
Stream ciphers (reminder)

A stream cipher is a pair of deterministic polynomial-time algorithms

• Init: takes a n-bit seed s, and possibly a n-bit initialization vector (IV), and outputs a state st

• Next: takes a state st and outputs a bit y and a new (updated) state st′

* In practice, Next can output multiple bits at once (e.g., a byte)

Init

s (IV)

st0 Next Nextst1 Nextst2 st3 . . .

y1 y2 y3

Idea: we can generate as many random bits as desired, by repeatedly calling Next
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RC4
• Stands for Rivest Cipher 4

Ron Rivest (the R in RSA)

• Designed for performance in software

• No longer considered secure (especially if misused)!

• Construction does not use (L)FSRs

• We will see how to attack it

. . . but still used in practice

WEP Encryption

• Very simple (fits one slide!)
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• A pair of integers i, j ∈ {0, . . . , 255}

Init(k : array of 16 bytes):

• S ← [0, 1, 2, . . . , 255]

• k ← k ∥ k ∥ . . . ∥ k
︸ ︷︷ ︸

16 times

• For i← 0, 1, . . . , 255:

• j ← 0
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• Swap S[i] and S[j]

• Return ⟨S, i = 0, j = 0⟩



RC4

The state consists of:

• An array S of 256 bytes, which will always be a permutation of {0, . . . , 255}

• A pair of integers i, j ∈ {0, . . . , 255}

Init(k : array of 16 bytes):

• S ← [0, 1, 2, . . . , 255]

• k ← k ∥ k ∥ . . . ∥ k
︸ ︷︷ ︸

16 times

• For i← 0, 1, . . . , 255:

• j ← 0

• j ← j + S[i] + k[i] (mod 256)

• Swap S[i] and S[j]

• Return ⟨S, i = 0, j = 0⟩

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return the byte y and the new state st′ = ⟨S, i, j⟩

(returns a byte)



[Demo]



Test vectors



Output bias

Empirical distribution of the value of the 2nd output byte over 50000 samples (with keys chosen u.a.r.)

Expected: 1
256 ≈ 0.0039Observed

There is a bias towards 0 in the second byte output by RC4 (about twice as likely to be 0)
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• Consider the state immediately after Init

• For simplicity, think of S as a uniform permutation over {0, 1, . . . , 255}

• With probability ≈ 1
256 we have S[2] = 0. Assume that S[1] ̸= 2 (happens with probability ≈

254

255
≈ 1)

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return the byte y and the new state st′ = ⟨S, i, j⟩

(returns a byte)

j = 0
. . . . . .

0 1 2 255

0

i = 1



Output bias: analysis

• Consider the state immediately after Init

• For simplicity, think of S as a uniform permutation over {0, 1, . . . , 255}

• With probability ≈ 1
256 we have S[2] = 0. Assume that S[1] ̸= 2 (happens with probability ≈

254

255
≈ 1)

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return the byte y and the new state st′ = ⟨S, i, j⟩

(returns a byte)

j = 0
. . . . . .

0 1 2 255

0

i = 1



Output bias: analysis

• Consider the state immediately after Init

• For simplicity, think of S as a uniform permutation over {0, 1, . . . , 255}

• With probability ≈ 1
256 we have S[2] = 0. Assume that S[1] ̸= 2 (happens with probability ≈

254

255
≈ 1)

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return the byte y and the new state st′ = ⟨S, i, j⟩

(returns a byte)

. . . . . .

0 1 2 255

0

i = 1
Xj = X



Output bias: analysis

• Consider the state immediately after Init

• For simplicity, think of S as a uniform permutation over {0, 1, . . . , 255}

• With probability ≈ 1
256 we have S[2] = 0. Assume that S[1] ̸= 2 (happens with probability ≈

254

255
≈ 1)

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return the byte y and the new state st′ = ⟨S, i, j⟩

(returns a byte)

. . . . . .

0 1 2 255

0

i = 1
Xj = X

X



Output bias: analysis

• Consider the state immediately after Init

• For simplicity, think of S as a uniform permutation over {0, 1, . . . , 255}

• With probability ≈ 1
256 we have S[2] = 0. Assume that S[1] ̸= 2 (happens with probability ≈

254

255
≈ 1)

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return the byte y and the new state st′ = ⟨S, i, j⟩

(returns a byte)

. . . . . .

0 1 2 255

0

i = 1

j = X

X

X



Output bias: analysis

• Consider the state immediately after Init

• For simplicity, think of S as a uniform permutation over {0, 1, . . . , 255}

• With probability ≈ 1
256 we have S[2] = 0. Assume that S[1] ̸= 2 (happens with probability ≈

254

255
≈ 1)

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return the byte y and the new state st′ = ⟨S, i, j⟩

(returns a byte)

. . . . . .

