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A little (Computational) Number Theory and Group Theory

Public key cryptographic constructions require some notions of number theory and group theory

Number theory and group theory are huge fields

We will only see what’s needed for the following lectures

Differently from the pure mathematics approach, we will also be interested in how quickly we can
solve various problems

In particular, we are interested in whether the problems at hand can be solved in polynomial time
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Representing Integers

In the the word-RAM model we assume that each integer is stored in a single memory word

This is not a good model for problems that deal with large numbers

Instead we use the logarithmic cost model

• Storing an integer n requires ≈ log n bits

How do we store big (non-negative) integers in practice?

• Arrays of digits

• E.g., each entry in the array is a byte and stores a digit in base 256

74 20681 92

Encodes: 74·2568+241·2567+176·2566+81·2565+206·2564+92·2563+108·2562+31·256+42

176241 108 31 42

= 1382 474 571 160 304 230 186 Requires 71 bits to represent (does not fit in a 64-bit word)

• An elementary operation involving integers with b bits requires time Θ(b)
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Recall the difference between polynomial-time and pseudopolynomial-time algorithms

Representing Integers

An algorithm that takes an integer n and runs in time Θ(n) is not a polynomial-time algorithm

Running times are measured as a function of the input length

• The running time is polynomial w.r.t. the value of the integer n

• It is not polynomial in the length of the input, i.e., the number of bits needed to represent n

• As a function of the input length η, the time complexity is Θ(2η)

• This is an exponential-time algorithm!
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The grade-school algorithms for addition and multiplication (over big integers) run in polynomial-time

Representing Integers

What about exponentiation?

• Given m and n, compute mn

Fix m = 2. Given n, compute 2n.

• What’s the size of the input? Θ(log n)

• What’s the size of the output? Θ(n)

• We cannot even write out the result in polynomial-time

• Adding n and m requires time O(logn+ logm)

• Multiplying n and m requires time O((log n) · (logm)) (can be improved)
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Reminder: Modular arithmetic

Proposition: Let a be an integer and let N be a positive integer. There exist unique integers q, r for
which a = qN + r and 0 ≤ r < N .

• a mod N = r by definition

• a = b (mod N) is a shorthand for (a mod N) = (b mod N)

• (a+ b) mod N = ((a mod N) + (b mod N)) mod N

• (a · b) mod N = ((a mod N) · (b mod N)) mod N

We can reduce intermediate values during computation of additions and products:

Example:

(7236782 · 23392301) mod 100= (82 · 1) mod 100 = 82
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What about modular exponentiation?

Given an integer N > 0 and a, b ∈ {0, . . . , N − 1} compute ab mod N .

• We cannot simply compute ab and then perform modular reduction.

Divide and conquer:

• If b = 0 return 1
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Reminder: Modular arithmetic

There are polynomial-time algorithms for:

• Modular reduction (given a and N , compute a mod N)

• Modular addition

• Modular multiplication

What about modular exponentiation?

Given an integer N > 0 and a, b ∈ {0, . . . , N − 1} compute ab mod N .

• We cannot simply compute ab and then perform modular reduction.

Divide and conquer:

• If b = 0 return 1

• If b is even: recursively compute x = ab/2 mod N and return (x · x) mod N

• If b is odd: recursively compute x = a(b−1)/2 mod N and return (x · x · a) mod N

Recusion depth: O(log b)
The non-recursive part of each call involves a constant
number of polynomial-time operations
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A non-negative integer b is invertible modulo N ≥ 1 if there exists an integer a such that ab = ba = 1
(mod N)

• We denote the unique inverse of an invertible element b with b−1 (mod N)

Reminder: Modular arithmetic

• This is not necessarily true if b is not invertible: 1 · 2 = 3 · 2 (mod 4) but 1 ̸= 3 (mod 4)

Theorem: b is invertible modulo N if and only if b and N are coprime

Two integers a, b are coprime if gcd(a, b) = 1

If b is invertible and xb = yb (mod N) then x = y (mod N)

x = xba = yba = y (mod N)Proof: Let a be an inverse of b. □

• If b is invertible, then it has a unique inverse a ∈ {0, . . . , N − 1}.

