
We are now considering active attacks:

• The attacker has full control over the channel

Reminder: Passive vs Active Attacks

• Can alter the message contents

• Can drop messages

• Can forge new messages



Reminder: Secrecy vs Integrity

There are two important guarantees that we would like to achieve against an active adversary

Secrecy:

• This is what we have been concerned with so far.

• The adversary should not be able to (easily) learn (any information about) the plaintexts

Integrity (& Authentication):

• The adversary is not able to tamper with the messages

• The message originated from the intended party

• The message has not been modified in transit

Integrity and Secrecy are orthogonal concerns



Reminder: Secrecy vs Integrity

There are two important guarantees that we would like to achieve against an active adversary

Secrecy:

• This is what we have been concerned with so far.

• The adversary should not be able to (easily) learn (any information about) the plaintexts

Integrity (& Authentication):

• The adversary is not able to tamper with the messages

• The message originated from the intended party

• The message has not been modified in transit

Integrity and Secrecy are orthogonal concerns

Secrecy against active adversaries?



Reminder: Malleability of OTP

• Alice makes a wire transfer from her bank’s website

• Alice buys an item from the adversary for 5.20€



Reminder: Malleability of OTP

• The bank website sends a message of the form
PAY <RECIPIENT IBAN> <AMOUNT> to the bank’s backend

• Alice makes a wire transfer from her bank’s website

• Alice buys an item from the adversary for 5.20€

m = 010100000100000101011001| {z }
PAY

01001001 . . . 00110010| {z }
IBAN

0000000100000100| {z }
AMOUNT (520)



Reminder: Malleability of OTP

• The bank website sends a message of the form
PAY <RECIPIENT IBAN> <AMOUNT> to the bank’s backend

• Alice makes a wire transfer from her bank’s website

• The message is encrypted with a one-time pad

• Alice buys an item from the adversary for 5.20€

m = 010100000100000101011001| {z }
PAY

01001001 . . . 00110010| {z }
IBAN

0000000100000100| {z }
AMOUNT (520)



m = 010100000100000101011001| {z }
PAY

01001001 . . . 00110010| {z }
IBAN

0000000100000100| {z }
AMOUNT (520)

Reminder: Malleability of OTP

c = 0011011000101010000110101| {z }
PAY

11010001 . . . 10001101| {z }
IBAN

1011111010010010| {z }
AMOUNT



m = 010100000100000101011001| {z }
PAY

01001001 . . . 00110010| {z }
IBAN

0000000100000100| {z }
AMOUNT (520)

Reminder: Malleability of OTP

c = 0011011000101010000110101| {z }
PAY

11010001 . . . 10001101| {z }
IBAN

1011111010010010| {z }
AMOUNT

L
. . . 1000000000000000



m = 010100000100000101011001| {z }
PAY

01001001 . . . 00110010| {z }
IBAN

0000000100000100| {z }
AMOUNT (520)

Reminder: Malleability of OTP

c = 0011011000101010000110101| {z }
PAY

11010001 . . . 10001101| {z }
IBAN

1011111010010010| {z }
AMOUNT

L

c′ = 0011011000101010000110101| {z }
PAY

11010001 . . . 10001101| {z }
IBAN

0011111010010010| {z }
AMOUNT

. . . 1000000000000000



m = 010100000100000101011001| {z }
PAY

01001001 . . . 00110010| {z }
IBAN

0000000100000100| {z }
AMOUNT (520)

Reminder: Malleability of OTP

c = 0011011000101010000110101| {z }
PAY

11010001 . . . 10001101| {z }
IBAN

1011111010010010| {z }
AMOUNT

L

c′ = 0011011000101010000110101| {z }
PAY

11010001 . . . 10001101| {z }
IBAN

0011111010010010| {z }
AMOUNT

. . . 1000000000000000

m′ = 010100000100000101011001| {z }
PAY

01001001 . . . 00110010| {z }
IBAN

1000000100000100| {z }
AMOUNT (33028)



m = 010100000100000101011001| {z }
PAY

01001001 . . . 00110010| {z }
IBAN

0000000100000100| {z }
AMOUNT (520)

Reminder: Malleability of OTP

c = 0011011000101010000110101| {z }
PAY

11010001 . . . 10001101| {z }
IBAN

1011111010010010| {z }
AMOUNT

L

c′ = 0011011000101010000110101| {z }
PAY

11010001 . . . 10001101| {z }
IBAN

0011111010010010| {z }
AMOUNT

. . . 1000000000000000

m′ = 010100000100000101011001| {z }
PAY

01001001 . . . 00110010| {z }
IBAN

1000000100000100| {z }
AMOUNT (33028)

Chan
ges to the ciphe

rtext
resul

t in predi
ctabl

e chan
ges to the plain

text

The s
chem

e is m
allea

ble!



Malleability and CCA security

• All the encryption schemes we have seen so far are malleable!

• Malleable encryption schemes are problematic in the presence of an active adversary



Malleability and CCA security

• All the encryption schemes we have seen so far are malleable!

• Malleable encryption schemes are problematic in the presence of an active adversary

How do we formalize the threat model when the attacker has control over the channel?



Malleability and CCA security

• All the encryption schemes we have seen so far are malleable!

• Malleable encryption schemes are problematic in the presence of an active adversary

How do we formalize the threat model when the attacker has control over the channel?

What security guarantee do we want to achieve against such an adversary?



Malleability and CCA security

• All the encryption schemes we have seen so far are malleable!

• Malleable encryption schemes are problematic in the presence of an active adversary

How do we formalize the threat model when the attacker has control over the channel?

What security guarantee do we want to achieve against such an adversary?

Chosen Ciphertext Attacks (CCA)



Chosen-ciphertext attack

The adversary can learn the ciphertexts corresponding to one or more plaintexts of its choice

and

the plaintexts corresponding to one or more ciphertexts of its choice

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
produced using the same key



Chosen-ciphertext attack

The adversary can learn the ciphertexts corresponding to one or more plaintexts of its choice

and

the plaintexts corresponding to one or more ciphertexts of its choice

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
produced using the same key

How can the adversary learn the (some information about the) plaintexts of the desired ciphertext?



Chosen-ciphertext attack

The adversary can learn the ciphertexts corresponding to one or more plaintexts of its choice

and

the plaintexts corresponding to one or more ciphertexts of its choice

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
produced using the same key

How can the adversary learn the (some information about the) plaintexts of the desired ciphertext?



Chosen-ciphertext attack

The adversary can learn the ciphertexts corresponding to one or more plaintexts of its choice

and

the plaintexts corresponding to one or more ciphertexts of its choice

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
produced using the same key

How can the adversary learn the (some information about the) plaintexts of the desired ciphertext?

The adversary modifies/injects traffic and observes Bob response



Chosen-ciphertext attack

The adversary can learn the ciphertexts corresponding to one or more plaintexts of its choice

and

the plaintexts corresponding to one or more ciphertexts of its choice

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
produced using the same key

How can the adversary learn the (some information about the) plaintexts of the desired ciphertext?

The adversary modifies/injects traffic and observes Bob response

Many protocols close a connection or request a retransmission when a bad message is received



Malleability and CCA security

• All the encryption schemes we have seen so far are malleable!

• Malleable encryption schemes are problematic in the presence of an active adversary

How do we formalize the threat model when the attacker has control over the channel?

What security guarantee do we want to achieve against such an adversary?

Chosen Ciphertext Attacks (CCA)



Malleability and CCA security

• All the encryption schemes we have seen so far are malleable!

• Malleable encryption schemes are problematic in the presence of an active adversary

How do we formalize the threat model when the attacker has control over the channel?

What security guarantee do we want to achieve against such an adversary?

