that S[1] ̸= 2 (happens with probability ≈

254

255
≈ 1)

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return the byte y and the new state st′ = ⟨S, i, j⟩

(returns a byte)

.

0 1 2 255

0

i = 1
Xj = X

X

Output bias: analysis

• Consider the state immediately after Init

• For simplicity, think of S as a uniform permutation over {0, 1, . . . , 255}

• With probability ≈ 1
256 we have S[2] = 0. Assume that S[1] ̸= 2 (happens with probability ≈

254

255
≈ 1)

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return the byte y and the new state st′ = ⟨S, i, j⟩

(returns a byte)

.

0 1 2 255

0

i = 1

j = X

X

X

Output bias: analysis

• Consider the state immediately after Init

• For simplicity, think of S as a uniform permutation over {0, 1, . . . , 255}

• With probability ≈ 1
256 we have S[2] = 0. Assume that S[1] ̸= 2 (happens with probability ≈

254

255
≈ 1)

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return the byte y and the new state st′ = ⟨S, i, j⟩

(returns a byte)

.

0 1 2 255

0

i = 1

j = X

X

X

The rest
of the

code does
not modify
the state

Output bias: analysis

• Consider the state immediately after Init

• For simplicity, think of S as a uniform permutation over {0, 1, . . . , 255}

• With probability ≈ 1
256 we have S[2] = 0. Assume that S[1] ̸= 2 (happens with probability ≈

254

255
≈ 1)

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return the byte y and the new state st′ = ⟨S, i, j⟩

(returns a byte)

.

0 1 2 255

0

i = 1

j = X

X

X

2nd call

Output bias: analysis

• Consider the state immediately after Init

• For simplicity, think of S as a uniform permutation over {0, 1, . . . , 255}

• With probability ≈ 1
256 we have S[2] = 0. Assume that S[1] ̸= 2 (happens with probability ≈

254

255
≈ 1)

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return the byte y and the new state st′ = ⟨S, i, j⟩

(returns a byte)

.

0 1 2 255

0
j = X

X

X

2nd call

i = 2

Output bias: analysis

• Consider the state immediately after Init

• For simplicity, think of S as a uniform permutation over {0, 1, . . . , 255}

• With probability ≈ 1
256 we have S[2] = 0. Assume that S[1] ̸= 2 (happens with probability ≈

254

255
≈ 1)

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return the byte y and the new state st′ = ⟨S, i, j⟩

(returns a byte)

.

0 1 2 255

0
j = X

X

X

2nd call

i = 2

Output bias: analysis

• Consider the state immediately after Init

• For simplicity, think of S as a uniform permutation over {0, 1, . . . , 255}

• With probability ≈ 1
256 we have S[2] = 0. Assume that S[1] ̸= 2 (happens with probability ≈

254

255
≈ 1)

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return the byte y and the new state st′ = ⟨S, i, j⟩

(returns a byte)

.

0 1 2 255

0
j = X

X

X

2nd call

i = 2

Output bias: analysis

• Consider the state immediately after Init

• For simplicity, think of S as a uniform permutation over {0, 1, . . . , 255}

• With probability ≈ 1
256 we have S[2] = 0. Assume that S[1] ̸= 2 (happens with probability ≈

254

255
≈ 1)

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return the byte y and the new state st′ = ⟨S, i, j⟩

(returns a byte)

.

0 1 2 255

j = X

X
2nd call

i = 2
0X

Output bias: analysis

• Consider the state immediately after Init

• For simplicity, think of S as a uniform permutation over {0, 1, . . . , 255}

• With probability ≈ 1
256 we have S[2] = 0. Assume that S[1] ̸= 2 (happens with probability ≈

254

255
≈ 1)

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return the byte y and the new state st′ = ⟨S, i, j⟩

(returns a byte)

.

0 1 2 255

j = X

X
2nd call

i = 2
0X

t = X

Output bias: analysis

• Consider the state immediately after Init

• For simplicity, think of S as a uniform permutation over {0, 1, . . . , 255}

• With probability ≈ 1
256 we have S[2] = 0. Assume that S[1] ̸= 2 (happens with probability ≈

254

255
≈ 1)

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return the byte y and the new state st′ = ⟨S, i, j⟩

(returns a byte)

.

0 1 2 255

j = X

X
2nd call

i = 2
0X

t = X

Output bias: analysis

• Consider the state immediately after Init

• For simplicity, think of S as a uniform permutation over {0, 1, . . . , 255}

• With probability ≈ 1
256 we have S[2] = 0. Assume that S[1] ̸= 2 (happens with probability ≈

254

255
≈ 1)

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return the byte y and the new state st′ = ⟨S, i, j⟩

(returns a byte)

.

0 1 2 255

j = X

X
2nd call

i = 2
0X

t = X Output byte y = 0

Output bias: analysis

• Consider the state immediately after Init

• For simplicity, think of S as a uniform permutation over {0, 1, . . . , 255}

• With probability ≈ 1
256 we have S[2] = 0. Assume that S[1] ̸= 2 (happens with probability ≈

254

255
≈ 1)

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return the byte y and the new state st′ = ⟨S, i, j⟩

(returns a byte)

.

0 1 2 255

j = X

X
i = 2

0X

t = X Output byte y = 0

• With probability ≈ 255
256 ≈ 1 we have

that S[2] is distributed “uniformly at
random” after 2 iterations

Output bias: analysis

• Consider the state immediately after Init

• For simplicity, think of S as a uniform permutation over {0, 1, . . . , 255}

• With probability ≈ 1
256 we have S[2] = 0. Assume that S[1] ̸= 2 (happens with probability ≈

254

255
≈ 1)

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return the byte y and the new state st′ = ⟨S, i, j⟩

(returns a byte)

.

0 1 2 255

j = X

X
i = 2

0X

t = X Output byte y = 0

• With probability ≈ 255
256 ≈ 1 we have

that S[2] is distributed “uniformly at
random” after 2 iterations

Probability that the 2nd output byte is 0:

≈ 1
256 + 1 · 1

256 = 2
256

Output bias

• The output bias is indicative of structural problems with RC4

• Other biases have been found in other bytes of the RC4 state

• Severe enough to allow recovery of plaintext from ciphertext when RC4 is used for encryption!

Output bias

• The output bias is indicative of structural problems with RC4

• Other biases have been found in other bytes of the RC4 state

• Severe enough to allow recovery of plaintext from ciphertext when RC4 is used for encryption!

In summary: Do not use RC4!

RC4 and IVs

RC4 is not designed to take an IV . . . but programmers don’t know it and use an IV anyway

xkcd.com

RC4 and IVs

RC4 is not designed to take an IV

In practice an IV of some length ℓ (in bytes) is often used, together with a key k′ of 16− ℓ bytes

k = IV ∥ k′

RC4 and IVs

RC4 is not designed to take an IV

In practice an IV of some length ℓ (in bytes) is often used, together with a key k′ of 16− ℓ bytes

k = IV ∥ k′

In WEP:

• 3-byte IV, 13 bytes key

RC4 and IVs

RC4 is not designed to take an IV

In practice an IV of some length ℓ (in bytes) is often used, together with a key k′ of 16− ℓ bytes

k = IV ∥ k′

In WEP:

• 3-byte IV, 13 bytes key

• Key recovery attack!

RC4 and IVs

RC4 is not designed to take an IV

In practice an IV of some length ℓ (in bytes) is often used, together with a key k′ of 16− ℓ bytes

k = IV ∥ k′

In WEP:

• 3-byte IV, 13 bytes key

• Key recovery attack!

• We show a simplified attack that recovers the first byte of the key (i.e., k[3])

Key recovery attack

• Recall that IVs are not kept secret!

Key recovery attack

• Recall that IVs are not kept secret!

• The adversary waits until the IV takes the form ⟨3, 255, X⟩ (for some value X)

this is just one possibility
(attacks for other combinations are also known)

Key recovery attack

• Recall that IVs are not kept secret!