Proof: Let a and a′ be inverses of b. ab = 1 = a′b (mod N) =⇒ a = a′ (mod N) □
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Bézout’s identity

If b is invertible modulo N how do we (efficiently) find b−1?
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Bézout’s identity: Let a, b be positive integers. Then there exist integers X,Y such that
Xa+ Y b = gcd(a, b). Furthermore, gcd(a, b) is the smallest positive integer that can be expressed in
this way.

The extended Euclidean algorithm is able to compute gcd(a, b) and the integers X and Y in
polynomial time.

Bézout’s identity

If b is invertible modulo N how do we (efficiently) find b−1?

• Let X and Y be such that XN + Y b = gcd(N, b) = 1

• Since XN + Y b = 1 we have 0 + Y b = 1 (mod N) =⇒ Y is an inverse for b.
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A group is a pair (G, ◦), where G is a set, ◦ : G×G→ G is a binary operation, and the following
conditions are satisfied:

• Existence of an identity: There is an element e ∈ G such that e ◦ g = g ◦ e = g for all g ∈ G.

• Associativity: For all a, b, c ∈ G, it holds that (a ◦ b) ◦ c = a ◦ (b ◦ c)

• Existence of inverses: For all g ∈ G, there is some h ∈ G such that g ◦ h = h ◦ g = e

• Exactly one element e satisfies the first condition. This element is called the identity element.

Proof: Let e, f ∈ G be identity elements. We must have e = f . Indeed: e = e ◦ f = f . □

• Each element has a unique inverse.

The order of a group is the cardinality |G| of G. If G is a finite set, then the group is finite.

If the operation ◦ is commutative (i.e., a ◦ b = b ◦ a for all a, b ∈ G) then the group is Abelian.

Some consequences:

Proof: If g has inverses h and h′ then: h = h ◦ e = h ◦ (g ◦ h′) = (h ◦ g) ◦ h′ = e ◦ h′ = h′.
□
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In general not a group (no inverses).
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In the following we will only consider finite Abelian groups!
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Group Theory: Additive and Multiplicative Notations

Depending on the context, it might be convenient to write the group operation as + or as ·
Keep in mind that it is still not a regular addition or multiplication, but the group operation instead!

Additive notation Multiplicative notation

Group operation applied to a, b ∈ G: a+ b a · b or just ab

Identity element e: 0 1

Inverse of an element g ∈ G −g g−1

a− b is a shorthand for a+ (−b)

Group exponentiation:

for m ∈ N and g ∈ G: g ◦ g ◦ · · · ◦ g
︸ ︷︷ ︸

m times

mg or m · g gm

g−1 ◦ g−1 ◦ · · · ◦ g−1

︸ ︷︷ ︸

m times

(−m)g = m(−g) = −(mg) g−m = (g−1)m = (gm)−1

0g = 0 g0 = 1
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Group Theory: Efficient Group Exponentiation

Divide and conquer:

• If b = 0 return 1

• If b is even: recursively compute x = gb/2 and return x · x

• If b is odd: recursively compute x = g(b−1)/2 and return x · x · g

Given g ∈ G and an integer b, how do we compute gb?

(Essentially) the same approach of modular exponentiation works

If b < 0 then compute h = g−1 and then h|b|. For b ≥ 0:

If the group operation can be computed in polynomial-time, then group exponentiation can be
performed in polynomial-time
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Let ZN = {0, 1, . . . , N − 1}. The set ZN is an Abelian group under addition modulo N .

• Closure: follows from the fact that addition is performed modulo N .

• Existence of the identity: The identity element is 0. Indeed g + 0 = 0 + g = g (mod N).

• Associativity, Commutativity: Trivial from addition over the integers.