Chosen Ciphertext Attacks (CCA)

We define a suitable experiment to capture the security guarantee



Modeling CCA security

Decryption oracle

A key k ← Gen(1n) is generated and the adversary A has access to both an encryption oracle and a
decryption oracle

Encryption oracle



Modeling CCA security

• The encryption oracle acts as a black-box that can be queried with a message m and returns an
encryption of m

Decryption oracle

A key k ← Gen(1n) is generated and the adversary A has access to both an encryption oracle and a
decryption oracle

Encryption oracle m

cc ← Enck(m)



Modeling CCA security

• The encryption oracle acts as a black-box that can be queried with a message m and returns an
encryption of m

Decryption oracle

m

c

m ← Deck(c)

A key k ← Gen(1n) is generated and the adversary A has access to both an encryption oracle and a
decryption oracle

• The decryption oracle can be queried with a ciphertext and returns the corresponding plaintext

Encryption oracle m

cc ← Enck(m)



Modeling CCA security

• The encryption oracle acts as a black-box that can be queried with a message m and returns an
encryption of m

Decryption oracle

m

c

m ← Deck(c)

• There is no limit on the number of queries the adversary can make

A key k ← Gen(1n) is generated and the adversary A has access to both an encryption oracle and a
decryption oracle

• The decryption oracle can be queried with a ciphertext and returns the corresponding plaintext

Encryption oracle m

cc ← Enck(m)



Modeling CCA security

• The encryption oracle acts as a black-box that can be queried with a message m and returns an
encryption of m

• All messages are encrypted/decrupted using the same key k

Decryption oracle

m

c

m ← Deck(c)

• There is no limit on the number of queries the adversary can make

A key k ← Gen(1n) is generated and the adversary A has access to both an encryption oracle and a
decryption oracle

• The decryption oracle can be queried with a ciphertext and returns the corresponding plaintext

Encryption oracle m

cc ← Enck(m)



Modeling CCA security

• The encryption oracle acts as a black-box that can be queried with a message m and returns an
encryption of m

• All messages are encrypted/decrupted using the same key k

Decryption oracle

m

c

m ← Deck(c)

• There is no limit on the number of queries the adversary can make

A key k ← Gen(1n) is generated and the adversary A has access to both an encryption oracle and a
decryption oracle

• The key k is unknown to the adversary

• The decryption oracle can be queried with a ciphertext and returns the corresponding plaintext

Encryption oracle m

cc ← Enck(m)



The PrivKcca
A,Π experiment

Formally, if Π = (Gen,Enc,Dec) is a private key encryption scheme with message space M,

we denote the following experiment by PrivKcca
A,Π(n)

• A key k ← Gen(1n) is generated

• A can interact with an encryption oracle that provides access to Enck(·)
and with a decryption oracle that provides access to Deck(·)

• A chooses two distinct messages m0,m1 ∈ M with |m0| = |m1|

• A uniform random bit b ∈ {0, 1} is generated

• The challenge ciphertext c is computed by Enck(mb), and given to A

• A can interact with an encryption oracle that provides access to Enck(·)
and with a decryption oracle that provides access to Deck(·)

• A outputs a guess b′ ∈ {0, 1} about b

• The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise



The PrivKcca
A,Π experiment

Formally, if Π = (Gen,Enc,Dec) is a private key encryption scheme with message space M,

we denote the following experiment by PrivKcca
A,Π(n)

• A key k ← Gen(1n) is generated

• A can interact with an encryption oracle that provides access to Enck(·)
and with a decryption oracle that provides access to Deck(·)

• A chooses two distinct messages m0,m1 ∈ M with |m0| = |m1|

• A uniform random bit b ∈ {0, 1} is generated

• The challenge ciphertext c is computed by Enck(mb), and given to A

• A can interact with an encryption oracle that provides access to Enck(·)
and with a decryption oracle that provides access to Deck(·)

• A outputs a guess b′ ∈ {0, 1} about b

• The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise

k and b are
unknown to A



The PrivKcca
A,Π experiment

Formally, if Π = (Gen,Enc,Dec) is a private key encryption scheme with message space M,

we denote the following experiment by PrivKcca
A,Π(n)

• A key k ← Gen(1n) is generated

• A can interact with an encryption oracle that provides access to Enck(·)
and with a decryption oracle that provides access to Deck(·)

• A chooses two distinct messages m0,m1 ∈ M with |m0| = |m1|

• A uniform random bit b ∈ {0, 1} is generated

• The challenge ciphertext c is computed by Enck(mb), and given to A

• A can interact with an encryption oracle that provides access to Enck(·)
and with a decryption oracle that provides access to Deck(·)

• A outputs a guess b′ ∈ {0, 1} about b

• The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise

k and b are
unknown to A

A is not
allowed to
request a

decryption of c



The PrivKcca
A,Π experiment

VerifierEncryption
and

Decryption
oracles

using key k

Adversary
A

A key k ← Gen(1n) is generated



The PrivKcca
A,Π experiment

VerifierEncryption
and

Decryption
oracles

using key k

Adversary
A

...

A key k ← Gen(1n) is generated



The PrivKcca
A,Π experiment

Verifier

m0,m1 ∈ M

Encryption
and

Decryption
oracles

using key k

Adversary
A

...

A key k ← Gen(1n) is generated

|m0| = |m1|



The PrivKcca
A,Π experiment

Verifier

m0,m1 ∈ M

Encryption
and

Decryption
oracles

using key k

Adversary
A

...

A key k ← Gen(1n) is generated

b ← {0, 1}|m0| = |m1|



The PrivKcca
A,Π experiment

Verifier

m0,m1 ∈ M

c ← Enck(mb)

Encryption
and

Decryption
oracles

using key k

Adversary
A

...

A key k ← Gen(1n) is generated

b ← {0, 1}

challenge ciphertext

|m0| = |m1|



The PrivKcca
A,Π experiment

Verifier

m0,m1 ∈ M

c ← Enck(mb)

Encryption
and

Decryption
oracles

using key k

Adversary
A

...

A key k ← Gen(1n) is generated

b ← {0, 1}

challenge ciphertext

...

|m0| = |m1|



The PrivKcca
A,Π experiment

Verifier

m0,m1 ∈ M

c ← Enck(mb)

b′

Encryption
and

Decryption
oracles

using key k

Adversary
A

...

A key k ← Gen(1n) is generated

b ← {0, 1}

challenge ciphertext

...

guess about b

|m0| = |m1|



The PrivKcca
A,Π experiment

Verifier

m0,m1 ∈ M

c ← Enck(mb)

b′

Encryption
and

Decryption
oracles

using key k

Adversary
A

...

A key k ← Gen(1n) is generated

b ← {0, 1}

challenge ciphertext

...

guess about b

if b′ = b

if b′ ̸= b

|m0| = |m1|



Definition: A private key encryption scheme Π has indistinguishable encryptions under a
chosen-ciphertext attack (is CCA-secure) if, for every probabilistic polynomial-time
adversary A, there is a negligible function ε such that:

Pr[PrivKcca
A,Π(n) = 1] ≤ 1

2
+ ε(n)

Definition of CCA security



Is the definition realistic?

The definition models the case in which an attacker can obtain the decryption of any ciphertext of its
choice (except for the challenge ciphertext)

In most real-world scenarios, the attacker would not have access to a full decryption oracle



Is the definition realistic?

The definition models the case in which an attacker can obtain the decryption of any ciphertext of its
choice (except for the challenge ciphertext)

In most real-world scenarios, the attacker would not have access to a full decryption oracle

Still, some partial information about the deciphered ciphertext might be leaked



Is the definition realistic?

The definition models the case in which an attacker can obtain the decryption of any ciphertext of its
choice (except for the challenge ciphertext)

In most real-world scenarios, the attacker would not have access to a full decryption oracle

Still, some partial information about the deciphered ciphertext might be leaked

• For example, the attacker can observe the subsequent actions of the recipient

• Recall the Midway island example: the US could have sent an encrypted message containing the
fragment AF and observed Japan’s response



Is the definition realistic?