• The adversary waits until the IV takes the form ⟨3, 255, X⟩ (for some value X)

this is just one possibility
(attacks for other combinations are also known)

• Happens with probability 1
2562 = 1

65536

0 1 2

X

3

3 255 . . .k Ψ

Key recovery attack

• Recall that IVs are not kept secret!

• The adversary waits until the IV takes the form ⟨3, 255, X⟩ (for some value X)

this is just one possibility
(attacks for other combinations are also known)

• Happens with probability 1
2562 = 1

65536

Init(k : array of 16 bytes):

• S ← [0, 1, 2, . . . , 255]

• k ← k ∥ k ∥ . . . ∥ k
︸ ︷︷ ︸

16 times

• For i← 0, 1, . . . , 255:

• j ← 0

• j ← j + S[i] + k[i] (mod 256)

• Swap S[i] and S[j]

• Return ⟨S, i = 0, j = 0⟩

0 1 2

X

3

3 255 . . .k Ψ

Key recovery attack

• Recall that IVs are not kept secret!

• The adversary waits until the IV takes the form ⟨3, 255, X⟩ (for some value X)

this is just one possibility
(attacks for other combinations are also known)

• Happens with probability 1
2562 = 1

65536

Init(k : array of 16 bytes):

• S ← [0, 1, 2, . . . , 255]

• k ← k ∥ k ∥ . . . ∥ k
︸ ︷︷ ︸

16 times

• For i← 0, 1, . . . , 255:

• j ← 0

• j ← j + S[i] + k[i] (mod 256)

• Swap S[i] and S[j]

• Return ⟨S, i = 0, j = 0⟩

0 1 2 3

0

0 1 2

X

3

3 255 . . .k

S 3

Ψ i = 0 j = 0

1 2

Key recovery attack

• Recall that IVs are not kept secret!

• The adversary waits until the IV takes the form ⟨3, 255, X⟩ (for some value X)

this is just one possibility
(attacks for other combinations are also known)

• Happens with probability 1
2562 = 1

65536

Init(k : array of 16 bytes):

• S ← [0, 1, 2, . . . , 255]

• k ← k ∥ k ∥ . . . ∥ k
︸ ︷︷ ︸

16 times

• For i← 0, 1, . . . , 255:

• j ← 0

• j ← j + S[i] + k[i] (mod 256)

• Swap S[i] and S[j]

• Return ⟨S, i = 0, j = 0⟩

0 1 2 3

0

0 1 2

X

3

3 255 . . .k

S 3

Ψ i = 0 j = 3

1 2

Key recovery attack

• Recall that IVs are not kept secret!

• The adversary waits until the IV takes the form ⟨3, 255, X⟩ (for some value X)

this is just one possibility
(attacks for other combinations are also known)

• Happens with probability 1
2562 = 1

65536

Init(k : array of 16 bytes):

• S ← [0, 1, 2, . . . , 255]

• k ← k ∥ k ∥ . . . ∥ k
︸ ︷︷ ︸

16 times

• For i← 0, 1, . . . , 255:

• j ← 0

• j ← j + S[i] + k[i] (mod 256)

• Swap S[i] and S[j]

• Return ⟨S, i = 0, j = 0⟩

0 1 2

2

3

1

0 1 2

X

3

3 255 . . .k

S

Ψ

3 0

i = 1 j = 3

Key recovery attack

• Recall that IVs are not kept secret!

• The adversary waits until the IV takes the form ⟨3, 255, X⟩ (for some value X)

this is just one possibility
(attacks for other combinations are also known)

• Happens with probability 1
2562 = 1

65536

Init(k : array of 16 bytes):

• S ← [0, 1, 2, . . . , 255]

• k ← k ∥ k ∥ . . . ∥ k
︸ ︷︷ ︸

16 times

• For i← 0, 1, . . . , 255:

• j ← 0

• j ← j + S[i] + k[i] (mod 256)

• Swap S[i] and S[j]

• Return ⟨S, i = 0, j = 0⟩

0 1 2

2

3

1

0 1 2

X

3

3 255 . . .k

S

Ψ

3 0

i = 1 j = 3

Key recovery attack

• Recall that IVs are not kept secret!

• The adversary waits until the IV takes the form ⟨3, 255, X⟩ (for some value X)

this is just one possibility
(attacks for other combinations are also known)

• Happens with probability 1
2562 = 1

65536

Init(k : array of 16 bytes):

• S ← [0, 1, 2, . . . , 255]

• k ← k ∥ k ∥ . . . ∥ k
︸ ︷︷ ︸

16 times

• For i← 0, 1, . . . , 255:

• j ← 0

• j ← j + S[i] + k[i] (mod 256)

• Swap S[i] and S[j]

• Return ⟨S, i = 0, j = 0⟩

0 1 2 3

0 1 2

X

3

3 255 . . .k

S

Ψ

203 1

i = 2 j = 3

Key recovery attack

• Recall that IVs are not kept secret!

• The adversary waits until the IV takes the form ⟨3, 255, X⟩ (for some value X)

this is just one possibility
(attacks for other combinations are also known)

• Happens with probability 1
2562 = 1

65536

Init(k : array of 16 bytes):

• S ← [0, 1, 2, . . . , 255]

• k ← k ∥ k ∥ . . . ∥ k
︸ ︷︷ ︸

16 times

• For i← 0, 1, . . . , 255:

• j ← 0

• j ← j + S[i] + k[i] (mod 256)

• Swap S[i] and S[j]

• Return ⟨S, i = 0, j = 0⟩

0 1 2 3

0 1 2

X

3

3 255 . . .k

S

Ψ

203 1

i = 2 j = 5+X

5+X

5+X

Key recovery attack

• Recall that IVs are not kept secret!

• The adversary waits until the IV takes the form ⟨3, 255, X⟩ (for some value X)

this is just one possibility
(attacks for other combinations are also known)

• Happens with probability 1
2562 = 1

65536

Init(k : array of 16 bytes):

• S ← [0, 1, 2, . . . , 255]

• k ← k ∥ k ∥ . . . ∥ k
︸ ︷︷ ︸

16 times

• For i← 0, 1, . . . , 255:

• j ← 0

• j ← j + S[i] + k[i] (mod 256)

• Swap S[i] and S[j]

• Return ⟨S, i = 0, j = 0⟩

0 1 2 3

0 1 2

X

3

3 255 . . .k

S

Ψ

5+X

203 15+X

i = 3 j = 5+X

Key recovery attack

• Recall that IVs are not kept secret!

• The adversary waits until the IV takes the form ⟨3, 255, X⟩ (for some value X)

this is just one possibility
(attacks for other combinations are also known)

• Happens with probability 1
2562 = 1

65536

Init(k : array of 16 bytes):

• S ← [0, 1, 2, . . . , 255]

• k ← k ∥ k ∥ . . . ∥ k
︸ ︷︷ ︸

16 times

• For i← 0, 1, . . . , 255:

• j ← 0

• j ← j + S[i] + k[i] (mod 256)

• Swap S[i] and S[j]

• Return ⟨S, i = 0, j = 0⟩

0 1 2 3

0 1 2

X

3

3 255 . . .k

S

Ψ

5+X

203 15+X

i = 3 j=6+X+Ψ

6+X+Ψ

6+X

+Ψ

Key recovery attack

• Recall that IVs are not kept secret!

• The adversary waits until the IV takes the form ⟨3, 255, X⟩ (for some value X)

this is just one possibility
(attacks for other combinations are also known)

• Happens with probability 1
2562 = 1

65536

Init(k : array of 16 bytes):

• S ← [0, 1, 2, . . . , 255]

• k ← k ∥ k ∥ . . . ∥ k
︸ ︷︷ ︸

16 times

• For i← 0, 1, . . . , 255:

• j ← 0

• j ← j + S[i] + k[i] (mod 256)

• Swap S[i] and S[j]

• Return ⟨S, i = 0, j = 0⟩

0 1 2 3

0 1 2

X

3

3 255 . . .k

S

Ψ

5+X

i = 3 j=6+X+Ψ

6+X+Ψ

6+X

+Ψ
03 5+X 2 1

Key recovery attack

• Recall that IVs are not kept secret!