• Existence of inverses: The inverse of g is −g mod N (recall that −g mod N is an integer between
0 and N − 1).
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Let Z∗
N ={0 < x < N | gcd(x,N) = 1}. The set Z∗

N is an Abelian group under multiplication modulo N .

Intuition: We are removing the “problematic” elements (i.e., those without an inverse) from {1, . . . , N},

Consequence: If p is a prime number then {1, 2, . . . , p− 1} is an Abelian group under multiplication
modulo p.

• Closure: Pick a, b ∈ Z∗
N , and let a′, b′ be their inverses. Notice that ab mod N is invertible modulo

N (the inverse is a′b′)

• Existence of the identity: The identity element is 1 ∈ Z∗
N . Indeed g · 1 = 1 · g = g (mod N).

• Associativity, Commutativity: Trivial from multiplication over the integers.

• Existence of inverses: Since g ∈ Z∗
N we have gcd(g,N) = 1 and hence there is some

h ∈ {1, . . . , N − 1} such that gh = 1 (mod N).

The group Z∗N under multiplication modulo N

Since h is invertible modulo N (the inverse is g), then gcd(h,N) = 1 and h ∈ Z∗
N .

Then gcd(ab mod N,N) = 1 hence ab mod N ∈ Z∗
N .



Order of Z∗N
What’s the order of Z∗

N?



Order of Z∗N
What’s the order of Z∗

N?

Euler’s totient function (or Euler’s phi function): ϕ(N) is the number of positive integers a ≤ N
such that a and N are coprime.

ϕ(N) = |{a ∈ {1, . . . , N − 1} : gcd(a,N) = 1}| = |Z∗
N |



Order of Z∗N
What’s the order of Z∗

N?

Euler’s totient function (or Euler’s phi function): ϕ(N) is the number of positive integers a ≤ N
such that a and N are coprime.

ϕ(N) = |{a ∈ {1, . . . , N − 1} : gcd(a,N) = 1}| = |Z∗
N |

What’s the order of Z∗
p when p is prime?



Order of Z∗N
What’s the order of Z∗

N?

Euler’s totient function (or Euler’s phi function): ϕ(N) is the number of positive integers a ≤ N
such that a and N are coprime.

ϕ(N) = |{a ∈ {1, . . . , N − 1} : gcd(a,N) = 1}| = |Z∗
N |

What’s the order of Z∗
p when p is prime?

|Z∗
p| = ϕ(p) = p− 1 All integers a = 1, . . . , p− 1 are such that gcd(a, p) = 1



Order of Z∗N
What’s the order of Z∗

N?

Euler’s totient function (or Euler’s phi function): ϕ(N) is the number of positive integers a ≤ N
such that a and N are coprime.

ϕ(N) = |{a ∈ {1, . . . , N − 1} : gcd(a,N) = 1}| = |Z∗
N |

What’s the order of Z∗
p when p is prime?

|Z∗
p| = ϕ(p) = p− 1 All integers a = 1, . . . , p− 1 are such that gcd(a, p) = 1

What’s the order of Z∗
N when N = pq and p, q are distinct prime numbers?



Order of Z∗N
What’s the order of Z∗

N?

Euler’s totient function (or Euler’s phi function): ϕ(N) is the number of positive integers a ≤ N
such that a and N are coprime.

ϕ(N) = |{a ∈ {1, . . . , N − 1} : gcd(a,N) = 1}| = |Z∗
N |

What’s the order of Z∗
p when p is prime?

|Z∗
p| = ϕ(p) = p− 1 All integers a = 1, . . . , p− 1 are such that gcd(a, p) = 1

What’s the order of Z∗
N when N = pq and p, q are distinct prime numbers?

# multiples of pϕ(pq) = # multiples of q
# multiples of
both p and q

− − +pq − 1



Order of Z∗N
What’s the order of Z∗

N?

Euler’s totient function (or Euler’s phi function): ϕ(N) is the number of positive integers a ≤ N
such that a and N are coprime.