0 1 2 255

0

i = 1

j = X

X

X

The rest
of the

code does
not modify
the state



Output bias: analysis

• Consider the state immediately after Init

• For simplicity, think of S as a uniform permutation over {0, 1, . . . , 255}

• With probability ≈ 1
256 we have S[2] = 0. Assume that S[1] ̸= 2 (happens with probability ≈

254

255
≈ 1)

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return the byte y and the new state st′ = ⟨S, i, j⟩

(returns a byte)

. . . . . .

0 1 2 255

0

i = 1

j = X

X

X

2nd call



Output bias: analysis

• Consider the state immediately after Init

• For simplicity, think of S as a uniform permutation over {0, 1, . . . , 255}

• With probability ≈ 1
256 we have S[2] = 0. Assume that S[1] ̸= 2 (happens with probability ≈

254

255
≈ 1)

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return the byte y and the new state st′ = ⟨S, i, j⟩

(returns a byte)

. . . . . .

0 1 2 255

0
j = X

X

X

2nd call

i = 2



Output bias: analysis

• Consider the state immediately after Init

• For simplicity, think of S as a uniform permutation over {0, 1, . . . , 255}

• With probability ≈ 1
256 we have S[2] = 0. Assume that S[1] ̸= 2 (happens with probability ≈

254

255
≈ 1)

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return the byte y and the new state st′ = ⟨S, i, j⟩

(returns a byte)

. . . . . .

0 1 2 255

0
j = X

X

X

2nd call

i = 2



Output bias: analysis

• Consider the state immediately after Init

• For simplicity, think of S as a uniform permutation over {0, 1, . . . , 255}

• With probability ≈ 1
256 we have S[2] = 0. Assume that S[1] ̸= 2 (happens with probability ≈

254

255
≈ 1)

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return the byte y and the new state st′ = ⟨S, i, j⟩

(returns a byte)

. . . . . .

0 1 2 255

0
j = X

X

X

2nd call

i = 2



Output bias: analysis

• Consider the state immediately after Init

• For simplicity, think of S as a uniform permutation over {0, 1, . . . , 255}

• With probability ≈ 1
256 we have S[2] = 0. Assume that S[1] ̸= 2 (happens with probability ≈

254

255
≈ 1)

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return the byte y and the new state st′ = ⟨S, i, j⟩

(returns a byte)

. . . . . .

0 1 2 255

j = X

X
2nd call

i = 2
0X



Output bias: analysis

• Consider the state immediately after Init

• For simplicity, think of S as a uniform permutation over {0, 1, . . . , 255}

• With probability ≈ 1
256 we have S[2] = 0. Assume that S[1] ̸= 2 (happens with probability ≈

254

255
≈ 1)

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return the byte y and the new state st′ = ⟨S, i, j⟩

(returns a byte)

. . . . . .

0 1 2 255

j = X

X
2nd call

i = 2
0X

t = X



Output bias: analysis

• Consider the state immediately after Init

• For simplicity, think of S as a uniform permutation over {0, 1, . . . , 255}

• With probability ≈ 1
256 we have S[2] = 0. Assume that S[1] ̸= 2 (happens with probability ≈

254

255
≈ 1)

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return the byte y and the new state st′ = ⟨S, i, j⟩

(returns a byte)

. . . . . .

0 1 2 255

j = X

X
2nd call

i = 2
0X

t = X



Output bias: analysis

• Consider the state immediately after Init

• For simplicity, think of S as a uniform permutation over {0, 1, . . . , 255}

• With probability ≈ 1
256 we have S[2] = 0. Assume that S[1] ̸= 2 (happens with probability ≈

254

255
≈ 1)

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return the byte y and the new state st′ = ⟨S, i, j⟩

(returns a byte)

. . . . . .

0 1 2 255

j = X

X
2nd call

i = 2
0X

t = X Output byte y = 0



Output bias: analysis

• Consider the state immediately after Init

• For simplicity, think of S as a uniform permutation over {0, 1, . . . , 255}

• With probability ≈ 1
256 we have S[2] = 0. Assume that S[1] ̸= 2 (happens with probability ≈

254

255
≈ 1)

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return the byte y and the new state st′ = ⟨S, i, j⟩

(returns a byte)

. . . . . .

0 1 2 255

j = X

X
i = 2

0X

t = X Output byte y = 0

• With probability ≈ 255
256 ≈ 1 we have

that S[2] is distributed “uniformly at
random” after 2 iterations



Output bias: analysis

• Consider the state immediately after Init

• For simplicity, think of S as a uniform permutation over {0, 1, . . . , 255}

• With probability ≈ 1
256 we have S[2] = 0. Assume that S[1] ̸= 2 (happens with probability ≈

254

255
≈ 1)

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return the byte y and the new state st′ = ⟨S, i, j⟩

(returns a byte)

. . . . . .
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j = X

X
i = 2

0X

t = X Output byte y = 0

• With probability ≈ 255
256 ≈ 1 we have

that S[2] is distributed “uniformly at
random” after 2 iterations

Probability that the 2nd output byte is 0:

≈ 1
256 + 1 · 1

256 = 2
256



Output bias

• The output bias is indicative of structural problems with RC4

• Other biases have been found in other bytes of the RC4 state

• Severe enough to allow recovery of plaintext from ciphertext when RC4 is used for encryption!