The definition models the case in which an attacker can obtain the decryption of any ciphertext of its
choice (except for the challenge ciphertext)

In most real-world scenarios, the attacker would not have access to a full decryption oracle

Still, some partial information about the deciphered ciphertext might be leaked

• For example, the attacker can observe the subsequent actions of the recipient

• Recall the Midway island example: the US could have sent an encrypted message containing the
fragment AF and observed Japan’s response

We take a worst-case approach:

• If an encryption scheme withstands a stronger adversary than real-world ones, security is not
compromised

• No assumption on how strong real-world adversaries are



If an encryption scheme Π is malleable, then it cannot be CCA-secure

Malleability and CCA-security



If an encryption scheme Π is malleable, then it cannot be CCA-secure

Malleability and CCA-security

Sketch of the proof:

• Output two messages m0,m1 and get the challenge ciphertext c



If an encryption scheme Π is malleable, then it cannot be CCA-secure

Malleability and CCA-security

Sketch of the proof:

• Output two messages m0,m1 and get the challenge ciphertext c

• Since Π is malleable, there is a way to change c into a new
ciphertext c′ that results a predictable change to the plaintext



If an encryption scheme Π is malleable, then it cannot be CCA-secure

Malleability and CCA-security

Sketch of the proof:

• Output two messages m0,m1 and get the challenge ciphertext c

• Since Π is malleable, there is a way to change c into a new
ciphertext c′ that results a predictable change to the plaintext

• Submit c′ to the decryption oracle and get the corresponding
plaintext m′



If an encryption scheme Π is malleable, then it cannot be CCA-secure

Malleability and CCA-security

Sketch of the proof:

• Output two messages m0,m1 and get the challenge ciphertext c

• Since Π is malleable, there is a way to change c into a new
ciphertext c′ that results a predictable change to the plaintext

• Submit c′ to the decryption oracle and get the corresponding
plaintext m′

• The plaintext m′ matches the modified version of some message mi

(i.e., the version of mi in which the expected change took place)



If an encryption scheme Π is malleable, then it cannot be CCA-secure

Malleability and CCA-security

Sketch of the proof:

• Output two messages m0,m1 and get the challenge ciphertext c

• Since Π is malleable, there is a way to change c into a new
ciphertext c′ that results a predictable change to the plaintext

• Submit c′ to the decryption oracle and get the corresponding
plaintext m′

• The plaintext m′ matches the modified version of some message mi

(i.e., the version of mi in which the expected change took place)

• Output the guess b′ = i



If an encryption scheme Π is malleable, then it cannot be CCA-secure

Malleability and CCA-security

Sketch of the proof:

• Output two messages m0,m1 and get the challenge ciphertext c

• Since Π is malleable, there is a way to change c into a new
ciphertext c′ that results a predictable change to the plaintext

• Submit c′ to the decryption oracle and get the corresponding
plaintext m′

• The plaintext m′ matches the modified version of some message mi

(i.e., the version of mi in which the expected change took place)

• Output the guess b′ = i

This adversary wins PrivKcca
A,Π(n) with non-negligible advantage!



If an encryption scheme Π is malleable, then it cannot be CCA-secure

Malleability and CCA-security

Sketch of the proof:

By taking the contrapositive: CAA-security implies non-malleability!

• Output two messages m0,m1 and get the challenge ciphertext c

• Since Π is malleable, there is a way to change c into a new
ciphertext c′ that results a predictable change to the plaintext

• Submit c′ to the decryption oracle and get the corresponding
plaintext m′

• The plaintext m′ matches the modified version of some message mi

(i.e., the version of mi in which the expected change took place)

• Output the guess b′ = i

This adversary wins PrivKcca
A,Π(n) with non-negligible advantage!



Padding Oracle Attacks

We show a scenario in which:

• The encryption scheme is malleable

• Only a single bit of information is leaked



Padding Oracle Attacks

We show a scenario in which:

• The encryption scheme is malleable

• Only a single bit of information is leaked

• We can exploit this to gain knowledge of the entire plaintext



Padding Oracle Attacks

We show a scenario in which:

• The encryption scheme is malleable

• Only a single bit of information is leaked

• We can exploit this to gain knowledge of the entire plaintext

• This scenario happens in the real world. . .

. . . In fact, this attack has been used against SSL!



Padding Oracle Attacks

We show a scenario in which:

• The encryption scheme is malleable

• Only a single bit of information is leaked

• We can exploit this to gain knowledge of the entire plaintext

• This scenario happens in the real world. . .

. . . In fact, this attack has been used against SSL!

Reminder: block ciphers in CBC mode
m1m =

Fk

⊕

m2 m3 m4

⊕ ⊕ ⊕

Fk Fk Fk

IV

c0= IVc = c1 c2 c3 c4

. . .

. . .

. . .



011101m =

Fk

⊕

100011

⊕

Fk

IV

110101c = 001010 011011

Malleability of CBC mode

F−1
k F−1

k

⊕ ⊕

110101 001010 011011

011101 100011



011101m =

Fk

⊕

100011

⊕

Fk

IV

110101c = 001010 011011

Malleability of CBC mode

F−1
k F−1

k

⊕ ⊕

If we flip the generic j-th bit in the i-th block ci of the ciphertext. . .

110101 001010 011011

011101 100011



011101m =

Fk

⊕

100011

⊕

Fk

IV

110101c = 011011

Malleability of CBC mode

F−1
k F−1

k

⊕ ⊕

If we flip the generic j-th bit in the i-th block ci of the ciphertext. . .

110101 011011

011101 100011000010

000010



011101m =

Fk

⊕

100011

⊕

Fk

IV

110101c = 011011

Malleability of CBC mode

F−1
k F−1

k

⊕ ⊕

If we flip the generic j-th bit in the i-th block ci of the ciphertext. . .

110101 011011

011101

. . . this causes a flip in the j-th bit of the (i+ 1)-th block mi+1 of the plaintext after decryption

000010

000010

101011



011101m =

Fk

⊕

100011

⊕

Fk

IV

110101c = 011011

Malleability of CBC mode

F−1
k F−1

k

⊕ ⊕

If we flip the generic j-th bit in the i-th block ci of the ciphertext. . .

110101 011011

011101

. . . this causes a flip in the j-th bit of the (i+ 1)-th block mi+1 of the plaintext after decryption

000010

000010

101011

In general, if we XOR the i-th block of the ciphertext with ∆, this causes the (i+ 1)-th block of the
plaintext to be XOR-ed with ∆ after decryption



Message padding and PKCS #7

• In general, the length |m| of the plaintext m might not be a multiple of the block length ℓ

• The message needs to be padded to a multiple of ℓ before encryption



Message padding and PKCS #7

• In general, the length |m| of the plaintext m might not be a multiple of the block length ℓ

• The message needs to be padded to a multiple of ℓ before encryption

• One popular padding scheme is defined by the PKCS #7 standard



Message padding and PKCS #7

• In general, the length |m| of the plaintext m might not be a multiple of the block length ℓ

• The message needs to be padded to a multiple of ℓ before encryption

• One popular padding scheme is defined by the PKCS #7 standard

• If b bytes are missing for |m| to reach to next multiple of ℓ, append b bytes, each with value b to m

• We will work in bytes instead of bits. Assume ℓ < 256 (bytes)



Message padding and PKCS #7

• In general, the length |m| of the plaintext m might not be a multiple of the block length ℓ

• The message needs to be padded to a multiple of ℓ before encryption

• One popular padding scheme is defined by the PKCS #7 standard

• If b bytes are missing for |m| to reach to next multiple of ℓ, append b bytes, each with value b to m

• We will work in bytes instead of bits. Assume ℓ < 256 (bytes)

Note that if |m| is already a multiple of ℓ then b = ℓ and a new block is appended
(this ensures unambiguous decoding)



Message padding and PKCS #7

• In general, the length |m| of the plaintext m might not be a multiple of the block length ℓ

• The message needs to be padded to a multiple of ℓ before encryption

• One popular padding scheme is defined by the PKCS #7 standard

• If b bytes are missing for |m| to reach to next multiple of ℓ, append b bytes, each with value b to m

• We will work in bytes instead of bits. Assume ℓ < 256 (bytes)

Example with ℓ = 8:

53 20 146 86 275 16

| {z }
ℓ

| {z }
ℓ

183 201 82 155 94

Note that if |m| is already a multiple of ℓ then b = ℓ and a new block is appended
(this ensures unambiguous decoding)



Message padding and PKCS #7

• In general, the length |m| of the plaintext m might not be a multiple of the block length ℓ

• The message needs to be padded to a multiple of ℓ before encryption

• One popular padding scheme is defined by the PKCS #7 standard

• If b bytes are missing for |m| to reach to next multiple of ℓ, append b bytes, each with value b to m

• We will work in bytes instead of bits. Assume ℓ < 256 (bytes)

Example with ℓ = 8:

53 20 146 86 275 16 55555

| {z }
ℓ

| {z }
ℓ

183 201 82 155 94

Note that if |m| is already a multiple of ℓ then b = ℓ and a new block is appended
(this ensures unambiguous decoding)



Message padding and PKCS #7

• In general, the length |m| of the plaintext m might not be a multiple of the block length ℓ

• The message needs to be padded to a multiple of ℓ before encryption

• One popular padding scheme is defined by the PKCS #7 standard

• If b bytes are missing for |m| to reach to next multiple of ℓ, append b bytes, each with value b to m