ϕ(N) = |{a ∈ {1, . . . , N − 1} : gcd(a,N) = 1}| = |Z∗
N |

What’s the order of Z∗
p when p is prime?

|Z∗
p| = ϕ(p) = p− 1 All integers a = 1, . . . , p− 1 are such that gcd(a, p) = 1

What’s the order of Z∗
N when N = pq and p, q are distinct prime numbers?

ϕ(pq) = # multiples of q
# multiples of
both p and q

− − +pq − 1 |{p, 2p, . . . , (q − 1)p}|



Order of Z∗N
What’s the order of Z∗

N?

Euler’s totient function (or Euler’s phi function): ϕ(N) is the number of positive integers a ≤ N
such that a and N are coprime.

ϕ(N) = |{a ∈ {1, . . . , N − 1} : gcd(a,N) = 1}| = |Z∗
N |

What’s the order of Z∗
p when p is prime?

|Z∗
p| = ϕ(p) = p− 1 All integers a = 1, . . . , p− 1 are such that gcd(a, p) = 1

What’s the order of Z∗
N when N = pq and p, q are distinct prime numbers?

ϕ(pq) = # multiples of q
# multiples of
both p and q

− − +pq − 1 (q − 1)



Order of Z∗N
What’s the order of Z∗

N?

Euler’s totient function (or Euler’s phi function): ϕ(N) is the number of positive integers a ≤ N
such that a and N are coprime.

ϕ(N) = |{a ∈ {1, . . . , N − 1} : gcd(a,N) = 1}| = |Z∗
N |

What’s the order of Z∗
p when p is prime?

|Z∗
p| = ϕ(p) = p− 1 All integers a = 1, . . . , p− 1 are such that gcd(a, p) = 1

What’s the order of Z∗
N when N = pq and p, q are distinct prime numbers?

ϕ(pq) =
# multiples of
both p and q

− − +pq − 1 (q − 1) (p− 1)



Order of Z∗N
What’s the order of Z∗

N?

Euler’s totient function (or Euler’s phi function): ϕ(N) is the number of positive integers a ≤ N
such that a and N are coprime.

ϕ(N) = |{a ∈ {1, . . . , N − 1} : gcd(a,N) = 1}| = |Z∗
N |

What’s the order of Z∗
p when p is prime?

|Z∗
p| = ϕ(p) = p− 1 All integers a = 1, . . . , p− 1 are such that gcd(a, p) = 1

What’s the order of Z∗
N when N = pq and p, q are distinct prime numbers?

ϕ(pq) = − − +pq − 1 (q − 1) 0(p− 1)



Order of Z∗N
What’s the order of Z∗

N?

Euler’s totient function (or Euler’s phi function): ϕ(N) is the number of positive integers a ≤ N
such that a and N are coprime.

ϕ(N) = |{a ∈ {1, . . . , N − 1} : gcd(a,N) = 1}| = |Z∗
N |

What’s the order of Z∗
p when p is prime?

|Z∗
p| = ϕ(p) = p− 1 All integers a = 1, . . . , p− 1 are such that gcd(a, p) = 1

What’s the order of Z∗
N when N = pq and p, q are distinct prime numbers?

ϕ(pq) = − − +pq − 1 (q − 1) 0(p− 1)

= pq − q − p+ 1 = p(q − 1)− (q − 1) = (p− 1)(q − 1)



Order of Z∗N
What’s the order of Z∗

N?

Euler’s totient function (or Euler’s phi function): ϕ(N) is the number of positive integers a ≤ N
such that a and N are coprime.

ϕ(N) = |{a ∈ {1, . . . , N − 1} : gcd(a,N) = 1}| = |Z∗
N |

What’s the order of Z∗
p when p is prime?

|Z∗
p| = ϕ(p) = p− 1 All integers a = 1, . . . , p− 1 are such that gcd(a, p) = 1

What’s the order of Z∗
N when N = pq and p, q are distinct prime numbers?