• The adversary waits until the IV takes the form ⟨3, 255, X⟩ (for some value X)

this is just one possibility
(attacks for other combinations are also known)

• Happens with probability 1
2562 = 1

65536

Init(k : array of 16 bytes):

• S ← [0, 1, 2, . . . , 255]

• k ← k ∥ k ∥ . . . ∥ k
︸ ︷︷ ︸

16 times

• For i← 0, 1, . . . , 255:

• j ← 0

• j ← j + S[i] + k[i] (mod 256)

• Swap S[i] and S[j]

• Return ⟨S, i = 0, j = 0⟩

0 1 2 3

0 1 2

X

3

3 255 . . .k

S

Ψ

5+X

i = 3 j=6+X+Ψ

6+X+Ψ

6+X

+Ψ
03 5+X 2 1

With probability ≈ 5%, S[0], S[1], and S[3] are not
modified in the remaining iterations of Init

Key recovery attack

• Recall that IVs are not kept secret!

• The adversary waits until the IV takes the form ⟨3, 255, X⟩ (for some value X)

this is just one possibility
(attacks for other combinations are also known)

• Happens with probability 1
2562 = 1

65536

0 1 2 3

0 1 2

X

3

3 255 . . .k

S

Ψ

5+X 6+X+Ψ

6+X

+Ψ
03 5+X 2 1

With probability ≈ 5%, S[0], S[1], and S[3] are not
modified in the remaining iterations of Init

What’s the first byte output by Next (when i = j = 0)?

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return y and st′ = ⟨S, i, j⟩

Key recovery attack

• Recall that IVs are not kept secret!

• The adversary waits until the IV takes the form ⟨3, 255, X⟩ (for some value X)

this is just one possibility
(attacks for other combinations are also known)

• Happens with probability 1
2562 = 1

65536

0 1 2 3

0 1 2

X

3

3 255 . . .k

S

Ψ

5+X 6+X+Ψ

6+X

+Ψ
03 5+X 2 1

With probability ≈ 5%, S[0], S[1], and S[3] are not
modified in the remaining iterations of Init

What’s the first byte output by Next (when i = j = 0)?

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return y and st′ = ⟨S, i, j⟩

i = 1

Key recovery attack

• Recall that IVs are not kept secret!

• The adversary waits until the IV takes the form ⟨3, 255, X⟩ (for some value X)

this is just one possibility
(attacks for other combinations are also known)

• Happens with probability 1
2562 = 1

65536

0 1 2 3

0 1 2

X

3

3 255 . . .k

S

Ψ

5+X 6+X+Ψ

6+X

+Ψ
03 5+X 2 1

With probability ≈ 5%, S[0], S[1], and S[3] are not
modified in the remaining iterations of Init

What’s the first byte output by Next (when i = j = 0)?

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return y and st′ = ⟨S, i, j⟩

i = 1

j = 0

Key recovery attack

• Recall that IVs are not kept secret!

• The adversary waits until the IV takes the form ⟨3, 255, X⟩ (for some value X)

this is just one possibility
(attacks for other combinations are also known)

• Happens with probability 1
2562 = 1

65536

0 1 2 3

0 1 2

X

3

3 255 . . .k

S

Ψ

5+X 6+X+Ψ

6+X

+Ψ
03 5+X 2 1

With probability ≈ 5%, S[0], S[1], and S[3] are not
modified in the remaining iterations of Init

What’s the first byte output by Next (when i = j = 0)?

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return y and st′ = ⟨S, i, j⟩

i = 1

j = 0

t = 3

Key recovery attack

• Recall that IVs are not kept secret!

• The adversary waits until the IV takes the form ⟨3, 255, X⟩ (for some value X)

this is just one possibility
(attacks for other combinations are also known)

• Happens with probability 1
2562 = 1

65536

0 1 2 3

0 1 2

X

3

3 255 . . .k

S

Ψ

5+X 6+X+Ψ

6+X

+Ψ
03 5+X 2 1

With probability ≈ 5%, S[0], S[1], and S[3] are not
modified in the remaining iterations of Init

What’s the first byte output by Next (when i = j = 0)?

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return y and st′ = ⟨S, i, j⟩

i = 1

j = 0

t = 3

y = S[3]

Key recovery attack

• Recall that IVs are not kept secret!

• The adversary waits until the IV takes the form ⟨3, 255, X⟩ (for some value X)

this is just one possibility
(attacks for other combinations are also known)

• Happens with probability 1
2562 = 1

65536

0 1 2 3

0 1 2

X

3

3 255 . . .k

S

Ψ

5+X 6+X+Ψ

6+X

+Ψ
03 5+X 2 1

With probability ≈ 5%, S[0], S[1], and S[3] are not
modified in the remaining iterations of Init

What’s the first byte output by Next (when i = j = 0)?

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return y and st′ = ⟨S, i, j⟩
6 +X +Ψ

i = 1

j = 0

t = 3

y = S[3]

Key recovery attack

• 5% of the time the adversary sees 6 +X +Ψ

• Since X is known (it is part of the IV), the adversary can recover Ψ

Key recovery attack

• 5% of the time the adversary sees 6 +X +Ψ

• Since X is known (it is part of the IV), the adversary can recover Ψ

• Quite far from uniform: 1
256 ≈ 0.4%

Key recovery attack

• 5% of the time the adversary sees 6 +X +Ψ

• Since X is known (it is part of the IV), the adversary can recover Ψ

• Wait for a sufficiently large number of IVs for which the first byte of the key is leaked (with some
probability)

• Guess the first byte of the key (with high confidence)

• Quite far from uniform: 1
256 ≈ 0.4%

Key recovery attack

• 5% of the time the adversary sees 6 +X +Ψ

• Since X is known (it is part of the IV), the adversary can recover Ψ

• Wait for a sufficiently large number of IVs for which the first byte of the key is leaked (with some
probability)

• Guess the first byte of the key (with high confidence)

• Repeat similar attacks to extract the next byte of the key, until the whole key is reconstructed

• Quite far from uniform: 1
256 ≈ 0.4%

Key recovery attack

• 5% of the time the adversary sees 6 +X +Ψ

• Since X is known (it is part of the IV), the adversary can recover Ψ

• Wait for a sufficiently large number of IVs for which the first byte of the key is leaked (with some
probability)

• Guess the first byte of the key (with high confidence)

• Repeat similar attacks to extract the next byte of the key, until the whole key is reconstructed

• Quite far from uniform: 1
256 ≈ 0.4%

ChaCha20

Introduced in 2008. Secure replacement for RC4

Takes a 256-bit key k and a 64-bit IV

Daniel J.
Bernstein

ChaCha20

Introduced in 2008. Secure replacement for RC4

Relies on additions, rotations, and XORs of 32-bit words
(all of which typically require just one assembly instruction)

Takes a 256-bit key k and a 64-bit IV

Daniel J.
Bernstein

ChaCha20

Introduced in 2008. Secure replacement for RC4

The core of ChaCha20 is a fixed permutation P : {0, 1}512 → {0, 1}512 on
512-bit strings

Relies on additions, rotations, and XORs of 32-bit words
(all of which typically require just one assembly instruction)

The permutation P is used to construct a keyed function with a 256-bit key,
128-bit inputs and 512-bit outputs

Fk(x) = P (constant ∥ k ∥x)⊞ (constant ∥ k ∥x)

Takes a 256-bit key k and a 64-bit IV

Daniel J.
Bernstein

ChaCha20

Introduced in 2008. Secure replacement for RC4

The core of ChaCha20 is a fixed permutation P : {0, 1}512 → {0, 1}512 on
512-bit strings

Relies on additions, rotations, and XORs of 32-bit words
(all of which typically require just one assembly instruction)

The permutation P is used to construct a keyed function with a 256-bit key,
128-bit inputs and 512-bit outputs