• We will work in bytes instead of bits. Assume ℓ < 256 (bytes)

Example with ℓ = 8:

Note that if |m| is already a multiple of ℓ then b = ℓ and a new block is appended
(this ensures unambiguous decoding)

53 20 146 86 275 16

| {z }
ℓ

| {z }
ℓ

183 201 82 155 94 31 42199 77 1



Message padding and PKCS #7

• In general, the length |m| of the plaintext m might not be a multiple of the block length ℓ

• The message needs to be padded to a multiple of ℓ before encryption

• One popular padding scheme is defined by the PKCS #7 standard

• If b bytes are missing for |m| to reach to next multiple of ℓ, append b bytes, each with value b to m

• We will work in bytes instead of bits. Assume ℓ < 256 (bytes)

Example with ℓ = 8:

Note that if |m| is already a multiple of ℓ then b = ℓ and a new block is appended
(this ensures unambiguous decoding)

53 20 146 86 275 16

| {z }
ℓ

| {z }
ℓ

183 201 82 155 94 31 42199 77 1

| {z }
ℓ

8 8 8 8 8 8 8 8



Decryption of a PKCS #7 padded message

When a ciphertext c is received:

• Use the block cipher in CBC mode to decrypt c and obtain the padded plaintext m′



Decryption of a PKCS #7 padded message

When a ciphertext c is received:

• Use the block cipher in CBC mode to decrypt c and obtain the padded plaintext m′

• Look at the last byte b of m′

• If b = 0 or b > ℓ, return “bad padding error”



Decryption of a PKCS #7 padded message

When a ciphertext c is received:

• Use the block cipher in CBC mode to decrypt c and obtain the padded plaintext m′

• Look at the last byte b of m′

• If b = 0 or b > ℓ, return “bad padding error”

• If the last b bytes of m′ are not all equal to b, return“bad padding error”

• Strip the last b bytes from m′, to obtain the original plaintext m



Decryption of a PKCS #7 padded message

When a ciphertext c is received:

• Use the block cipher in CBC mode to decrypt c and obtain the padded plaintext m′

• Look at the last byte b of m′

• If b = 0 or b > ℓ, return “bad padding error”

• If the last b bytes of m′ are not all equal to b, return“bad padding error”

• Strip the last b bytes from m′, to obtain the original plaintext m

• Process m (application dependent)



Decryption of a PKCS #7 padded message

When a ciphertext c is received:

• Use the block cipher in CBC mode to decrypt c and obtain the padded plaintext m′

• Look at the last byte b of m′

• If b = 0 or b > ℓ, return “bad padding error”

• If the last b bytes of m′ are not all equal to b, return“bad padding error”

• Strip the last b bytes from m′, to obtain the original plaintext m

• Process m (application dependent)

Example with ℓ = 8:

53 20 146 86 275 16 183 201 82 6 6 6 66 6 6

| {z }
ℓ

| {z }
ℓ



Decryption of a PKCS #7 padded message

When a ciphertext c is received:

• Use the block cipher in CBC mode to decrypt c and obtain the padded plaintext m′

• Look at the last byte b of m′

• If b = 0 or b > ℓ, return “bad padding error”

• If the last b bytes of m′ are not all equal to b, return“bad padding error”

• Strip the last b bytes from m′, to obtain the original plaintext m

• Process m (application dependent)

Example with ℓ = 8:

53 20 146 86 275 16 183 201 82 6



Padding Oracles

• Often the “bad padding error” results in a different behavior of the protocol than a correctly
padded but invalid plaintext



Padding Oracles

• Often the “bad padding error” results in a different behavior of the protocol than a correctly
padded but invalid plaintext

E.g., the “bad padding” error is sent to the client



Padding Oracles

• Often the “bad padding error” results in a different behavior of the protocol than a correctly
padded but invalid plaintext

• This was the case with SSL

E.g., the “bad padding” error is sent to the client



Padding Oracles

• Often the “bad padding error” results in a different behavior of the protocol than a correctly
padded but invalid plaintext

• This was the case with SSL

• Even when there is no explicit difference in the protocol behavior, bad
padding errors can sometimes still be detected

E.g., due to differences in timing

E.g., the “bad padding” error is sent to the client



Padding Oracles

• Often the “bad padding error” results in a different behavior of the protocol than a correctly
padded but invalid plaintext

• This was the case with SSL

• Even when there is no explicit difference in the protocol behavior, bad
padding errors can sometimes still be detected

E.g., due to differences in timing

E.g., the “bad padding” error is sent to the client

We model the ability of the adversary to tell whether the padding of (the
plaintext corresponding to a) ciphertext is valid, with a padding oracle



Exploiting a Padding Oracle

Attack plan:

1) Figure out how long is the padding



Exploiting a Padding Oracle

Attack plan:

1) Figure out how long is the padding

2) Repeat the following until the whole plaintext is recovered:

• Extend the knowledge of the last i bytes of the plaintext (initially i = 0) to the last i+ 1
bytes of the plaintext



Determining the length of the padding

F−1
k

⊕

Idea: for j = ℓ− 1, ℓ− 2, . . . , 1 determine whether the j-th byte in the last block is part of the padding



Determining the length of the padding

F−1
k

⊕

Idea: for j = ℓ− 1, ℓ− 2, . . . , 1 determine whether the j-th byte in the last block is part of the padding

• Change the j-th byte in the one-to-last block of the ciphertext

• This alters the j-th byte in the last block of the plaintext



Determining the length of the padding

F−1
k

⊕

Idea: for j = ℓ− 1, ℓ− 2, . . . , 1 determine whether the j-th byte in the last block is part of the padding

• Change the j-th byte in the one-to-last block of the ciphertext

• If “bad padding error” is returned, then the j-th byte is checked, and hence it is part of the padding

• This alters the j-th byte in the last block of the plaintext

Bad
padding!



Determining the length of the padding

F−1
k

⊕

Idea: for j = ℓ− 1, ℓ− 2, . . . , 1 determine whether the j-th byte in the last block is part of the padding

• Change the j-th byte in the one-to-last block of the ciphertext

• If “bad padding error” is returned, then the j-th byte is checked, and hence it is part of the padding

• This alters the j-th byte in the last block of the plaintext



Determining the length of the padding

F−1
k

⊕

Idea: for j = ℓ− 1, ℓ− 2, . . . , 1 determine whether the j-th byte in the last block is part of the padding

• Change the j-th byte in the one-to-last block of the ciphertext

• If “bad padding error” is returned, then the j-th byte is checked, and hence it is part of the padding

• This alters the j-th byte in the last block of the plaintext



Determining the length of the padding

F−1
k

⊕

Idea: for j = ℓ− 1, ℓ− 2, . . . , 1 determine whether the j-th byte in the last block is part of the padding

• Change the j-th byte in the one-to-last block of the ciphertext

• If “bad padding error” is returned, then the j-th byte is checked, and hence it is part of the padding

• This alters the j-th byte in the last block of the plaintext

Bad
padding!



Determining the length of the padding

F−1
k

⊕

Idea: for j = ℓ− 1, ℓ− 2, . . . , 1 determine whether the j-th byte in the last block is part of the padding

• Change the j-th byte in the one-to-last block of the ciphertext

• If “bad padding error” is returned, then the j-th byte is checked, and hence it is part of the padding

• This alters the j-th byte in the last block of the plaintext



Determining the length of the padding

F−1
k

⊕

Idea: for j = ℓ− 1, ℓ− 2, . . . , 1 determine whether the j-th byte in the last block is part of the padding

• Change the j-th byte in the one-to-last block of the ciphertext

• If “bad padding error” is returned, then the j-th byte is checked, and hence it is part of the padding

• This alters the j-th byte in the last block of the plaintext



Determining the length of the padding

F−1
k

⊕

Idea: for j = ℓ− 1, ℓ− 2, . . . , 1 determine whether the j-th byte in the last block is part of the padding

• Change the j-th byte in the one-to-last block of the ciphertext

• If “bad padding error” is returned, then the j-th byte is checked, and hence it is part of the padding

• This alters the j-th byte in the last block of the plaintext

• Otherwise the j-th byte of the last block is the last byte of the message. Break the loop.