ϕ(pq) = − − +pq − 1 (q − 1) 0(p− 1)

= pq − q − p+ 1 = p(q − 1)− (q − 1) = (p− 1)(q − 1) = ϕ(p)ϕ(q)
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Fermat’s little theorem

Theorem: Let G be a finite group of order m and let g ∈ G. Then gm = 1.

Proof in the Abelian case:

Let G = {g1, g2, . . . , gm}.

Since ggi = ggj =⇒ g−1ggi = g−1ggj =⇒ gi = gj we have gi ̸= gj =⇒ ggi ̸= ggj

Then:

g1g2 . . . gm = (gg1)(gg2) . . . (ggm)

(Each side of the equation contains only distinct elements, since the order of G in m, all elements are multiplied)

= gm(g1g2 . . . gm)

Multiplying both sides by (g1g2 . . . gm)−1

(g1g2 . . . gm)−1(g1g2 . . . gm) = gm(g1g2 . . . gm)(g1g2 . . . gm)−11 = = gm

□
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Theorem: Let G be a finite group of order m and let g ∈ G. Then gm = 1.

In ZN (under addition modulo N):

• For all a ∈ ZN , we have N · a = 0. a+ a+ · · ·+ a
︸ ︷︷ ︸

N times

= Na = 0 (mod N).

In Z∗
N (under multiplication modulo N):

• For all a ∈ Z∗
N , we have aϕ(N) = 1

• For all a ∈ Z∗
p where p is prime, we have ap−1 = 1
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Theorem: Let G be a finite group of order m and let g ∈ G. Then gm = 1.

Corollary: Let G be a finite group of order m > 1 and let g ∈ G. For any integer x, gx = gx mod m.

Proof: Write x as qm+ r with r ∈ {0, . . . ,m− 1}. gx = gqm+r = (gm)q · gr = 1q · gr = gr.
□

Corollary: Let G be a finite group of order m > 1. Let e > 0 be an integer, and define the function
f : G→ G as fe(g) = ge. If gcd(e,m) = 1 then

• 1) fe is a permutation;

• 2) f−1
e (g) = fd(g) = gd, where d is the inverse of e modulo m.

Proof: We just need to show 2) since this implies that fe injective and surjective, i.e., a bijection.

fd(fe(g)) = (ge)d = ged = ged mod m = g1 mod m = g. □
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We will be interested in working with prime numbers

How do we efficiently generate a random prime number with n bits?

The security parameter n will be related to the number of bits of the prime numbers

A n-bit number is an integer between 2n and 2n+1 − 1 (i.e., its binary representation has n digits and
the most significant bit is 1).

• Suppose that we can check whether a number is prime in polynomial time

• Repeat up to t times:

• Choose a number p u.a.r. among all n-bit numbers

• If p is prime: return p

• Return “failure”

Pick r u.a.r. in {0, 1}n−1 and let p← 1∥r.
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• Repeat up to t times:

• Choose a number p u.a.r. among all n-bit numbers

• If p is prime: return p

• Return “failure”

Generating Prime numbers

What’s the probability that an iteration selects a prime number p?

For n > 1, the fraction of n-bit numbers that are prime is at least 1
3n .

What’s the probability that the algorithm fails?

(1− 1
3n )

t
=

(
(1− 1

3n )
3n
) t

3n ≤ e−
t

3n

Running time? O(t · poly(n)) The output size is Θ(n). We allow time O(poly(n))

How do we pick t? E.g., t = 3n2.

= e−n Negligible

The algorithm has a polynomial running time and fails with negligible proability!

At most
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Testing Primality

Can we check whether a number N is prime in polynomail time?

I.e., in time O(logk N) for some constant k.

Yes!

• For a long time no polynomial-time deterministic algorithm was known

• Breakthrough in 2002: deterministic algorithm running in time O(log12 N · logk logN) for some
constant k.

• Can be improved to O(log6 N · logk logN) for some constant k.

In practice randomized algorithm are used, since they are faster and fail with negligible probability.