Output bias

• The output bias is indicative of structural problems with RC4

• Other biases have been found in other bytes of the RC4 state

• Severe enough to allow recovery of plaintext from ciphertext when RC4 is used for encryption!

In summary: Do not use RC4!



RC4 and IVs

RC4 is not designed to take an IV . . . but programmers don’t know it and use an IV anyway

xkcd.com
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RC4 and IVs

RC4 is not designed to take an IV

In practice an IV of some length ℓ (in bytes) is often used, together with a key k′ of 16− ℓ bytes

k = IV ∥ k′

In WEP:

• 3-byte IV, 13 bytes key

• Key recovery attack!

• We show a simplified attack that recovers the first byte of the key (i.e., k[3])
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• Recall that IVs are not kept secret!

• The adversary waits until the IV takes the form ⟨3, 255, X⟩ (for some value X)

this is just one possibility
(attacks for other combinations are also known)

• Happens with probability 1
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• Recall that IVs are not kept secret!
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Key recovery attack

• Recall that IVs are not kept secret!

• The adversary waits until the IV takes the form ⟨3, 255, X⟩ (for some value X)

this is just one possibility
(attacks for other combinations are also known)
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Key recovery attack

• Recall that IVs are not kept secret!

• The adversary waits until the IV takes the form ⟨3, 255, X⟩ (for some value X)

this is just one possibility
(attacks for other combinations are also known)

• Happens with probability 1
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Key recovery attack

• Recall that IVs are not kept secret!

• The adversary waits until the IV takes the form ⟨3, 255, X⟩ (for some value X)

this is just one possibility
(attacks for other combinations are also known)

• Happens with probability 1
2562 = 1
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Key recovery attack

• Recall that IVs are not kept secret!

• The adversary waits until the IV takes the form ⟨3, 255, X⟩ (for some value X)
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• The adversary waits until the IV takes the form ⟨3, 255, X⟩ (for some value X)

this is just one possibility
(attacks for other combinations are also known)

• Happens with probability 1
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• The adversary waits until the IV takes the form ⟨3, 255, X⟩ (for some value X)

this is just one possibility
(attacks for other combinations are also known)

• Happens with probability 1
2562 = 1

65536

Init(k : array of 16 bytes):

• S ← [0, 1, 2, . . . , 255]

• k ← k ∥ k ∥ . . . ∥ k
︸ ︷︷ ︸

16 times

• For i← 0, 1, . . . , 255:

• j ← 0

• j ← j + S[i] + k[i] (mod 256)

• Swap S[i] and S[j]

• Return ⟨S, i = 0, j = 0⟩

0 1 2 3

0 1 2

X

3

3 255 . . .k

S

Ψ

5+X

i = 3 j=6+X+Ψ

6+X+Ψ

6+X

+Ψ
03 5+X 2 1



Key recovery attack

• Recall that IVs are not kept secret!

• The adversary waits until the IV takes the form ⟨3, 255, X⟩ (for some value X)

this is just one possibility
(attacks for other combinations are also known)

• Happens with probability 1
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Key recovery attack

• Recall that IVs are not kept secret!

• The adversary waits until the IV takes the form ⟨3, 255, X⟩ (for some value X)

this is just one possibility
(attacks for other combinations are also known)

• Happens with probability 1
2562 = 1

65536
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• Recall that IVs are not kept secret!

• The adversary waits until the IV takes the form ⟨3, 255, X⟩ (for some value X)

this is just one possibility
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• Happens with probability 1
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• Recall that IVs are not kept secret!

• The adversary waits until the IV takes the form ⟨3, 255, X⟩ (for some value X)

this is just one possibility
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• Happens with probability 1
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Key recovery attack

• Recall that IVs are not kept secret!

• The adversary waits until the IV takes the form ⟨3, 255, X⟩ (for some value X)

this is just one possibility
(attacks for other combinations are also known)

• Happens with probability 1
2562 = 1

65536
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With probability ≈ 5%, S[0], S[1], and S[3] are not
modified in the remaining iterations of Init

What’s the first byte output by Next (when i = j = 0)?

Next(st = ⟨S, i, j⟩):

• i← i+ 1 (mod 256)

• j ← j + S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• y ← S[t]

• Return y and st′ = ⟨S, i, j⟩
6 +X +Ψ

i = 1

j = 0

t = 3

y = S[3]
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• Since X is known (it is part of the IV), the adversary can recover Ψ

• Wait for a sufficiently large number of IVs for which the first byte of the key is leaked (with some
probability)

• Guess the first byte of the key (with high confidence)

• Repeat similar attacks to extract the next byte of the key, until the whole key is reconstructed

• Quite far from uniform: 1
256 ≈ 0.4%
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The core of ChaCha20 is a fixed permutation P : {0, 1}512 → {0, 1}512 on
512-bit strings

Relies on additions, rotations, and XORs of 32-bit words
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ChaCha20