Padding
okay



Determining the length of the padding

F−1
k

⊕

Idea: for j = ℓ− 1, ℓ− 2, . . . , 1 determine whether the j-th byte in the last block is part of the padding

• Change the j-th byte in the one-to-last block of the ciphertext

• If “bad padding error” is returned, then the j-th byte is checked, and hence it is part of the padding

• This alters the j-th byte in the last block of the plaintext

• Otherwise the j-th byte of the last block is the last byte of the message. Break the loop.

3 3 3



Determining the length of the padding

F−1
k

⊕

Idea: for j = ℓ− 1, ℓ− 2, . . . , 1 determine whether the j-th byte in the last block is part of the padding

• Change the j-th byte in the one-to-last block of the ciphertext

• If “bad padding error” is returned, then the j-th byte is checked, and hence it is part of the padding

• This alters the j-th byte in the last block of the plaintext

• Otherwise the j-th byte of the last block is the last byte of the message. Break the loop.

3 3 3
If the 1st byte of the last block is
checked, then the whole last block
consists of padding



Recovering the last byte of the plaintext

F−1
k

⊕

b b b

We now know that the last b bytes of the plaintext all have value b. We want to recover the last byte x
of the (unpadded) message

x



Recovering the last byte of the plaintext

F−1
k

⊕

b b b

We now know that the last b bytes of the plaintext all have value b. We want to recover the last byte x
of the (unpadded) message

x

Suppose, for simplicity, that the last
block does not consist entirely of padding



Recovering the last byte of the plaintext

F−1
k

⊕

b

• XOR the last b bytes of the one-to-last block of the ciphertext with ∆ = b⊕ (b+ 1)

b b

⊕∆⊕∆⊕∆

We now know that the last b bytes of the plaintext all have value b. We want to recover the last byte x
of the (unpadded) message

x



Recovering the last byte of the plaintext

F−1
k

⊕

• XOR the last b bytes of the one-to-last block of the ciphertext with ∆ = b⊕ (b+ 1)

• This changes the last b blocks of the plaintext to from b to b⊕ b⊕ (b+ 1) = b+ 1

⊕∆⊕∆⊕∆

b+1 b+1 b+1

We now know that the last b bytes of the plaintext all have value b. We want to recover the last byte x
of the (unpadded) message

x



Recovering the last byte of the plaintext

F−1
k

⊕

⊕∆⊕∆⊕∆

b+1 b+1 b+1

For all possible values i ∈ {0, . . . , 255}
• XOR the (b+ 1)-to-last byte of the one-to-last block of the ciphertext with i

⊕ 0

x



Recovering the last byte of the plaintext

F−1
k

⊕

⊕∆⊕∆⊕∆

b+1 b+1 b+1

For all possible values i ∈ {0, . . . , 255}
• XOR the (b+ 1)-to-last byte of the one-to-last block of the ciphertext with i

⊕ 0

• This changes x to x⊕ i

x⊕0



Recovering the last byte of the plaintext

F−1
k

⊕

⊕∆⊕∆⊕∆

b+1 b+1 b+1

For all possible values i ∈ {0, . . . , 255}
• XOR the (b+ 1)-to-last byte of the one-to-last block of the ciphertext with i

⊕ 0

• This changes x to x⊕ i

• If the new ciphertext results in a “bad padding error” then x⊕ i ̸= b+ 1 and we continue with the
next value of i

Bad
padding!

x⊕0



Recovering the last byte of the plaintext

F−1
k

⊕

⊕∆⊕∆⊕∆

b+1 b+1 b+1

For all possible values i ∈ {0, . . . , 255}
• XOR the (b+ 1)-to-last byte of the one-to-last block of the ciphertext with i

• This changes x to x⊕ i

• If the new ciphertext results in a “bad padding error” then x⊕ i ̸= b+ 1 and we continue with the
next value of i

x⊕1

⊕ 1



Recovering the last byte of the plaintext

F−1
k

⊕

⊕∆⊕∆⊕∆

b+1 b+1 b+1

For all possible values i ∈ {0, . . . , 255}
• XOR the (b+ 1)-to-last byte of the one-to-last block of the ciphertext with i

• This changes x to x⊕ i

• If the new ciphertext results in a “bad padding error” then x⊕ i ̸= b+ 1 and we continue with the
next value of i

Bad
padding!

x⊕1

⊕ 1



Recovering the last byte of the plaintext

F−1
k

⊕

⊕∆⊕∆⊕∆

b+1 b+1 b+1

For all possible values i ∈ {0, . . . , 255}
• XOR the (b+ 1)-to-last byte of the one-to-last block of the ciphertext with i

• This changes x to x⊕ i

• If the new ciphertext results in a “bad padding error” then x⊕ i ̸= b+ 1 and we continue with the
next value of i

x⊕2

⊕ 2



Recovering the last byte of the plaintext

F−1
k

⊕

⊕∆⊕∆⊕∆

b+1 b+1 b+1

For all possible values i ∈ {0, . . . , 255}
• XOR the (b+ 1)-to-last byte of the one-to-last block of the ciphertext with i

• If the new ciphertext causes no error, then x⊕ i = b+ 1

• This changes x to x⊕ i

• If the new ciphertext results in a “bad padding error” then x⊕ i ̸= b+ 1 and we continue with the
next value of i

x⊕2

⊕ 2
Padding
okay



Recovering the last byte of the plaintext

F−1
k

⊕

⊕∆⊕∆⊕∆

b+1 b+1 b+1

For all possible values i ∈ {0, . . . , 255}
• XOR the (b+ 1)-to-last byte of the one-to-last block of the ciphertext with i

• If the new ciphertext causes no error, then x⊕ i = b+ 1 =⇒ x = (b+ 1)⊕ i

• This changes x to x⊕ i

• If the new ciphertext results in a “bad padding error” then x⊕ i ̸= b+ 1 and we continue with the
next value of i

x⊕2

⊕ 2
Padding
okay



Recovering the last byte of the plaintext

F−1
k

⊕

⊕∆⊕∆⊕∆

b+1 b+1 b+1

For all possible values i ∈ {0, . . . , 255}
• XOR the (b+ 1)-to-last byte of the one-to-last block of the ciphertext with i

• If the new ciphertext causes no error, then x⊕ i = b+ 1 =⇒ x = (b+ 1)⊕ i

• This changes x to x⊕ i

• If the new ciphertext results in a “bad padding error” then x⊕ i ̸= b+ 1 and we continue with the
next value of i

x⊕2

⊕ 2
Padding
okay

We recovered
x = (b+1)⊕ 2



Recovering the last byte of the plaintext

F−1
k

⊕

⊕∆⊕∆⊕∆

b+1 b+1 b+1

For all possible values i ∈ {0, . . . , 255}
• XOR the (b+ 1)-to-last byte of the one-to-last block of the ciphertext with i

• If the new ciphertext causes no error, then x⊕ i = b+ 1 =⇒ x = (b+ 1)⊕ i

• This changes x to x⊕ i

• If the new ciphertext results in a “bad padding error” then x⊕ i ̸= b+ 1 and we continue with the
next value of i

⊕ 2
Padding
okay

b+1

We recovered
x = (b+1)⊕ 2

And we now have a (modified)
ciphertext with b+ 1 bytes of padding...



Recovering the last byte of the plaintext

F−1
k

⊕

⊕∆⊕∆⊕∆

b+1 b+1 b+1

For all possible values i ∈ {0, . . . , 255}
• XOR the (b+ 1)-to-last byte of the one-to-last block of the ciphertext with i

• If the new ciphertext causes no error, then x⊕ i = b+ 1 =⇒ x = (b+ 1)⊕ i

• This changes x to x⊕ i

• If the new ciphertext results in a “bad padding error” then x⊕ i ̸= b+ 1 and we continue with the
next value of i

⊕ 2
Padding
okay

b+1

We recovered
x = (b+1)⊕ 2

And we now have a (modified)
ciphertext with b+ 1 bytes of padding...

Repeat to recover the previous byte(s). . .



Recovering the previous block

What do we do if/when the last block of the ciphertext consists entirely of padding?

• This can happen on the original ciphertext, or on one of the modified ciphertext after the last
block of plaintext has been recovered

F−1
k

⊕

F−1
k

⊕

ℓℓℓℓℓℓℓℓ



Recovering the previous block

What do we do if/when the last block of the ciphertext consists entirely of padding?