Fk(x) = P (constant ∥ k ∥x)⊞ (constant ∥ k ∥x)

Takes a 256-bit key k and a 64-bit IV

Daniel J.
Bernstein

⊞ denotes word-wise modular
addition (of 32-bit words)

ChaCha20

Introduced in 2008. Secure replacement for RC4

The core of ChaCha20 is a fixed permutation P : {0, 1}512 → {0, 1}512 on
512-bit strings

Relies on additions, rotations, and XORs of 32-bit words
(all of which typically require just one assembly instruction)

The permutation P is used to construct a keyed function with a 256-bit key,
128-bit inputs and 512-bit outputs

Fk(x) = P (constant ∥ k ∥x)⊞ (constant ∥ k ∥x)

Takes a 256-bit key k and a 64-bit IV

Output stream:

Daniel J.
Bernstein

Fk(IV ∥ ⟨0⟩), Fk(IV ∥ ⟨1⟩), Fk(IV ∥ ⟨2⟩), . . . ⟨i⟩ = binary encoding of i
with 64 bits

⊞ denotes word-wise modular
addition (of 32-bit words)

ChaCha20

Introduced in 2008. Secure replacement for RC4

The core of ChaCha20 is a fixed permutation P : {0, 1}512 → {0, 1}512 on
512-bit strings

Relies on additions, rotations, and XORs of 32-bit words
(all of which typically require just one assembly instruction)

The permutation P is used to construct a keyed function with a 256-bit key,
128-bit inputs and 512-bit outputs

Fk(x) = P (constant ∥ k ∥x)⊞ (constant ∥ k ∥x)

Takes a 256-bit key k and a 64-bit IV

Output stream:

Not patented. Several public domain implementations available

Daniel J.
Bernstein

Fk(IV ∥ ⟨0⟩), Fk(IV ∥ ⟨1⟩), Fk(IV ∥ ⟨2⟩), . . . ⟨i⟩ = binary encoding of i
with 64 bits

⊞ denotes word-wise modular
addition (of 32-bit words)

Block Ciphers

A block cipher is. . .

Block Ciphers

A block cipher is. . . just another name for a (possibly strong) pseudorandom permutation

F : {0, 1}ℓkey(n) × {0, 1}ℓin(n) → {0, 1}ℓout(n)

Block Ciphers

A block cipher is. . . just another name for a (possibly strong) pseudorandom permutation

F : {0, 1}ℓkey(n) × {0, 1}ℓin(n) → {0, 1}ℓout(n)

You can think of block ciphers as practical constructions of (candidate) pseudorandom permutations

Block Ciphers

A block cipher is. . . just another name for a (possibly strong) pseudorandom permutation

F : {0, 1}ℓkey(n) × {0, 1}ℓin(n) → {0, 1}ℓout(n)

You can think of block ciphers as practical constructions of (candidate) pseudorandom permutations

Block ciphers typically only support a specific set of key/block lengths

We consider ℓkey(n) = n and ℓin(n) = ℓout(n) = n

n is called the block length of F

Block Ciphers

A block cipher is. . . just another name for a (possibly strong) pseudorandom permutation

F : {0, 1}ℓkey(n) × {0, 1}ℓin(n) → {0, 1}ℓout(n)

You can think of block ciphers as practical constructions of (candidate) pseudorandom permutations

Block ciphers typically only support a specific set of key/block lengths

We consider ℓkey(n) = n and ℓin(n) = ℓout(n) = n

n is called the block length of F

We assume for simplicity that the message m to be encrypted can be split into blocks m1,m2,m3, . . .
of lengths exactly n

m1m = m2 m3 . . .

Block Ciphers

A block cipher is. . . just another name for a (possibly strong) pseudorandom permutation

F : {0, 1}ℓkey(n) × {0, 1}ℓin(n) → {0, 1}ℓout(n)

You can think of block ciphers as practical constructions of (candidate) pseudorandom permutations

Block ciphers typically only support a specific set of key/block lengths

We consider ℓkey(n) = n and ℓin(n) = ℓout(n) = n

n is called the block length of F

We assume for simplicity that the message m to be encrypted can be split into blocks m1,m2,m3, . . .
of lengths exactly n

What if the length of m is not a multiple of n?

m1m = m2 m3 . . .

Block Ciphers

A block cipher is. . . just another name for a (possibly strong) pseudorandom permutation

F : {0, 1}ℓkey(n) × {0, 1}ℓin(n) → {0, 1}ℓout(n)

You can think of block ciphers as practical constructions of (candidate) pseudorandom permutations

Block ciphers typically only support a specific set of key/block lengths

We consider ℓkey(n) = n and ℓin(n) = ℓout(n) = n

n is called the block length of F

We assume for simplicity that the message m to be encrypted can be split into blocks m1,m2,m3, . . .
of lengths exactly n

What if the length of m is not a multiple of n?

m1m = m2 m3 . . .

Padding (with care)

Init(s, IV):

• Output (s, IV, 0)

Next(st):

• Output the n bits Fs(IV ∥ ⟨i⟩) and the new state (s, IV, ⟨i+ 1⟩)

• Unpack the state in (s, IV, ⟨i⟩)

Block Ciphers

Recall that we can always build a stream cipher from a block cipher

For example:

Init(s, IV):

• Output (s, IV, 0)

Next(st):

• Output the n bits Fs(IV ∥ ⟨i⟩) and the new state (s, IV, ⟨i+ 1⟩)

• Unpack the state in (s, IV, ⟨i⟩)

Block Ciphers

Recall that we can always build a stream cipher from a block cipher

3n/4 bits

For example:

Init(s, IV):

• Output (s, IV, 0)

Next(st):

⟨i⟩ = Binary encoding
of i using n/4 bits

• Output the n bits Fs(IV ∥ ⟨i⟩) and the new state (s, IV, ⟨i+ 1⟩)

• Unpack the state in (s, IV, ⟨i⟩)

Block Ciphers

Recall that we can always build a stream cipher from a block cipher

3n/4 bits

For example:

Block Ciphers: Modes of Operation

• We already have seen how to encrypt a message using a stream cipher.

• We have also seen how to encrypt a message using a block cipher (i.e., a pseudorandom
permutation*)

*actually, a PRF suffices

Block Ciphers: Modes of Operation

• We already have seen how to encrypt a message using a stream cipher.

• We have also seen how to encrypt a message using a block cipher (i.e., a pseudorandom
permutation*)

Fk(r)

m

F

k

⊕r

c = ⟨r, Fk(r)⊕m⟩

Enc

*actually, a PRF suffices

Block Ciphers: Modes of Operation

• We already have seen how to encrypt a message using a stream cipher.

• We have also seen how to encrypt a message using a block cipher (i.e., a pseudorandom
permutation*)

Fk(r)

m

F

k

⊕r

c = ⟨r, Fk(r)⊕m⟩

Enc

• The ciphertext is (at least) twice as long as the plaintext

*actually, a PRF suffices

Block Ciphers: Modes of Operation

• We already have seen how to encrypt a message using a stream cipher.

• We have also seen how to encrypt a message using a block cipher (i.e., a pseudorandom
permutation*)

Fk(r)

m

F

k

⊕r

c = ⟨r, Fk(r)⊕m⟩

Enc

• The ciphertext is (at least) twice as long as the plaintext

• Can we do better?
*actually, a PRF suffices

Block Ciphers: Modes of Operation

• We already have seen how to encrypt a message using a stream cipher.