Introduced in 2008. Secure replacement for RC4

The core of ChaCha20 is a fixed permutation P : {0, 1}512 → {0, 1}512 on
512-bit strings

Relies on additions, rotations, and XORs of 32-bit words
(all of which typically require just one assembly instruction)

The permutation P is used to construct a keyed function with a 256-bit key,
128-bit inputs and 512-bit outputs

Fk(x) = P (constant ∥ k ∥x)⊞ (constant ∥ k ∥x)

Takes a 256-bit key k and a 64-bit IV

Output stream:

Not patented. Several public domain implementations available

Daniel J.
Bernstein

Fk(IV ∥ ⟨0⟩), Fk(IV ∥ ⟨1⟩), Fk(IV ∥ ⟨2⟩), . . . ⟨i⟩ = binary encoding of i
with 64 bits

⊞ denotes word-wise modular
addition (of 32-bit words)
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Block Ciphers

A block cipher is. . . just another name for a (possibly strong) pseudorandom permutation

F : {0, 1}ℓkey(n) × {0, 1}ℓin(n) → {0, 1}ℓout(n)

You can think of block ciphers as practical constructions of (candidate) pseudorandom permutations

Block ciphers typically only support a specific set of key/block lengths

We consider ℓkey(n) = n and ℓin(n) = ℓout(n) = n

n is called the block length of F

We assume for simplicity that the message m to be encrypted can be split into blocks m1,m2,m3, . . .
of lengths exactly n

What if the length of m is not a multiple of n?

m1m = m2 m3 . . .

Padding (with care)
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Block Ciphers

Recall that we can always build a stream cipher from a block cipher

3n/4 bits
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Init(s, IV):

• Output (s, IV, 0)

Next(st):

⟨i⟩ = Binary encoding
of i using n/4 bits

• Output the n bits Fs(IV ∥ ⟨i⟩) and the new state (s, IV, ⟨i+ 1⟩)

• Unpack the state in (s, IV, ⟨i⟩)

Block Ciphers

Recall that we can always build a stream cipher from a block cipher

3n/4 bits

For example:
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Block Ciphers: Modes of Operation

• We already have seen how to encrypt a message using a stream cipher.

• We have also seen how to encrypt a message using a block cipher (i.e., a pseudorandom
permutation*)

Fk(r)

m

F

k

⊕r

c = ⟨r, Fk(r)⊕m⟩

Enc

• The ciphertext is (at least) twice as long as the plaintext

• Can we do better? Several options (modes of operations)
*actually, a PRF suffices
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Electronic Code Book (ECB) mode

• Encrypt each block of the message independently

First idea:

m1 m2 m3 . . .m =

Encrypting: ci = Fk(mi)

Fk Fk Fk Fk Fk Fk Fk Fk

c1 c2 c3 . . .c =

• No ciphertext expansion!

• Is it CPA-secure? No! Encryption is deterministic!

• Is it EAV-secure? [Demo] No! It’s just a fancy substitution cipher!
(Frequency analysis)

Never us
e ECB!

Decrypting: mi = F−1
k (ci)



Cipher Block Chaining (CBC) mode

m1m = m2 m3 m4

IV

c0= IVc =

• A random IV is chosen and sent as the first block c0 of the ciphertext

Encrypting:



Cipher Block Chaining (CBC) mode

m1m =

Fk

⊕

m2 m3 m4

IV

c0= IVc = c1

• A random IV is chosen and sent as the first block c0 of the ciphertext

• Each block mi of the message is XORed with the previous ciphertext block before applying Fk

Encrypting:

ci = Fk(ci−1 ⊕mi)
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m1m =

Fk

⊕

m2 m3 m4

⊕

Fk

IV

c0= IVc = c1 c2

• A random IV is chosen and sent as the first block c0 of the ciphertext

• Each block mi of the message is XORed with the previous ciphertext block before applying Fk

Encrypting:

ci = Fk(ci−1 ⊕mi)



Cipher Block Chaining (CBC) mode

m1m =

Fk

⊕

m2 m3 m4

⊕ ⊕

Fk Fk

IV

c0= IVc = c1 c2 c3

• A random IV is chosen and sent as the first block c0 of the ciphertext

• Each block mi of the message is XORed with the previous ciphertext block before applying Fk

Encrypting:

ci = Fk(ci−1 ⊕mi)



Cipher Block Chaining (CBC) mode

m1m =

Fk

⊕

m2 m3 m4

⊕ ⊕ ⊕

Fk Fk Fk

IV

c0= IVc = c1 c2 c3 c4

• A random IV is chosen and sent as the first block c0 of the ciphertext

• Each block mi of the message is XORed with the previous ciphertext block before applying Fk

Encrypting:

ci = Fk(ci−1 ⊕mi)



m1m =

Fk

⊕

m2 m3 m4

⊕ ⊕ ⊕

Fk Fk Fk

IV

c0= IVc = c1 c2 c3 c4

Cipher Block Chaining (CBC) mode: Decrypting

c0= IV c1 c2

Decrypting:

• To decrypt mi we need ci−1



m1m =

Fk

⊕

m2 m3 m4

⊕ ⊕ ⊕

Fk Fk Fk

IV

c0= IVc = c1 c2 c3 c4

Cipher Block Chaining (CBC) mode: Decrypting

c0= IV c1 c2

F−1
k

⊕

m1

Decrypting:

• To decrypt mi we need ci−1

• mi = F−1
k (ci)⊕ ci−1



m1m =

Fk

⊕

m2 m3 m4

⊕ ⊕ ⊕

Fk Fk Fk

IV

c0= IVc = c1 c2 c3 c4

Cipher Block Chaining (CBC) mode: Decrypting

c0= IV c1 c2

F−1
k F−1

k

⊕ ⊕

m1 m2

Decrypting:

• To decrypt mi we need ci−1

• mi = F−1
k (ci)⊕ ci−1



m1m =

Fk

⊕

m2 m3 m4

⊕ ⊕ ⊕

Fk Fk Fk

IV

c0= IVc = c1 c2 c3 c4

Cipher Block Chaining (CBC) mode: Decrypting

c0= IV c1 c2 c3 c4

F−1
k F−1

k F−1
k F−1

k

⊕ ⊕ ⊕ ⊕

m1 m2 m3 m4

Decrypting:

• To decrypt mi we need ci−1

• mi = F−1
k (ci)⊕ ci−1



m1m =

Fk

⊕

m2 m3 m4

⊕ ⊕ ⊕

Fk Fk Fk

IV

c0= IVc = c1 c2 c3 c4

Cipher Block Chaining (CBC) mode: Decrypting

c0= IV c1 c2 c3 c4

F−1
k F−1

k F−1
k F−1

k

⊕ ⊕ ⊕ ⊕

m1 m2 m3 m4

Decrypting:

• To decrypt mi we need ci−1

• mi = F−1
k (ci)⊕ ci−1

Drawback: Encryption must be done sequentially



m1m =

Fk

⊕

m2 m3 m4

⊕ ⊕ ⊕

Fk Fk Fk

IV

c0= IVc = c1 c2 c3 c4

Cipher Block Chaining (CBC) mode: Decrypting

c0= IV c1 c2 c3 c4

F−1
k F−1

k F−1
k F−1

k

⊕ ⊕ ⊕ ⊕

m1 m2 m3 m4

Decrypting:

• To decrypt mi we need ci−1

• mi = F−1
k (ci)⊕ ci−1

Drawback: Encryption must be done sequentially (but decryption can be done in parallel)



Cipher Block Chaining (CBC) mode

Is CBC mode CPA secure?
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Cipher Block Chaining (CBC) mode

Is CBC mode CPA secure? Yes!*

Theorem: If F is a pseudorandom permutation, then CBC mode is CPA-secure.

*But, depending on the implementation, it might be vulnerable to some subtle attacks
(not really a fault of the encryption scheme, but something to be aware of)



There is a stateful variant of CBC called chained CBC that handles multiple messages as follows:

• When the first message is encrypted a random IV is chosen (like in CBC mode)

Chained CBC mode

m1m =

Fk

⊕

m2 m3

⊕

Fk

IV

c0= IVc = c1 c2 c3

⊕

Fk



There is a stateful variant of CBC called chained CBC that handles multiple messages as follows:

• When the first message is encrypted a random IV is chosen (like in CBC mode)

• When a subsequent message needs to be encrypted, the last block of the previous ciphertext is used
instead of a new IV

Chained CBC mode

m1m =

Fk

⊕

m2 m3

⊕

Fk

IV

c0= IVc = c1 c2 c3

⊕

m′

1m′ =

Fk

⊕

m′

2 m′

3

⊕

Fk

c′1 c′2 c′3

⊕

Fk Fk

c′ =



Security of Chained CBC mode

Is chained CBC mode CPA-secure?

m1m =

Fk

⊕

m2 m3

⊕

Fk

IV

c0= IVc = c1 c2 c3

⊕

m′

1m′ =

Fk

⊕

m′

2 m′

3

⊕

Fk

c′1 c′2 c′3

⊕

Fk Fk

c′ =



Security of Chained CBC mode

Is chained CBC mode CPA-secure? We are just simulating CBC mode on a bigger message m∥m′...

m1m =

Fk

⊕

m2 m3

⊕

Fk

IV

c0= IVc = c1 c2 c3

⊕

m′

1m′ =

Fk

⊕

m′

2 m′

3

⊕

Fk

c′1 c′2 c′3

⊕

Fk Fk

c′ =



Security of Chained CBC mode

Is chained CBC mode CPA-secure? We are just simulating CBC mode on a bigger message m∥m′...