• This can happen on the original ciphertext, or on one of the modified ciphertext after the last
block of plaintext has been recovered

• We just need to recover the last byte x of the one-to-last block of the plaintext, and then the
previous strategy applies

F−1
k

⊕

F−1
k

⊕

ℓx ℓℓℓℓℓℓℓ



Recovering the previous block

What do we do if/when the last block of the ciphertext consists entirely of padding?

• This can happen on the original ciphertext, or on one of the modified ciphertext after the last
block of plaintext has been recovered

• We just need to recover the last byte x of the one-to-last block of the plaintext, and then the
previous strategy applies

F−1
k

⊕

F−1
k

⊕

ℓx ℓℓℓℓℓℓℓ

Permanently drop the last block of the ciphertext



Recovering the previous block

F−1
k

⊕

Try to transform x into a 1 (which is a valid 1-byte padding of the remaining ciphertext)

• For every i ∈ {0, . . . , 255}, XOR x with i (by XOR-ing the previous block of the ciphertext)

⊕ i

x⊕i



Recovering the previous block

F−1
k

⊕

Try to transform x into a 1 (which is a valid 1-byte padding of the remaining ciphertext)

• For every i ∈ {0, . . . , 255}, XOR x with i (by XOR-ing the previous block of the ciphertext)

• For which values of i do we obtain a valid padding?

⊕ i

x⊕i



Recovering the previous block

F−1
k

⊕

Try to transform x into a 1 (which is a valid 1-byte padding of the remaining ciphertext)

• For every i ∈ {0, . . . , 255}, XOR x with i (by XOR-ing the previous block of the ciphertext)

• For which values of i do we obtain a valid padding?

⊕ i

x⊕i

When x⊕ i = 1. . .



Recovering the previous block

F−1
k

⊕

y

Try to transform x into a 1 (which is a valid 1-byte padding of the remaining ciphertext)

• For every i ∈ {0, . . . , 255}, XOR x with i (by XOR-ing the previous block of the ciphertext)

• For which values of i do we obtain a valid padding?

⊕ i

x⊕i

When x⊕ i = 1. . . and (possibly) when x⊕ i = y ≥ 2 and the last y bytes of the plaintext are y

yy

| {z }
y bytes



Recovering the previous block

F−1
k

⊕

y

Try to transform x into a 1 (which is a valid 1-byte padding of the remaining ciphertext)

• For every i ∈ {0, . . . , 255}, XOR x with i (by XOR-ing the previous block of the ciphertext)

• For which values of i do we obtain a valid padding?

⊕ i

x⊕i

When x⊕ i = 1. . . and (possibly) when x⊕ i = y ≥ 2 and the last y bytes of the plaintext are y

• At most 2 candidates for i.

Padding
okay

yy

| {z }
y bytes



Recovering the previous block

F−1
k

⊕

y

Try to transform x into a 1 (which is a valid 1-byte padding of the remaining ciphertext)

• For every i ∈ {0, . . . , 255}, XOR x with i (by XOR-ing the previous block of the ciphertext)

• For which values of i do we obtain a valid padding?

⊕ i

x⊕i

When x⊕ i = 1. . . and (possibly) when x⊕ i = y ≥ 2 and the last y bytes of the plaintext are y

• At most 2 candidates for i. Find the correct one by altering the previous byte of the plaintext

yy

| {z }
y bytes



Recovering the previous block

F−1
k

⊕

y

Try to transform x into a 1 (which is a valid 1-byte padding of the remaining ciphertext)

• For every i ∈ {0, . . . , 255}, XOR x with i (by XOR-ing the previous block of the ciphertext)

• For which values of i do we obtain a valid padding?

⊕ i

x⊕i

When x⊕ i = 1. . . and (possibly) when x⊕ i = y ≥ 2 and the last y bytes of the plaintext are y

• At most 2 candidates for i. Find the correct one by altering the previous byte of the plaintext

Padding
okay

yy

| {z }
y bytes



Recovering the previous block

F−1
k

⊕

y

Try to transform x into a 1 (which is a valid 1-byte padding of the remaining ciphertext)

• For every i ∈ {0, . . . , 255}, XOR x with i (by XOR-ing the previous block of the ciphertext)

• For which values of i do we obtain a valid padding?

⊕ i

x⊕i

When x⊕ i = 1. . . and (possibly) when x⊕ i = y ≥ 2 and the last y bytes of the plaintext are y

• At most 2 candidates for i. Find the correct one by altering the previous byte of the plaintext

Padding
okay

We must have x⊕ i = 1
=⇒ x = i⊕ 1 yy

| {z }
y bytes



Recovering the previous block

F−1
k

⊕

y

Try to transform x into a 1 (which is a valid 1-byte padding of the remaining ciphertext)

• For every i ∈ {0, . . . , 255}, XOR x with i (by XOR-ing the previous block of the ciphertext)

• For which values of i do we obtain a valid padding?

⊕ i

When x⊕ i = 1. . . and (possibly) when x⊕ i = y ≥ 2 and the last y bytes of the plaintext are y

• At most 2 candidates for i. Find the correct one by altering the previous byte of the plaintext

We must have x⊕ i = 1
=⇒ x = i⊕ 1 1

Use the previous strategy to
recover the rest of the block

yy



Padding Oracle Attack: Complexity?

• At most ℓ attempts to learn the length of the padding

• At most 257 attempts to learn a byte of the ciphertext

• ≤ 256 + 1 attempts to learn the last byte of a block

• ≤ 256 attempts to learn each of the other bytes

(ca
n be

slig
htly

impro
ved

)



Padding Oracle Attack: Complexity?

• At most ℓ attempts to learn the length of the padding

• At most 257 attempts to learn a byte of the ciphertext

• ≤ 256 + 1 attempts to learn the last byte of a block

• ≤ 256 attempts to learn each of the other bytes

At most ℓ+ 257 · |m| decryption attempts

(ca
n be

slig
htly

impro
ved

)

Linear in |m| and ℓ!



CCA Security and Authenticated Encryption

• Chosen-ciphertext attacks are not just a theoretical threat

E.g., padding oracle attacks against SSL, IPSec, Steam...



CCA Security and Authenticated Encryption

• Chosen-ciphertext attacks are not just a theoretical threat

E.g., padding oracle attacks against SSL, IPSec, Steam...

• We need CCA-secure encryption schemes!

• None of the encryption schemes we have seen so far are CCA-secure



CCA Security and Authenticated Encryption

• Chosen-ciphertext attacks are not just a theoretical threat

E.g., padding oracle attacks against SSL, IPSec, Steam...

• We need CCA-secure encryption schemes!

• None of the encryption schemes we have seen so far are CCA-secure

• Fortunately we can build CCA-secure encryption schemes from CPA-secure encryption schemes



CCA Security and Authenticated Encryption

• Chosen-ciphertext attacks are not just a theoretical threat

E.g., padding oracle attacks against SSL, IPSec, Steam...

• We need CCA-secure encryption schemes!

• None of the encryption schemes we have seen so far are CCA-secure

• Fortunately we can build CCA-secure encryption schemes from CPA-secure encryption schemes

• In fact, we are going to achieve an even stronger security guarantee:

Authenticated Encryption



Authenticated Encryption

• We know how to achieve integrity against active adversaries

• We know how to achieve secrecy against passive adversaries



Authenticated Encryption

• We know how to achieve integrity against active adversaries

• We know how to achieve secrecy against passive adversaries CPA Security, Stream/Block ciphers



Authenticated Encryption

• We know how to achieve integrity against active adversaries

• We know how to achieve secrecy against passive adversaries CPA Security, Stream/Block ciphers

MACs



Authenticated Encryption

• We know how to achieve integrity against active adversaries

• We know how to achieve secrecy against passive adversaries CPA Security, Stream/Block ciphers

MACs

What if we want both, against active adversaries?



Authenticated Encryption

• We know how to achieve integrity against active adversaries

• We know how to achieve secrecy against passive adversaries CPA Security, Stream/Block ciphers

MACs

What if we want both, against active adversaries?

• Secrecy requirement: CCA-security

Intuition: The adversary cannot efficiently learn anything about the plaintext even if it can
tamper with the ciphertext
(except for a negligible probability)



Authenticated Encryption

• We know how to achieve integrity against active adversaries

• We know how to achieve secrecy against passive adversaries CPA Security, Stream/Block ciphers

MACs

What if we want both, against active adversaries?