• The Miller-Rabin primality test is a probabilistic polynomial-time algorithm with one-sided error

• If n is prime, the Miller-Rabin primality test reports n as prime with certainty

• If n is composite, the Miller-Rabin primality test might report n as prime, but only with negligible
probability.
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We could hope that, for all probabilistic polynomial-time algorithms A:
Pr[w-FactorA(n) = 1] ≤ ε(n) for some negligible ε(n)

Factoring

Is this true?

There is a trivial algorithm that wins the above experiment with probability ≥ 3
4 .

A(N)

• If N is even

• Return x′
1 = 2, x′

2 = N/2

• Otherwise

• Return some arbitrary pair of numbers

With probability 1− ( 12 )
2 = 3

4 at least one of x1 and x2 is even =⇒ N is even =⇒ A wins the
experiment.
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Factoring

• It is easy to factor most integers!

• The “hardest” integers N to factor are those that have exactly two prime factors p, q

• The two prime factors should be roughly
√
N , i.e., the two primes should have

(roughly) the same number of bits

Let GenModulus be a polynomial-time algorithm that, on input 1n , outputs a triple (N, p, q) where
N = pq, and p and q are n-bit primes, except with probability negligible in n.

• If N is composite then its smallest (non-trivial) factor is at most
√
N

Proof: let x be a (non-trivial) factor of N . If x ≤
√
N we are done.

Otherwise N/x is a (non-trivial) factor of N and N/x < N/
√
N =

√
N .



We can now revise the previous experiment. For an algorithm A, define FactorA,GenModulus(n) as:

• Run GenModulus(1n) to obtain (N, p, q).

• A outputs two integers p′, q′

• The outcome of the experiment is 1 if p, q > 1 and pq = N . Otherwise the outcome is 0.

• N is sent to A

The Factoring Assumption



We can now revise the previous experiment. For an algorithm A, define FactorA,GenModulus(n) as:

• Run GenModulus(1n) to obtain (N, p, q).

• A outputs two integers p′, q′

• The outcome of the experiment is 1 if p, q > 1 and pq = N . Otherwise the outcome is 0.

• N is sent to A

Definition: Factoring is hard relative to GenModulus if for any probabilistic polynomial-time
algorithm A there exists a negligible function ε such that

Pr[FactorA,GenModulus(n) = 1] ≤ ε(n).

The Factoring Assumption



We can now revise the previous experiment. For an algorithm A, define FactorA,GenModulus(n) as:

• Run GenModulus(1n) to obtain (N, p, q).

• A outputs two integers p′, q′

• The outcome of the experiment is 1 if p, q > 1 and pq = N . Otherwise the outcome is 0.

• N is sent to A

Definition: Factoring is hard relative to GenModulus if for any probabilistic polynomial-time
algorithm A there exists a negligible function ε such that

Pr[FactorA,GenModulus(n) = 1] ≤ ε(n).

The Factoring Assumption

The factoring assumption: there exists a GenModulus algorithm relative to which the factoring
problem is hard.



We can now revise the previous experiment. For an algorithm A, define FactorA,GenModulus(n) as:

• Run GenModulus(1n) to obtain (N, p, q).

• A outputs two integers p′, q′

• The outcome of the experiment is 1 if p, q > 1 and pq = N . Otherwise the outcome is 0.

• N is sent to A

Definition: Factoring is hard relative to GenModulus if for any probabilistic polynomial-time
algorithm A there exists a negligible function ε such that

Pr[FactorA,GenModulus(n) = 1] ≤ ε(n).

The Factoring Assumption

Recall: this is just an assumption. We don’t currently know whether the factoring problem is hard.

The factoring assumption: there exists a GenModulus algorithm relative to which the factoring
problem is hard.
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Are we there yet?

Almost...