No!

m1m =

Fk

⊕

m2 m3

⊕

Fk

IV

c0= IVc = c1 c2 c3

⊕

m′

1m′ =

Fk

⊕

m′

2 m′

3

⊕

Fk

c′1 c′2 c′3

⊕

Fk Fk

c′ =



Security of Chained CBC mode

m1m =

Fk

⊕

m2 m3

⊕

Fk

IV

c0= IVc = c1 c2 c3

⊕

Fk

Suppose that the adversary observes c and knows that m1 is either x or y (e.g., x = ATTACK! and
y = RETREAT)

m′

Fk

⊕

c′



Security of Chained CBC mode

m1m =

Fk

⊕

m2 m3

⊕

Fk

IV

c0= IVc = c1 c2 c3

⊕

Fk

Suppose that the adversary observes c and knows that m1 is either x or y (e.g., x = ATTACK! and
y = RETREAT)

The adversary convinces Alice to encrypt m′ = c0 ⊕ x⊕ c3

m′

Fk

⊕

c′
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m1m =

Fk

⊕

m2 m3

⊕

Fk

IV

c0= IVc = c1 c2 c3

⊕

Fk

Suppose that the adversary observes c and knows that m1 is either x or y (e.g., x = ATTACK! and
y = RETREAT)

The adversary convinces Alice to encrypt m′ = c0 ⊕ x⊕ c3

m′

Fk

⊕

If m1 = x then c′ = Fk(c3 ⊕m′)

c′



Security of Chained CBC mode

m1m =

Fk

⊕

m2 m3

⊕

Fk

IV

c0= IVc = c1 c2 c3

⊕

Fk

Suppose that the adversary observes c and knows that m1 is either x or y (e.g., x = ATTACK! and
y = RETREAT)

The adversary convinces Alice to encrypt m′ = c0 ⊕ x⊕ c3

m′

Fk

⊕

If m1 = x then c′ = Fk(c3 ⊕m′) = Fk(c3 ⊕ c0 ⊕ x⊕ c3)

c′



Security of Chained CBC mode

m1m =

Fk

⊕

m2 m3

⊕

Fk

IV

c0= IVc = c1 c2 c3

⊕

Fk

Suppose that the adversary observes c and knows that m1 is either x or y (e.g., x = ATTACK! and
y = RETREAT)

The adversary convinces Alice to encrypt m′ = c0 ⊕ x⊕ c3

m′

Fk

⊕

If m1 = x then c′ = Fk(c3 ⊕m′) = Fk(c3 ⊕ c0 ⊕ x⊕ c3) = Fk(c0 ⊕ x)

c′



Security of Chained CBC mode

m1m =

Fk

⊕

m2 m3

⊕

Fk

IV

c0= IVc = c1 c2 c3

⊕

Fk

Suppose that the adversary observes c and knows that m1 is either x or y (e.g., x = ATTACK! and
y = RETREAT)

The adversary convinces Alice to encrypt m′ = c0 ⊕ x⊕ c3

m′

Fk

⊕
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Security of Chained CBC mode

m1m =

Fk

⊕

m2 m3

⊕

Fk

IV

c0= IVc = c1 c2 c3

⊕

Fk

Suppose that the adversary observes c and knows that m1 is either x or y (e.g., x = ATTACK! and
y = RETREAT)

The adversary convinces Alice to encrypt m′ = c0 ⊕ x⊕ c3

m′

Fk

⊕

If m1 = x then c′ = Fk(c3 ⊕m′) = Fk(c3 ⊕ c0 ⊕ x⊕ c3) = Fk(c0 ⊕ x)

If m1 ̸= x then c′ = Fk(c3 ⊕m′)

= Fk(c0 ⊕m1) = c1

c′



Security of Chained CBC mode

m1m =

Fk

⊕

m2 m3

⊕

Fk

IV

c0= IVc = c1 c2 c3

⊕

Fk

Suppose that the adversary observes c and knows that m1 is either x or y (e.g., x = ATTACK! and
y = RETREAT)

The adversary convinces Alice to encrypt m′ = c0 ⊕ x⊕ c3

m′

Fk

⊕

If m1 = x then c′ = Fk(c3 ⊕m′) = Fk(c3 ⊕ c0 ⊕ x⊕ c3) = Fk(c0 ⊕ x)

If m1 ̸= x then c′ = Fk(c3 ⊕m′)

= Fk(c0 ⊕m1) = c1

= Fk(c0 ⊕ x)

c′



Security of Chained CBC mode

m1m =

Fk

⊕

m2 m3

⊕

Fk

IV

c0= IVc = c1 c2 c3

⊕

Fk

Suppose that the adversary observes c and knows that m1 is either x or y (e.g., x = ATTACK! and
y = RETREAT)

The adversary convinces Alice to encrypt m′ = c0 ⊕ x⊕ c3

m′

Fk

⊕

If m1 = x then c′ = Fk(c3 ⊕m′) = Fk(c3 ⊕ c0 ⊕ x⊕ c3) = Fk(c0 ⊕ x)

If m1 ̸= x then c′ = Fk(c3 ⊕m′)

= Fk(c0 ⊕m1) = c1

= Fk(c0 ⊕ x) ̸= Fk(c0 ⊕m1) = c1

c′



Output Feedback (OFB) mode

IV

m1m =

c0= IV

m2 m3 m4

• A random IV is chosen and sent as the first block c0 of the ciphertext. Let y0 = c0 = IV