• We have also seen how to encrypt a message using a block cipher (i.e., a pseudorandom
permutation*)

Fk(r)

m

F

k

⊕r

c = ⟨r, Fk(r)⊕m⟩

Enc

• The ciphertext is (at least) twice as long as the plaintext

• Can we do better? Several options (modes of operations)
*actually, a PRF suffices

Electronic Code Book (ECB) mode

• Encrypt each block of the message independently

First idea:

m1 m2 m3 . . .m =

Electronic Code Book (ECB) mode

• Encrypt each block of the message independently

First idea:

m1 m2 m3 . . .m =

Fk

c1

Electronic Code Book (ECB) mode

• Encrypt each block of the message independently

First idea:

m1 m2 m3 . . .m =

Fk Fk

c1 c2

Electronic Code Book (ECB) mode

• Encrypt each block of the message independently

First idea:

m1 m2 m3 . . .m =

Fk Fk Fk Fk Fk Fk Fk Fk

c1 c2 c3 . . .c =

Electronic Code Book (ECB) mode

• Encrypt each block of the message independently

First idea:

m1 m2 m3 . . .m =

Encrypting: ci = Fk(mi)

Fk Fk Fk Fk Fk Fk Fk Fk

c1 c2 c3 . . .c =

Decrypting: mi = F−1
k (ci)

Electronic Code Book (ECB) mode

• Encrypt each block of the message independently

First idea:

m1 m2 m3 . . .m =

Encrypting: ci = Fk(mi)

Fk Fk Fk Fk Fk Fk Fk Fk

c1 c2 c3 . . .c =

• No ciphertext expansion!

Decrypting: mi = F−1
k (ci)

Electronic Code Book (ECB) mode

• Encrypt each block of the message independently

First idea:

m1 m2 m3 . . .m =

Encrypting: ci = Fk(mi)

Fk Fk Fk Fk Fk Fk Fk Fk

c1 c2 c3 . . .c =

• No ciphertext expansion!

• Is it CPA-secure?

Decrypting: mi = F−1
k (ci)

Electronic Code Book (ECB) mode

• Encrypt each block of the message independently

First idea:

m1 m2 m3 . . .m =

Encrypting: ci = Fk(mi)

Fk Fk Fk Fk Fk Fk Fk Fk

c1 c2 c3 . . .c =

• No ciphertext expansion!

• Is it CPA-secure? No! Encryption is deterministic!

Decrypting: mi = F−1
k (ci)

Electronic Code Book (ECB) mode

• Encrypt each block of the message independently

First idea:

m1 m2 m3 . . .m =

Encrypting: ci = Fk(mi)

Fk Fk Fk Fk Fk Fk Fk Fk

c1 c2 c3 . . .c =

• No ciphertext expansion!

• Is it CPA-secure? No! Encryption is deterministic!

• Is it EAV-secure?

Decrypting: mi = F−1
k (ci)

Electronic Code Book (ECB) mode

• Encrypt each block of the message independently

First idea:

m1 m2 m3 . . .m =

Encrypting: ci = Fk(mi)

Fk Fk Fk Fk Fk Fk Fk Fk

c1 c2 c3 . . .c =

• No ciphertext expansion!

• Is it CPA-secure? No! Encryption is deterministic!

• Is it EAV-secure? [Demo]

Decrypting: mi = F−1
k (ci)

Electronic Code Book (ECB) mode

• Encrypt each block of the message independently

First idea:

m1 m2 m3 . . .m =

Encrypting: ci = Fk(mi)

Fk Fk Fk Fk Fk Fk Fk Fk

c1 c2 c3 . . .c =

• No ciphertext expansion!

• Is it CPA-secure? No! Encryption is deterministic!

• Is it EAV-secure? [Demo] No! It’s just a fancy substitution cipher!
(Frequency analysis)

Decrypting: mi = F−1
k (ci)

Electronic Code Book (ECB) mode

• Encrypt each block of the message independently

First idea:

m1 m2 m3 . . .m =

Encrypting: ci = Fk(mi)

Fk Fk Fk Fk Fk Fk Fk Fk

c1 c2 c3 . . .c =

• No ciphertext expansion!

• Is it CPA-secure? No! Encryption is deterministic!

• Is it EAV-secure? [Demo] No! It’s just a fancy substitution cipher!
(Frequency analysis)

Never us
e ECB!

Decrypting: mi = F−1
k (ci)

Cipher Block Chaining (CBC) mode

m1m = m2 m3 m4

IV

c0= IVc =

• A random IV is chosen and sent as the first block c0 of the ciphertext

Encrypting:

Cipher Block Chaining (CBC) mode

m1m =

Fk

⊕

m2 m3 m4

IV

c0= IVc = c1

• A random IV is chosen and sent as the first block c0 of the ciphertext

• Each block mi of the message is XORed with the previous ciphertext block before applying Fk

Encrypting:

ci = Fk(ci−1 ⊕mi)

Cipher Block Chaining (CBC) mode

m1m =

Fk

⊕

m2 m3 m4

⊕

Fk

IV

c0= IVc = c1 c2

• A random IV is chosen and sent as the first block c0 of the ciphertext

• Each block mi of the message is XORed with the previous ciphertext block before applying Fk

Encrypting:

ci = Fk(ci−1 ⊕mi)

Cipher Block Chaining (CBC) mode

m1m =

Fk

⊕

m2 m3 m4

⊕ ⊕

Fk Fk

IV

c0= IVc = c1 c2 c3

• A random IV is chosen and sent as the first block c0 of the ciphertext

• Each block mi of the message is XORed with the previous ciphertext block before applying Fk

Encrypting:

ci = Fk(ci−1 ⊕mi)

Cipher Block Chaining (CBC) mode

m1m =

Fk

⊕

m2 m3 m4

⊕ ⊕ ⊕

Fk Fk Fk

IV

c0= IVc = c1 c2 c3 c4

• A random IV is chosen and sent as the first block c0 of the ciphertext

• Each block mi of the message is XORed with the previous ciphertext block before applying Fk

Encrypting:

ci = Fk(ci−1 ⊕mi)

m1m =

Fk

⊕

m2 m3 m4

⊕ ⊕ ⊕

Fk Fk Fk

IV

c0= IVc = c1 c2 c3 c4

Cipher Block Chaining (CBC) mode: Decrypting

c0= IV c1 c2

Decrypting:

• To decrypt mi we need ci−1

m1m =

Fk

⊕

m2 m3 m4

⊕ ⊕ ⊕

Fk Fk Fk

IV

c0= IVc = c1 c2 c3 c4

Cipher Block Chaining (CBC) mode: Decrypting

c0= IV c1 c2

F−1
k

⊕

m1

Decrypting:

• To decrypt mi we need ci−1

• mi = F−1
k (ci)⊕ ci−1

m1m =

Fk

⊕

m2 m3 m4

⊕ ⊕ ⊕

Fk Fk Fk

IV

c0= IVc = c1 c2 c3 c4

Cipher Block Chaining (CBC) mode: Decrypting

c0= IV c1 c2

F−1
k F−1

k

⊕ ⊕

m1 m2

Decrypting:

• To decrypt mi we need ci−1

• mi = F−1
k (ci)⊕ ci−1

m1m =

Fk

⊕

m2 m3 m4

⊕ ⊕ ⊕

Fk Fk Fk

IV

c0= IVc = c1 c2 c3 c4

Cipher Block Chaining (CBC) mode: Decrypting

c0= IV c1 c2 c3 c4

F−1
k F−1

k F−1
k F−1

k

⊕ ⊕ ⊕ ⊕

m1 m2 m3 m4

Decrypting:

• To decrypt mi we need ci−1

• mi = F−1
k (ci)⊕ ci−1

m1m =

Fk

⊕

m2 m3 m4

⊕ ⊕ ⊕

Fk Fk Fk

IV

c0= IVc = c1 c2 c3 c4

Cipher Block Chaining (CBC) mode: Decrypting

c0= IV c1 c2 c3 c4

F−1
k F−1

k F−1
k F−1

k

⊕ ⊕ ⊕ ⊕

m1 m2 m3 m4

Decrypting:

• To decrypt mi we need ci−1

• mi = F−1
k (ci)⊕ ci−1

Drawback: Encryption must be done sequentially

m1m =

Fk

⊕

m2 m3 m4

⊕ ⊕ ⊕

Fk Fk Fk

IV

c0= IVc = c1 c2 c3 c4

Cipher Block Chaining (CBC) mode: Decrypting

c0= IV c1 c2 c3 c4

F−1
k F−1

k F−1
k F−1

k

⊕ ⊕ ⊕ ⊕

m1 m2 m3 m4

Decrypting:

• To decrypt mi we need ci−1

• mi = F−1
k (ci)⊕ ci−1

Drawback: Encryption must be done sequentially (but decryption can be done in parallel)

Cipher Block Chaining (CBC) mode

Is CBC mode CPA secure?