• The factoring assumption is still too weak

• We need a stronger, but related assumption called the RSA assumption

Let N = pq where p and q are distinct odd primes

The order of Z∗
N is ϕ(N) = (p− 1) · (q − 1)

• Trivial to compute if we know p and q

• “Hard” to compute if we know N but not p and q (can be shown to be equivalent to factoring N)

Pick e ∈ Z∗
N such that gcd(e, ϕ(N)) = 1.

• By the corollary of Fermat’s little theorem, fe(x) = xe is a permutation of Z∗
N

• Let d be the inverse of e modulo ϕ(N). Then fd(x) = xd is the inverse of fe.

(xe)d = (xd)e = x
(All the operations are performed modulo N)
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e-th roots of x

Since (xe)d = x we can think of xd as the e-th root of x

• We define x1/e = xd

Given N , e, and x, how do we compute x1/e?

• If p and q are also known: easy!

• Compute ϕ(N) = (p− 1)(q − 1)

• Compute the inverse d of e modulo ϕ(N)

• Compute xd via modular exponentiation

• If p and q are not known:

• Computing ϕ(N) is as hard as factoring N

• We don’t know how to compute d without knowing ϕ(N)

• ???
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The RSA problem

Informally: given a random y ∈ Z∗
N , computing y1/e is hard

Let GenRSA be a polynomial-time algorithm that, on input 1n , outputs a triple (N, e, d) where:

• N = pq, for two n-bit primes p and q

• ed = 1 (mod ϕ(N))

The algorithm is allowed to fail with negligible probability.

A possible implementation:

• Generate two n-bit primes p, q chosen u.a.r.

• N ← p · q
• ϕ(N)← (p− 1) · (q − 1)

• Pick some e with gcd(e, ϕ(N)) = 1

• d← e−1 (mod ϕ(N))

• Output (N, e, d)

The choice of e is not believed to
affect the hardness of the RSA
problem

Common choices: e = 3 or
e = 216 + 1 for efficiency reasons



For an algorithm A, define the experiment RSA-invA,GenRSA(n) as:

• Run GenRSA(1n) to obtain (N, e, d).

• A outputs x ∈ Z∗
N

• The outcome of the experiment is 1 if x is the e-th root of y, i.e., if xe = y (or equivalently
y1/e = yd = x). Otherwise the outcome is 0.

• Send N , e and y to A
• Choose y ∈ Z∗

N u.a.r.

The RSA assumption



For an algorithm A, define the experiment RSA-invA,GenRSA(n) as:

• Run GenRSA(1n) to obtain (N, e, d).

• A outputs x ∈ Z∗
N

• The outcome of the experiment is 1 if x is the e-th root of y, i.e., if xe = y (or equivalently
y1/e = yd = x). Otherwise the outcome is 0.

• Send N , e and y to A
• Choose y ∈ Z∗

N u.a.r.

The RSA assumption

Definition: The RSA problem is hard relative to GenRSA if for any probabilistic polynomial-time
algorithm A there exists a negligible function ε such that

Pr[RSA-invA,GenRSA(n) = 1] ≤ ε(n).



For an algorithm A, define the experiment RSA-invA,GenRSA(n) as:

• Run GenRSA(1n) to obtain (N, e, d).

• A outputs x ∈ Z∗
N

• The outcome of the experiment is 1 if x is the e-th root of y, i.e., if xe = y (or equivalently
y1/e = yd = x). Otherwise the outcome is 0.

• Send N , e and y to A
• Choose y ∈ Z∗

N u.a.r.

The RSA assumption

Definition: The RSA problem is hard relative to GenRSA if for any probabilistic polynomial-time
algorithm A there exists a negligible function ε such that

Pr[RSA-invA,GenRSA(n) = 1] ≤ ε(n).

The RSA assumption: there exists a GenRSA algorithm relative to which the RSA problem is
hard.



The RSA assumption and the factoring assumption

⇒

The RSA assumption: there exists a GenRSA algorithm relative to which the RSA problem is
hard.

The factoring assumption: there exists a GenModulus algorithm relative to which the factoring
problem is hard.