Encrypting:

y0

c =



Output Feedback (OFB) mode

IV

Fk

m1m =

c0= IV

m2 m3 m4

y1

• A random IV is chosen and sent as the first block c0 of the ciphertext. Let y0 = c0 = IV

Encrypting:

• yi = Fk(yi−1)

y0

c =



Output Feedback (OFB) mode

IV

Fk

⊕

m1m =

c0= IV c1

m2 m3 m4

y1

• A random IV is chosen and sent as the first block c0 of the ciphertext. Let y0 = c0 = IV

Encrypting:

• yi = Fk(yi−1)

y0

• ci = yi ⊕mi

c =



Output Feedback (OFB) mode

IV

Fk

⊕

m1m =

c0= IV c1

m2 m3 m4

Fk

y1 y2

• A random IV is chosen and sent as the first block c0 of the ciphertext. Let y0 = c0 = IV

Encrypting:

• yi = Fk(yi−1)

y0

• ci = yi ⊕mi

c =



Output Feedback (OFB) mode

IV

Fk

⊕

m1m =

c0= IV c1

m2 m3 m4

Fk

⊕

c2

y1 y2

• A random IV is chosen and sent as the first block c0 of the ciphertext. Let y0 = c0 = IV

Encrypting:

• yi = Fk(yi−1)

y0

• ci = yi ⊕mi

c =



Output Feedback (OFB) mode

IV

Fk

⊕

m1m =

c0= IV c1

m2 m3 m4

Fk

⊕

c2

Fk

⊕

c3

Fk

⊕

c4

y1 y2 y3 y4

• A random IV is chosen and sent as the first block c0 of the ciphertext. Let y0 = c0 = IV

Encrypting:

• yi = Fk(yi−1)

y0

• ci = yi ⊕mi

c =



Output Feedback (OFB) mode

IV

Fk

⊕

m1m =

c0= IV c1

m2 m3 m4

Fk

⊕

c2

Fk

⊕

c3

Fk

⊕

c4

Can be thought of as a stream cipher (generate y1, y2, . . . and XOR it with the message)

y1 y2 y3 y4

• A random IV is chosen and sent as the first block c0 of the ciphertext. Let y0 = c0 = IV

Encrypting:

• yi = Fk(yi−1)

y0

• ci = yi ⊕mi

c =



IV

Fk

⊕

m1

c0= IV c1

m2 m3

Fk

⊕

c2

Fk

⊕

c3

y1 y2 y3y0

Output Feedback (OFB) mode

Decrypting:

c0= IV c1 c2 c3



IV

Fk

⊕

m1

c0= IV c1

m2 m3

Fk

⊕

c2

Fk

⊕

c3

y1 y2 y3y0

Output Feedback (OFB) mode

Decrypting:

c0= IV c1 c2 c3

Fk

y1

y0

• y0 = c0

• yi = Fk(yi−1)



IV

Fk

⊕

m1

c0= IV c1

m2 m3

Fk

⊕

c2

Fk

⊕

c3

y1 y2 y3y0

Output Feedback (OFB) mode

Decrypting:

c0= IV c1 c2 c3

m1

Fk

⊕

y1

y0

• y0 = c0

• yi = Fk(yi−1)

• mi = yi ⊕ ci



IV

Fk

⊕

m1

c0= IV c1

m2 m3

Fk

⊕

c2

Fk

⊕

c3

y1 y2 y3y0

Output Feedback (OFB) mode

Decrypting:

c0= IV c1 c2 c3

m1

Fk Fk

⊕

y1 y2

y0

• y0 = c0

• yi = Fk(yi−1)

• mi = yi ⊕ ci



IV

Fk

⊕

m1

c0= IV c1

m2 m3

Fk

⊕

c2

Fk

⊕

c3

y1 y2 y3y0

Output Feedback (OFB) mode

Decrypting:

c0= IV c1 c2 c3

m1 m2

Fk Fk

⊕ ⊕

y1 y2

y0

• y0 = c0

• yi = Fk(yi−1)

• mi = yi ⊕ ci



IV

Fk

⊕

m1

c0= IV c1

m2 m3

Fk

⊕

c2

Fk

⊕

c3

y1 y2 y3y0

Output Feedback (OFB) mode

Decrypting:

c0= IV c1 c2 c3

m1 m2

Fk Fk Fk

⊕ ⊕

y1 y2 y3

y0

• y0 = c0

• yi = Fk(yi−1)

• mi = yi ⊕ ci



IV

Fk

⊕

m1

c0= IV c1

m2 m3

Fk

⊕

c2

Fk

⊕

c3

y1 y2 y3y0

Output Feedback (OFB) mode

Decrypting:

c0= IV c1 c2 c3

m1 m2 m3

Fk Fk Fk

⊕ ⊕ ⊕

y1 y2 y3

y0

• y0 = c0

• yi = Fk(yi−1)