Cipher Block Chaining (CBC) mode

Is CBC mode CPA secure? Yes!*

Cipher Block Chaining (CBC) mode

Is CBC mode CPA secure? Yes!*

Theorem: If F is a pseudorandom permutation, then CBC mode is CPA-secure.

Cipher Block Chaining (CBC) mode

Is CBC mode CPA secure? Yes!*

Theorem: If F is a pseudorandom permutation, then CBC mode is CPA-secure.

*But, depending on the implementation, it might be vulnerable to some subtle attacks
(not really a fault of the encryption scheme, but something to be aware of)

There is a stateful variant of CBC called chained CBC that handles multiple messages as follows:

• When the first message is encrypted a random IV is chosen (like in CBC mode)

Chained CBC mode

m1m =

Fk

⊕

m2 m3

⊕

Fk

IV

c0= IVc = c1 c2 c3

⊕

Fk

There is a stateful variant of CBC called chained CBC that handles multiple messages as follows:

• When the first message is encrypted a random IV is chosen (like in CBC mode)

• When a subsequent message needs to be encrypted, the last block of the previous ciphertext is used
instead of a new IV

Chained CBC mode

m1m =

Fk

⊕

m2 m3

⊕

Fk

IV

c0= IVc = c1 c2 c3

⊕

m′

1m′ =

Fk

⊕

m′

2 m′

3

⊕

Fk

c′1 c′2 c′3

⊕

Fk Fk

c′ =

Security of Chained CBC mode

Is chained CBC mode CPA-secure?

m1m =

Fk

⊕

m2 m3

⊕

Fk

IV

c0= IVc = c1 c2 c3

⊕

m′

1m′ =

Fk

⊕

m′

2 m′

3

⊕

Fk

c′1 c′2 c′3

⊕

Fk Fk

c′ =

Security of Chained CBC mode

Is chained CBC mode CPA-secure? We are just simulating CBC mode on a bigger message m∥m′...

m1m =

Fk

⊕

m2 m3

⊕

Fk

IV

c0= IVc = c1 c2 c3

⊕

m′

1m′ =

Fk

⊕

m′

2 m′

3

⊕

Fk

c′1 c′2 c′3

⊕

Fk Fk

c′ =

Security of Chained CBC mode

Is chained CBC mode CPA-secure? We are just simulating CBC mode on a bigger message m∥m′...

No!

m1m =

Fk

⊕

m2 m3

⊕

Fk

IV

c0= IVc = c1 c2 c3

⊕

m′

1m′ =

Fk

⊕

m′

2 m′

3

⊕

Fk

c′1 c′2 c′3

⊕

Fk Fk

c′ =

Security of Chained CBC mode

m1m =

Fk

⊕

m2 m3

⊕

Fk

IV

c0= IVc = c1 c2 c3

⊕

Fk

Suppose that the adversary observes c and knows that m1 is either x or y (e.g., x = ATTACK! and
y = RETREAT)

m′

Fk

⊕

c′

Security of Chained CBC mode

m1m =

Fk

⊕

m2 m3

⊕

Fk

IV

c0= IVc = c1 c2 c3

⊕

Fk

Suppose that the adversary observes c and knows that m1 is either x or y (e.g., x = ATTACK! and
y = RETREAT)

The adversary convinces Alice to encrypt m′ = c0 ⊕ x⊕ c3

m′

Fk

⊕

c′

Security of Chained CBC mode

m1m =

Fk

⊕

m2 m3

⊕

Fk

IV

c0= IVc = c1 c2 c3

⊕

Fk

Suppose that the adversary observes c and knows that m1 is either x or y (e.g., x = ATTACK! and
y = RETREAT)

The adversary convinces Alice to encrypt m′ = c0 ⊕ x⊕ c3

m′

Fk

⊕

If m1 = x then c′ = Fk(c3 ⊕m′)

c′

Security of Chained CBC mode

m1m =

Fk

⊕

m2 m3

⊕

Fk

IV

c0= IVc = c1 c2 c3

⊕

Fk

Suppose that the adversary observes c and knows that m1 is either x or y (e.g., x = ATTACK! and
y = RETREAT)

The adversary convinces Alice to encrypt m′ = c0 ⊕ x⊕ c3

m′

Fk

⊕

If m1 = x then c′ = Fk(c3 ⊕m′) = Fk(c3 ⊕ c0 ⊕ x⊕ c3)

c′

Security of Chained CBC mode

m1m =

Fk

⊕

m2 m3

⊕

Fk

IV

c0= IVc = c1 c2 c3

⊕

Fk

Suppose that the adversary observes c and knows that m1 is either x or y (e.g., x = ATTACK! and
y = RETREAT)

The adversary convinces Alice to encrypt m′ = c0 ⊕ x⊕ c3

m′

Fk

⊕

If m1 = x then c′ = Fk(c3 ⊕m′) = Fk(c3 ⊕ c0 ⊕ x⊕ c3) = Fk(c0 ⊕ x)

c′

Security of Chained CBC mode

m1m =

Fk

⊕

m2 m3

⊕

Fk

IV

c0= IVc = c1 c2 c3

⊕

Fk

Suppose that the adversary observes c and knows that m1 is either x or y (e.g., x = ATTACK! and
y = RETREAT)

The adversary convinces Alice to encrypt m′ = c0 ⊕ x⊕ c3

m′

Fk

⊕

If m1 = x then c′ = Fk(c3 ⊕m′) = Fk(c3 ⊕ c0 ⊕ x⊕ c3) = Fk(c0 ⊕ x) = Fk(c0 ⊕m1) = c1

c′

Security of Chained CBC mode

m1m =

Fk

⊕

m2 m3

⊕

Fk

IV

c0= IVc = c1 c2 c3

⊕

Fk

Suppose that the adversary observes c and knows that m1 is either x or y (e.g., x = ATTACK! and
y = RETREAT)

The adversary convinces Alice to encrypt m′ = c0 ⊕ x⊕ c3

m′

Fk

⊕

If m1 = x then c′ = Fk(c3 ⊕m′) = Fk(c3 ⊕ c0 ⊕ x⊕ c3) = Fk(c0 ⊕ x)

If m1 ̸= x then c′ = Fk(c3 ⊕m′)

= Fk(c0 ⊕m1) = c1

c′

Security of Chained CBC mode

m1m =

Fk

⊕

m2 m3

⊕

Fk

IV

c0= IVc = c1 c2 c3

⊕

Fk

Suppose that the adversary observes c and knows that m1 is either x or y (e.g., x = ATTACK! and
y = RETREAT)

The adversary convinces Alice to encrypt m′ = c0 ⊕ x⊕ c3

m′

Fk

⊕

If m1 = x then c′ = Fk(c3 ⊕m′) = Fk(c3 ⊕ c0 ⊕ x⊕ c3) = Fk(c0 ⊕ x)

If m1 ̸= x then c′ = Fk(c3 ⊕m′)

= Fk(c0 ⊕m1) = c1

= Fk(c0 ⊕ x)

c′

Security of Chained CBC mode

m1m =

Fk

⊕

m2 m3

⊕

Fk

IV

c0= IVc = c1 c2 c3

⊕

Fk

Suppose that the adversary observes c and knows that m1 is either x or y (e.g., x = ATTACK! and
y = RETREAT)

The adversary convinces Alice to encrypt m′ = c0 ⊕ x⊕ c3

m′

Fk

⊕

If m1 = x then c′ = Fk(c3 ⊕m′) = Fk(c3 ⊕ c0 ⊕ x⊕ c3) = Fk(c0 ⊕ x)