• Secrecy requirement: CCA-security

• Integrity requirement: unforgeability

Intuition: The adversary cannot efficiently provide any valid ciphertext
(unless it corresponds to a message that was already encrypted by the honest parties)

Intuition: The adversary cannot efficiently learn anything about the plaintext even if it can
tamper with the ciphertext
(except for a negligible probability)



The Unforgeability Experiment (adapted for AE)

• A key k is generated using Gen(1n)

Let Π = (Gen,Enc,Dec) be an encryption scheme. We name the following experiment Enc-forgeA,Π(n):

Encryption
and

Decryption
oracles

using key k



The Unforgeability Experiment (adapted for AE)

• The adversary A can interact with an encryption oracle providing access to Enck(·) and with a
decryption oracle providing access to Deck(·)

• A key k is generated using Gen(1n)

Let Π = (Gen,Enc,Dec) be an encryption scheme. We name the following experiment Enc-forgeA,Π(n):

Encryption
and

Decryption
oracles

using key k



The Unforgeability Experiment (adapted for AE)

• The adversary A can interact with an encryption oracle providing access to Enck(·) and with a
decryption oracle providing access to Deck(·)

• A key k is generated using Gen(1n)

• The adversary outputs a ciphertext c

Let Π = (Gen,Enc,Dec) be an encryption scheme. We name the following experiment Enc-forgeA,Π(n):

c

Encryption
and

Decryption
oracles

using key k



The Unforgeability Experiment (adapted for AE)

• The adversary A can interact with an encryption oracle providing access to Enck(·) and with a
decryption oracle providing access to Deck(·)

• A key k is generated using Gen(1n)

• The adversary outputs a ciphertext c

• The outcome of the experiment is 1 if m ̸= ⊥ and the adversary never queried the encryption oracle
with m. Otherwise the outcome is 0.

Let Π = (Gen,Enc,Dec) be an encryption scheme. We name the following experiment Enc-forgeA,Π(n):

c

• Let m ← Deck(c)

Encryption
and

Decryption
oracles

using key k



The Unforgeability Experiment (adapted for AE)

• The adversary A can interact with an encryption oracle providing access to Enck(·) and with a
decryption oracle providing access to Deck(·)

• A key k is generated using Gen(1n)

• The adversary outputs a ciphertext c

• The outcome of the experiment is 1 if m ̸= ⊥ and the adversary never queried the encryption oracle
with m. Otherwise the outcome is 0.

Let Π = (Gen,Enc,Dec) be an encryption scheme. We name the following experiment Enc-forgeA,Π(n):

c

• Let m ← Deck(c)

Encryption
and

Decryption
oracles

using key k

The key is kept secret from A



Definition of Authenticated Encryption

Definition: A private key encryption scheme Π is unforgeable if, for every probabilistic
polynomial-time adversary A, there is a negligible function ε such that:

Pr[Enc-forgeA,Π(n) = 1] ≤ ε(n)



Definition of Authenticated Encryption

Definition: A private key encryption scheme Π is unforgeable if, for every probabilistic
polynomial-time adversary A, there is a negligible function ε such that:

Pr[Enc-forgeA,Π(n) = 1] ≤ ε(n)

Definition: A private-key encryption scheme is an authenticated encryption (AE) scheme
if it is CCA-secure and unforgeable.

There is also an equivalent definition of authenticated encryption based on a single experiment.
See the textbook if interested.



Definition of Authenticated Encryption

Definition: A private key encryption scheme Π is unforgeable if, for every probabilistic
polynomial-time adversary A, there is a negligible function ε such that:

Pr[Enc-forgeA,Π(n) = 1] ≤ ε(n)

Definition: A private-key encryption scheme is an authenticated encryption (AE) scheme
if it is CCA-secure and unforgeable.

Notice that AE =⇒ CCA-security

There is also an equivalent definition of authenticated encryption based on a single experiment.
See the textbook if interested.



Modular Construction of Authenticated Encryption schemes

Can we design an Authenticated Encryption scheme in a modular way?



Modular Construction of Authenticated Encryption schemes

Secure
MAC

CPA-secure
encryption
scheme

Can we design an Authenticated Encryption scheme in a modular way?

• Pick any secure MAC

• Pick any CPA-secure encryption scheme

• Combine them (somehow)



Secure
MAC

CPA-
secure
scheme

Combining MACs and CPA-secure encryption schemes

How do we combine MACs with CPA-secure encryption schemes?

Ideas?



Secure
MAC

CPA-
secure
scheme

Combining MACs and CPA-secure encryption schemes

How do we combine MACs with CPA-secure encryption schemes?

Three natural choices:

Ideas?

• Encrypt and Authenticate



Secure
MAC

CPA-
secure
scheme

Combining MACs and CPA-secure encryption schemes

How do we combine MACs with CPA-secure encryption schemes?

Three natural choices:

Ideas?

• Encrypt and Authenticate

• Authenticate then Encrypt



Secure
MAC

CPA-
secure
scheme

Combining MACs and CPA-secure encryption schemes

How do we combine MACs with CPA-secure encryption schemes?

Three natural choices:

Ideas?

• Encrypt and Authenticate

• Authenticate then Encrypt

• Encrypt then Authenticate



Secure
MAC

CPA-
secure
scheme

Combining MACs and CPA-secure encryption schemes

How do we combine MACs with CPA-secure encryption schemes?

Three natural choices:

Ideas?

• Encrypt and Authenticate

• Authenticate then Encrypt

• Encrypt then Authenticate

How good are these choices?



Secure
MAC

CPA-
secure
scheme

Combining MACs and CPA-secure encryption schemes

How do we combine MACs with CPA-secure encryption schemes?

Three natural choices:

Ideas?

• Encrypt and Authenticate

• Authenticate then Encrypt

• Encrypt then Authenticate

How good are these choices?

Very bad!



Secure
MAC

CPA-
secure
scheme

Combining MACs and CPA-secure encryption schemes

How do we combine MACs with CPA-secure encryption schemes?

Three natural choices:

Ideas?

• Encrypt and Authenticate

• Authenticate then Encrypt

• Encrypt then Authenticate

How good are these choices?

Very bad!

Still bad



Secure
MAC

CPA-
secure
scheme

Combining MACs and CPA-secure encryption schemes

How do we combine MACs with CPA-secure encryption schemes?

Three natural choices:

Ideas?

• Encrypt and Authenticate

• Authenticate then Encrypt

• Encrypt then Authenticate

How good are these choices?

Very bad!

Still bad

Good!



Encrypt and Authenticate

k1, k2
k1, k2

Pick two independent keys k1 and k2 for encryption and MAC, respectively



Encrypt and Authenticate

• c ← Enck1
(m)

• t ← Mack2
(m)

• Return the ciphertext ⟨c, t⟩

Encrypting m:

k1, k2
k1, k2⟨c, t⟩

Pick two independent keys k1 and k2 for encryption and MAC, respectively



Encrypt and Authenticate

• c ← Enck1
(m)

• t ← Mack2
(m)

• Return the ciphertext ⟨c, t⟩

Encrypting m:

Decrypting ⟨c, t⟩:
• m ← Deck1

(c)

• If Vrfyk2
(m, t) = 1:

• Return m

• Otherwise return ⊥

k1, k2
k1, k2⟨c, t⟩

Pick two independent keys k1 and k2 for encryption and MAC, respectively



Encrypt and Authenticate

• c ← Enck1
(m)

• t ← Mack2
(m)

• Return the ciphertext ⟨c, t⟩

Encrypting m:

Decrypting ⟨c, t⟩:
• m ← Deck1

(c)

• If Vrfyk2
(m, t) = 1:

• Return m

• Otherwise return ⊥

k1, k2
k1, k2⟨c, t⟩

Problems?

Pick two independent keys k1 and k2 for encryption and MAC, respectively



Encrypt and Authenticate

• c ← Enck1
(m)

• t ← Mack2
(m)

• Return the ciphertext ⟨c, t⟩

Encrypting m:

Decrypting ⟨c, t⟩:
• m ← Deck1

(c)

• If Vrfyk2
(m, t) = 1:

• Return m

• Otherwise return ⊥

k1, k2
k1, k2⟨c, t⟩

Problems?