• mi = yi ⊕ ci



IV

Fk

⊕

m1

c0= IV c1

m2 m3

Fk

⊕

c2

Fk

⊕

c3

y1 y2 y3y0

Output Feedback (OFB) mode

Decrypting:

c0= IV c1 c2 c3

m1 m2 m3

Fk Fk Fk

⊕ ⊕ ⊕

y1 y2 y3

y0

• y0 = c0

• yi = Fk(yi−1)

• mi = yi ⊕ ci

Encryption and decryption must be done sequentially
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• An optimization: the stream y1, y2, y3, . . . only depends on the IV (and the key): it can be
pre-computed before the message needs to be encrypted
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• If the last block is not full, the ciphertext can be truncated to the plaintext length

• An optimization: the stream y1, y2, y3, . . . only depends on the IV (and the key): it can be
pre-computed before the message needs to be encrypted

Is OFB mode CPA-secure?



Output Feedback (OFB) mode

Encryption and decryption must be done sequentially

• F can be any PRF (not necessarily a PRP). (notice that we never used F−1)

• If the last block is not full, the ciphertext can be truncated to the plaintext length

• An optimization: the stream y1, y2, y3, . . . only depends on the IV (and the key): it can be
pre-computed before the message needs to be encrypted

Theorem: If F is a pseudorandom function, then OFB mode is CPA-secure.

Is OFB mode CPA-secure?



The stateful variant of OFB (the final value yi is used in place of y0 when the next message needs to be
encrypted) is also CPA-secure

Output Feedback (OFB) mode, stateful variant

IV

Fk

⊕

m1

c0= IV c1

m2 m3

Fk

⊕

c2

Fk

⊕

c3

y1 y2 y3y0

m =



The stateful variant of OFB (the final value yi is used in place of y0 when the next message needs to be
encrypted) is also CPA-secure

Output Feedback (OFB) mode, stateful variant

IV

Fk

⊕

m1

c0= IV c1

m2 m3

Fk

⊕

c2

Fk

⊕

c3

y1 y2 y3y0

⊕

m′

1

c′1

y1

m′

2

Fk

⊕

c′2

Fk

m = m′ =
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Counter (CTR) mode

m1m = m2 m3 m4

IV

c0= IV

Can be viewed as a stream cipher

• A random IV is chosen and sent as the first
block c0 of the ciphertext.

Encrypting:

• Split the input to F into an IV and a counter

For example:

• IV ∈ {0, 1}3n/4

• counter ∈ {0, 1}n/4



c1

Counter (CTR) mode

Fk

IV ∥ ⟨1⟩

m1m = m2 m3 m4

⊕

IV

c0= IV

Can be viewed as a stream cipher

• A random IV is chosen and sent as the first
block c0 of the ciphertext.

Encrypting:

• ci = Fk(IV ∥ ⟨i⟩)⊕mi

• Split the input to F into an IV and a counter

For example:

• IV ∈ {0, 1}3n/4

• counter ∈ {0, 1}n/4
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Counter (CTR) mode

Fk

IV ∥ ⟨1⟩

m1m = m2 m3 m4

⊕

IV

c0= IV

Can be viewed as a stream cipher

• A random IV is chosen and sent as the first
block c0 of the ciphertext.

Encrypting:

• ci = Fk(IV ∥ ⟨i⟩)⊕mi

• Split the input to F into an IV and a counter

For example:

• IV ∈ {0, 1}3n/4

• counter ∈ {0, 1}n/4

⟨i⟩ Binary encoding of i



c1 c2

Counter (CTR) mode

Fk

IV ∥ ⟨1⟩

Fk

IV ∥ ⟨2⟩

m1m = m2 m3 m4

⊕ ⊕

IV

c0= IV

Can be viewed as a stream cipher

• A random IV is chosen and sent as the first
block c0 of the ciphertext.

Encrypting:

• ci = Fk(IV ∥ ⟨i⟩)⊕mi

• Split the input to F into an IV and a counter

For example:

• IV ∈ {0, 1}3n/4

• counter ∈ {0, 1}n/4

⟨i⟩ Binary encoding of i



c1 c2 c3

Counter (CTR) mode

Fk

IV ∥ ⟨1⟩

Fk

IV ∥ ⟨2⟩

Fk

IV ∥ ⟨3⟩

m1m = m2 m3 m4

⊕ ⊕ ⊕

IV

c0= IV

Can be viewed as a stream cipher

• A random IV is chosen and sent as the first
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Counter (CTR) mode

• Both encryption and decryption can be done in parallel!

• F can be any PRF (not necessarily a PRP) (notice that we never used F−1)

Theorem: If F is a pseudorandom function, then CTR mode is CPA-secure.

• If the last block is not full, the ciphertext can be truncated to the plaintext length (no padding
needed)

• Remains secure even if IVs are not chosen u.a.r., in fact it suffices that IVs never repeat

IV = 00 . . . 000, 00 . . . 001, 00 . . . 010, 00 . . . 011, . . .

• The length of the IV affects the security

• The length of the counter controls how many blocks can be sent with the same IV

Is CTR mode CPA-secure?