If m1 ̸= x then c′ = Fk(c3 ⊕m′)

= Fk(c0 ⊕m1) = c1

= Fk(c0 ⊕ x) ̸= Fk(c0 ⊕m1) = c1

c′

Output Feedback (OFB) mode

IV

m1m =

c0= IV

m2 m3 m4

• A random IV is chosen and sent as the first block c0 of the ciphertext. Let y0 = c0 = IV

Encrypting:

y0

c =

Output Feedback (OFB) mode

IV

Fk

m1m =

c0= IV

m2 m3 m4

y1

• A random IV is chosen and sent as the first block c0 of the ciphertext. Let y0 = c0 = IV

Encrypting:

• yi = Fk(yi−1)

y0

c =

Output Feedback (OFB) mode

IV

Fk

⊕

m1m =

c0= IV c1

m2 m3 m4

y1

• A random IV is chosen and sent as the first block c0 of the ciphertext. Let y0 = c0 = IV

Encrypting:

• yi = Fk(yi−1)

y0

• ci = yi ⊕mi

c =

Output Feedback (OFB) mode

IV

Fk

⊕

m1m =

c0= IV c1

m2 m3 m4

Fk

y1 y2

• A random IV is chosen and sent as the first block c0 of the ciphertext. Let y0 = c0 = IV

Encrypting:

• yi = Fk(yi−1)

y0

• ci = yi ⊕mi

c =

Output Feedback (OFB) mode

IV

Fk

⊕

m1m =

c0= IV c1

m2 m3 m4

Fk

⊕

c2

y1 y2

• A random IV is chosen and sent as the first block c0 of the ciphertext. Let y0 = c0 = IV

Encrypting:

• yi = Fk(yi−1)

y0

• ci = yi ⊕mi

c =

Output Feedback (OFB) mode

IV

Fk

⊕

m1m =

c0= IV c1

m2 m3 m4

Fk

⊕

c2

Fk

⊕

c3

Fk

⊕

c4

y1 y2 y3 y4

• A random IV is chosen and sent as the first block c0 of the ciphertext. Let y0 = c0 = IV

Encrypting:

• yi = Fk(yi−1)

y0

• ci = yi ⊕mi

c =

Output Feedback (OFB) mode

IV

Fk

⊕

m1m =

c0= IV c1

m2 m3 m4

Fk

⊕

c2

Fk

⊕

c3

Fk

⊕

c4

Can be thought of as a stream cipher (generate y1, y2, . . . and XOR it with the message)

y1 y2 y3 y4

• A random IV is chosen and sent as the first block c0 of the ciphertext. Let y0 = c0 = IV

Encrypting:

• yi = Fk(yi−1)

y0

• ci = yi ⊕mi

c =

IV

Fk

⊕

m1

c0= IV c1

m2 m3

Fk

⊕

c2

Fk

⊕

c3

y1 y2 y3y0

Output Feedback (OFB) mode

Decrypting:

c0= IV c1 c2 c3

IV

Fk

⊕

m1

c0= IV c1

m2 m3

Fk

⊕

c2

Fk

⊕

c3

y1 y2 y3y0

Output Feedback (OFB) mode

Decrypting:

c0= IV c1 c2 c3

Fk

y1

y0

• y0 = c0

• yi = Fk(yi−1)

IV

Fk

⊕

m1

c0= IV c1

m2 m3

Fk

⊕

c2

Fk

⊕

c3

y1 y2 y3y0

Output Feedback (OFB) mode

Decrypting:

c0= IV c1 c2 c3

m1

Fk

⊕

y1

y0

• y0 = c0

• yi = Fk(yi−1)

• mi = yi ⊕ ci

IV

Fk

⊕

m1

c0= IV c1

m2 m3

Fk

⊕

c2

Fk

⊕

c3

y1 y2 y3y0

Output Feedback (OFB) mode

Decrypting:

c0= IV c1 c2 c3

m1

Fk Fk

⊕

y1 y2

y0

• y0 = c0

• yi = Fk(yi−1)

• mi = yi ⊕ ci

IV

Fk

⊕

m1

c0= IV c1

m2 m3

Fk

⊕

c2

Fk

⊕

c3

y1 y2 y3y0

Output Feedback (OFB) mode

Decrypting:

c0= IV c1 c2 c3

m1 m2

Fk Fk

⊕ ⊕

y1 y2

y0

• y0 = c0

• yi = Fk(yi−1)

• mi = yi ⊕ ci

IV

Fk

⊕

m1

c0= IV c1

m2 m3

Fk

⊕

c2

Fk

⊕

c3

y1 y2 y3y0

Output Feedback (OFB) mode

Decrypting:

c0= IV c1 c2 c3

m1 m2

Fk Fk Fk

⊕ ⊕

y1 y2 y3

y0

• y0 = c0

• yi = Fk(yi−1)

• mi = yi ⊕ ci

IV

Fk

⊕

m1

c0= IV c1

m2 m3

Fk

⊕

c2

Fk

⊕

c3

y1 y2 y3y0

Output Feedback (OFB) mode

Decrypting:

c0= IV c1 c2 c3

m1 m2 m3

Fk Fk Fk

⊕ ⊕ ⊕

y1 y2 y3

y0

• y0 = c0

• yi = Fk(yi−1)

• mi = yi ⊕ ci

IV

Fk

⊕

m1

c0= IV c1

m2 m3

Fk

⊕

c2

Fk

⊕

c3

y1 y2 y3y0

Output Feedback (OFB) mode

Decrypting:

c0= IV c1 c2 c3

m1 m2 m3

Fk Fk Fk

⊕ ⊕ ⊕

y1 y2 y3

y0

• y0 = c0

• yi = Fk(yi−1)

• mi = yi ⊕ ci

Encryption and decryption must be done sequentially

Output Feedback (OFB) mode

Encryption and decryption must be done sequentially

• An optimization: the stream y1, y2, y3, . . . only depends on the IV (and the key): it can be
pre-computed before the message needs to be encrypted

Output Feedback (OFB) mode

Encryption and decryption must be done sequentially

• If the last block is not full, the ciphertext can be truncated to the plaintext length

• An optimization: the stream y1, y2, y3, . . . only depends on the IV (and the key): it can be
pre-computed before the message needs to be encrypted

Output Feedback (OFB) mode

Encryption and decryption must be done sequentially

• F can be any PRF (not necessarily a PRP). (notice that we never used F−1)

• If the last block is not full, the ciphertext can be truncated to the plaintext length

• An optimization: the stream y1, y2, y3, . . . only depends on the IV (and the key): it can be
pre-computed before the message needs to be encrypted

Output Feedback (OFB) mode

Encryption and decryption must be done sequentially

• F can be any PRF (not necessarily a PRP). (notice that we never used F−1)

• If the last block is not full, the ciphertext can be truncated to the plaintext length

• An optimization: the stream y1, y2, y3, . . . only depends on the IV (and the key): it can be
pre-computed before the message needs to be encrypted

Is OFB mode CPA-secure?

Output Feedback (OFB) mode

Encryption and decryption must be done sequentially

• F can be any PRF (not necessarily a PRP). (notice that we never used F−1)

• If the last block is not full, the ciphertext can be truncated to the plaintext length

• An optimization: the stream y1, y2, y3, . . . only depends on the IV (and the key): it can be
pre-computed before the message needs to be encrypted

Theorem: If F is a pseudorandom function, then OFB mode is CPA-secure.

Is OFB mode CPA-secure?