• The tag t is not required to hide any information about m

• Consider the tag obtained by concatenating the first bit of the message with Mack2
(m)

Pick two independent keys k1 and k2 for encryption and MAC, respectively



Encrypt and Authenticate

• c ← Enck1
(m)

• t ← Mack2
(m)

• Return the ciphertext ⟨c, t⟩

Encrypting m:

Decrypting ⟨c, t⟩:
• m ← Deck1

(c)

• If Vrfyk2
(m, t) = 1:

• Return m

• Otherwise return ⊥

k1, k2
k1, k2⟨c, t⟩

Problems?

• The tag t is not required to hide any information about m

• Consider the tag obtained by concatenating the first bit of the message with Mack2
(m)

• If the Mac function is deterministic, this scheme leaks whether the same message is encrypted twice

Pick two independent keys k1 and k2 for encryption and MAC, respectively



Encrypt and Authenticate

• c ← Enck1
(m)

• t ← Mack2
(m)

• Return the ciphertext ⟨c, t⟩

Encrypting m:

Decrypting ⟨c, t⟩:
• m ← Deck1

(c)

• If Vrfyk2
(m, t) = 1:

• Return m

• Otherwise return ⊥

k1, k2
k1, k2⟨c, t⟩

Problems?

• The tag t is not required to hide any information about m

• Consider the tag obtained by concatenating the first bit of the message with Mack2
(m)

• If the Mac function is deterministic, this scheme leaks whether the same message is encrypted twice

This scheme is not even CPA-secure!

Pick two independent keys k1 and k2 for encryption and MAC, respectively



Authenticate then Encrypt

• c ← Enck1
(m ∥ t)

• t ← Mack2
(m)

• Return the ciphertext c

Encrypting m:

k1, k2
k1, k2c



Authenticate then Encrypt

• c ← Enck1
(m ∥ t)

• t ← Mack2
(m)

• Return the ciphertext c

Encrypting m:
Decrypting c:

• m ∥ t ← Deck1
(c)

• If Vrfyk2
(m, t) = 1:

• Return m

• Otherwise return ⊥

k1, k2
k1, k2c



Authenticate then Encrypt

• c ← Enck1
(m ∥ t)

• t ← Mack2
(m)

• Return the ciphertext c

Encrypting m:
Decrypting c:

• m ∥ t ← Deck1
(c)

• If Vrfyk2
(m, t) = 1:

• Return m

• Otherwise return ⊥

k1, k2
k1, k2c

Problems?



Authenticate then Encrypt

• c ← Enck1
(m ∥ t)

• t ← Mack2
(m)

• Return the ciphertext c

Encrypting m:
Decrypting c:

• m ∥ t ← Deck1
(c)

• If Vrfyk2
(m, t) = 1:

• Return m

• Otherwise return ⊥

k1, k2
k1, k2c

Problems?

• If encryption requires padding and the padding is wrong, an error can be raised by Deck1
(c)



Authenticate then Encrypt

• c ← Enck1
(m ∥ t)

• t ← Mack2
(m)

• Return the ciphertext c

Encrypting m:
Decrypting c:

• m ∥ t ← Deck1
(c)

• If Vrfyk2
(m, t) = 1:

• Return m

• Otherwise return ⊥

k1, k2
k1, k2c

Problems?

• If encryption requires padding and the padding is wrong, an error can be raised by Deck1
(c)

• If the encryption scheme is malleable and the padding error is leaked to the user, the
adversary has a padding oracle



Authenticate then Encrypt

• c ← Enck1
(m ∥ t)

• t ← Mack2
(m)

• Return the ciphertext c

Encrypting m:
Decrypting c:

• m ∥ t ← Deck1
(c)

• If Vrfyk2
(m, t) = 1:

• Return m

• Otherwise return ⊥

k1, k2
k1, k2c

Problems?

• There are other counterexamples that do not rely on padding errors

• If encryption requires padding and the padding is wrong, an error can be raised by Deck1
(c)

• If the encryption scheme is malleable and the padding error is leaked to the user, the
adversary has a padding oracle



Encrypt then Authenticate

• c ← Enck1
(m)

• t ← Mack2
(c)

• Return the ciphertext ⟨c, t⟩

Encrypting m:

k1, k2
k1, k2⟨c, t⟩



Encrypt then Authenticate

• c ← Enck1
(m)

• t ← Mack2
(c)

• Return the ciphertext ⟨c, t⟩

Encrypting m:
Decrypting ⟨c, t⟩:
• If Vrfyk2

(c, t) = 1:

• Return m

• Otherwise return ⊥

k1, k2
k1, k2⟨c, t⟩

• m ← Deck1
(c)



Encrypt then Authenticate

• c ← Enck1
(m)

• t ← Mack2
(c)

• Return the ciphertext ⟨c, t⟩

Encrypting m:
Decrypting ⟨c, t⟩:
• If Vrfyk2

(c, t) = 1:

• Return m

• Otherwise return ⊥

k1, k2
k1, k2⟨c, t⟩

• m ← Deck1
(c)

Keys (w. security parameter n):

• k1 ← GenE(1
n)

• k2 ← GenM (1n)

• Return k1 ∥ k2



Encrypt then Authenticate

• c ← Enck1
(m)

• t ← Mack2
(c)

• Return the ciphertext ⟨c, t⟩

Encrypting m:
Decrypting ⟨c, t⟩:
• If Vrfyk2

(c, t) = 1:

• Return m

• Otherwise return ⊥

k1, k2
k1, k2⟨c, t⟩

• m ← Deck1
(c)

Theorem: If (GenE ,Enc,Dec) is a CPA-secure private-key encryption scheme, and
(GenM ,Mac,Vrfy) is a strongly secure message authentication code, then the above
construction is an authenticated encryption scheme.

Keys (w. security parameter n):

• k1 ← GenE(1
n)

• k2 ← GenM (1n)

• Return k1 ∥ k2



Secure Sessions
Alice and Bob wish to communicate securely (over an insecure channel) over the course of a
communication session (a period of time over which they maintain state) exchanging multiple messages



Secure Sessions
Alice and Bob wish to communicate securely (over an insecure channel) over the course of a
communication session (a period of time over which they maintain state) exchanging multiple messages

Easy! Just use Authenticated Encryption



Secure Sessions
Alice and Bob wish to communicate securely (over an insecure channel) over the course of a
communication session (a period of time over which they maintain state) exchanging multiple messages

Easy! Just use Authenticated Encryption Not so fast...



Secure Sessions
Alice and Bob wish to communicate securely (over an insecure channel) over the course of a
communication session (a period of time over which they maintain state) exchanging multiple messages

Easy! Just use Authenticated Encryption Not so fast...

Message dropping:

c



Secure Sessions
Alice and Bob wish to communicate securely (over an insecure channel) over the course of a
communication session (a period of time over which they maintain state) exchanging multiple messages

Easy! Just use Authenticated Encryption Not so fast...

Replay attack (we have already encountered this attack):

c

c
c
c
c



Secure Sessions
Alice and Bob wish to communicate securely (over an insecure channel) over the course of a
communication session (a period of time over which they maintain state) exchanging multiple messages

Easy! Just use Authenticated Encryption Not so fast...

Re-ordering attack (the adversary reorders messages, not blocks):

c′

c

c

c′



Secure Sessions
Alice and Bob wish to communicate securely (over an insecure channel) over the course of a
communication session (a period of time over which they maintain state) exchanging multiple messages

Easy! Just use Authenticated Encryption Not so fast...

Reflection attack

c



Secure Sessions

Message dropping, Replay attacks and Re-ordering attacks:

How do we defend from these attacks?

• Send a counter along with each message

• The recipient checks that the received counters are consecutive numbers

• Message dropping cannot be prevented, but we can at least detect it if a subsequent message
reaches the recipient



Secure Sessions

Message dropping, Replay attacks and Re-ordering attacks:

How do we defend from these attacks?

• Send a counter along with each message

• The recipient checks that the received counters are consecutive numbers

Reflection attack

• Add a directionality bit d to each message

• E.g., d = 0 if the message is sent from Alice to Bob and d = 1 if the message is sent from Bob to
Alice

• Need to agree on direction. E.g., in a client/server connection we might assign d = 0 to the client
and d = 1 to the server

• Message dropping cannot be prevented, but we can at least detect it if a subsequent message
reaches the recipient



Secure Sessions

Enck(0 ∥ 1 ∥m1)

Enck(1 ∥ 1 ∥m3)

Enck(0 ∥ 2 ∥m2)

Enck(0 ∥ 3 ∥m4)

Enck(1 ∥ 2 ∥m5)