The stateful variant of OFB (the final value yi is used in place of y0 when the next message needs to be
encrypted) is also CPA-secure

Output Feedback (OFB) mode, stateful variant

IV

Fk

⊕

m1

c0= IV c1

m2 m3

Fk

⊕

c2

Fk

⊕

c3

y1 y2 y3y0

m =

The stateful variant of OFB (the final value yi is used in place of y0 when the next message needs to be
encrypted) is also CPA-secure

Output Feedback (OFB) mode, stateful variant

IV

Fk

⊕

m1

c0= IV c1

m2 m3

Fk

⊕

c2

Fk

⊕

c3

y1 y2 y3y0

⊕

m′

1

c′1

y1

m′

2

Fk

⊕

c′2

Fk

m = m′ =

Counter (CTR) mode

m1m = m2 m3 m4

Can be viewed as a stream cipher

• Split the input to F into an IV and a counter

Counter (CTR) mode

m1m = m2 m3 m4

Can be viewed as a stream cipher

• Split the input to F into an IV and a counter

For example:

• IV ∈ {0, 1}3n/4

• counter ∈ {0, 1}n/4

Counter (CTR) mode

m1m = m2 m3 m4

IV

c0= IV

Can be viewed as a stream cipher

• A random IV is chosen and sent as the first
block c0 of the ciphertext.

Encrypting:

• Split the input to F into an IV and a counter

For example:

• IV ∈ {0, 1}3n/4

• counter ∈ {0, 1}n/4

c1

Counter (CTR) mode

Fk

IV ∥ ⟨1⟩

m1m = m2 m3 m4

⊕

IV

c0= IV

Can be viewed as a stream cipher

• A random IV is chosen and sent as the first
block c0 of the ciphertext.

Encrypting:

• ci = Fk(IV ∥ ⟨i⟩)⊕mi

• Split the input to F into an IV and a counter

For example:

• IV ∈ {0, 1}3n/4

• counter ∈ {0, 1}n/4

c1

Counter (CTR) mode

Fk

IV ∥ ⟨1⟩

m1m = m2 m3 m4

⊕

IV

c0= IV

Can be viewed as a stream cipher

• A random IV is chosen and sent as the first
block c0 of the ciphertext.

Encrypting:

• ci = Fk(IV ∥ ⟨i⟩)⊕mi

• Split the input to F into an IV and a counter

For example:

• IV ∈ {0, 1}3n/4

• counter ∈ {0, 1}n/4

⟨i⟩ Binary encoding of i

c1 c2

Counter (CTR) mode

Fk

IV ∥ ⟨1⟩

Fk

IV ∥ ⟨2⟩

m1m = m2 m3 m4

⊕ ⊕

IV

c0= IV

Can be viewed as a stream cipher

• A random IV is chosen and sent as the first
block c0 of the ciphertext.

Encrypting:

• ci = Fk(IV ∥ ⟨i⟩)⊕mi

• Split the input to F into an IV and a counter

For example:

• IV ∈ {0, 1}3n/4

• counter ∈ {0, 1}n/4

⟨i⟩ Binary encoding of i

c1 c2 c3

Counter (CTR) mode

Fk

IV ∥ ⟨1⟩

Fk

IV ∥ ⟨2⟩

Fk

IV ∥ ⟨3⟩

m1m = m2 m3 m4

⊕ ⊕ ⊕

IV

c0= IV

Can be viewed as a stream cipher

• A random IV is chosen and sent as the first
block c0 of the ciphertext.

Encrypting:

• ci = Fk(IV ∥ ⟨i⟩)⊕mi

• Split the input to F into an IV and a counter

For example:

• IV ∈ {0, 1}3n/4

• counter ∈ {0, 1}n/4

⟨i⟩ Binary encoding of i

c1 c2 c3 c4

Counter (CTR) mode

Fk

IV ∥ ⟨1⟩

Fk

IV ∥ ⟨2⟩

Fk

IV ∥ ⟨3⟩

m1m = m2 m3 m4

⊕ ⊕ ⊕ ⊕

Fk

IV ∥ ⟨4⟩

IV

c0= IV

Can be viewed as a stream cipher

• A random IV is chosen and sent as the first
block c0 of the ciphertext.

Encrypting:

• ci = Fk(IV ∥ ⟨i⟩)⊕mi

• Split the input to F into an IV and a counter

For example:

• IV ∈ {0, 1}3n/4

• counter ∈ {0, 1}n/4

⟨i⟩ Binary encoding of i

c1 c2 c3 c4

Counter (CTR) mode

Fk

IV ∥ ⟨1⟩

Fk

IV ∥ ⟨2⟩

Fk

IV ∥ ⟨3⟩

m1m = m2 m3 m4

⊕ ⊕ ⊕ ⊕

Fk

IV ∥ ⟨4⟩

IV

c0= IV

Can be viewed as a stream cipher

• A random IV is chosen and sent as the first
block c0 of the ciphertext.

Encrypting:

• ci = Fk(IV ∥ ⟨i⟩)⊕mi

Decrypting:

• Set the IV to the first block c0 of the
ciphertext.

• Split the input to F into an IV and a counter

For example:

• IV ∈ {0, 1}3n/4

• counter ∈ {0, 1}n/4

⟨i⟩ Binary encoding of i

c1 c2 c3 c4

Counter (CTR) mode

Fk

IV ∥ ⟨1⟩

Fk

IV ∥ ⟨2⟩

Fk

IV ∥ ⟨3⟩

m1m = m2 m3 m4

⊕ ⊕ ⊕ ⊕

Fk

IV ∥ ⟨4⟩

IV

c0= IV

Can be viewed as a stream cipher

• A random IV is chosen and sent as the first
block c0 of the ciphertext.

Encrypting:

• ci = Fk(IV ∥ ⟨i⟩)⊕mi

Decrypting:

• Set the IV to the first block c0 of the
ciphertext.

• mi = Fk(IV ∥ ⟨i⟩)⊕ ci

• Split the input to F into an IV and a counter

For example:

• IV ∈ {0, 1}3n/4

• counter ∈ {0, 1}n/4

⟨i⟩ Binary encoding of i

Counter (CTR) mode
• The length of the IV affects the security

• The length of the counter controls how many blocks can be sent with the same IV

Counter (CTR) mode

• Both encryption and decryption can be done in parallel!

• The length of the IV affects the security

• The length of the counter controls how many blocks can be sent with the same IV

Counter (CTR) mode

• Both encryption and decryption can be done in parallel!

• If the last block is not full, the ciphertext can be truncated to the plaintext length (no padding
needed)

• The length of the IV affects the security

• The length of the counter controls how many blocks can be sent with the same IV

Counter (CTR) mode

• Both encryption and decryption can be done in parallel!

• F can be any PRF (not necessarily a PRP) (notice that we never used F−1)

• If the last block is not full, the ciphertext can be truncated to the plaintext length (no padding
needed)

• The length of the IV affects the security

• The length of the counter controls how many blocks can be sent with the same IV

Counter (CTR) mode

• Both encryption and decryption can be done in parallel!

• F can be any PRF (not necessarily a PRP) (notice that we never used F−1)

• If the last block is not full, the ciphertext can be truncated to the plaintext length (no padding
needed)

• The length of the IV affects the security

• The length of the counter controls how many blocks can be sent with the same IV

Is CTR mode CPA-secure?

Counter (CTR) mode

• Both encryption and decryption can be done in parallel!

• F can be any PRF (not necessarily a PRP) (notice that we never used F−1)

Theorem: If F is a pseudorandom function, then CTR mode is CPA-secure.

• If the last block is not full, the ciphertext can be truncated to the plaintext length (no padding
needed)

• The length of the IV affects the security

• The length of the counter controls how many blocks can be sent with the same IV

Is CTR mode CPA-secure?

Counter (CTR) mode

• Both encryption and decryption can be done in parallel!

• F can be any PRF (not necessarily a PRP) (notice that we never used F−1)

Theorem: If F is a pseudorandom function, then CTR mode is CPA-secure.

• If the last block is not full, the ciphertext can be truncated to the plaintext length (no padding
needed)

• Remains secure even if IVs are not chosen u.a.r., in fact it suffices that IVs never repeat

IV = 00 . . . 000, 00 . . . 001, 00 . . . 010, 00 . . . 011, . . .

• The length of the IV affects the security

• The length of the counter controls how many blocks can be sent with the same IV

Is CTR mode CPA-secure?

