
Group Generators

Let G be a finite group of order m and let g ∈ G.

Define the set:

⟨g⟩ = {g0, g1, g2, . . . , gm}

How many elements are in ⟨g⟩?

Group Generators

Let G be a finite group of order m and let g ∈ G.

Define the set:

⟨g⟩ = {g0, g1, g2, . . . , gm}

How many elements are in ⟨g⟩?
• If g is the identity element, then g0 = 1, g1 = 1, g2 = 1, . . .

Group Generators

Let G be a finite group of order m and let g ∈ G.

Define the set:

⟨g⟩ = {g0, g1, g2, . . . , gm}

How many elements are in ⟨g⟩?
• If g is the identity element, then g0 = 1, g1 = 1, g2 = 1, . . . =⇒ it can happen that |⟨g⟩| = 1

Group Generators

Let G be a finite group of order m and let g ∈ G.

Define the set:

⟨g⟩ = {g0, g1, g2, . . . , gm}

How many elements are in ⟨g⟩?
• If g is the identity element, then g0 = 1, g1 = 1, g2 = 1, . . . =⇒ it can happen that |⟨g⟩| = 1

• On the other hand, we know that gm = 1, hence. . .

gm = g0, gm+1 = g, gm+2 = g2

Group Generators

Let G be a finite group of order m and let g ∈ G.

Define the set:

⟨g⟩ = {g0, g1, g2, . . . , gm}

How many elements are in ⟨g⟩?
• If g is the identity element, then g0 = 1, g1 = 1, g2 = 1, . . . =⇒ it can happen that |⟨g⟩| = 1

• On the other hand, we know that gm = 1, hence. . .

gm = g0, gm+1 = g, gm+2 = g2 =⇒ |⟨g⟩| ≤ m

Group Generators

Let G be a finite group of order m and let g ∈ G.

Define the set:

⟨g⟩ = {g0, g1, g2, . . . , gm}

How many elements are in ⟨g⟩?
• If g is the identity element, then g0 = 1, g1 = 1, g2 = 1, . . . =⇒ it can happen that |⟨g⟩| = 1

• On the other hand, we know that gm = 1, hence. . .

gm = g0, gm+1 = g, gm+2 = g2 =⇒ |⟨g⟩| ≤ m

If ⟨g⟩ contains all m elements, then g is a generator of G.

• We can obtain all elements in G (in some order) by exponentiating g.

Cyclic Groups

If G has a generator, then G is called a cyclic group

• A cyclic group can have multiple generators

• Not every element of a cyclic group is a generator

Cyclic Groups

If G has a generator, then G is called a cyclic group

• A cyclic group can have multiple generators

• Not every element of a cyclic group is a generator

Examples:

• Is Z8 cyclic (under addition modulo 8)?

Cyclic Groups

If G has a generator, then G is called a cyclic group

• A cyclic group can have multiple generators

• Not every element of a cyclic group is a generator

Examples:

• Is Z8 cyclic (under addition modulo 8)?

• Is 1 a generator?

Cyclic Groups

If G has a generator, then G is called a cyclic group

• A cyclic group can have multiple generators

• Not every element of a cyclic group is a generator

Examples:

• Is Z8 cyclic (under addition modulo 8)?

⟨1⟩ = {0, 1, 2, 3, . . . , 7} = Z8• Is 1 a generator?

Cyclic Groups

If G has a generator, then G is called a cyclic group

• A cyclic group can have multiple generators

• Not every element of a cyclic group is a generator

Examples:

• Is Z8 cyclic (under addition modulo 8)?

⟨1⟩ = {0, 1, 2, 3, . . . , 7} = Z8• Is 1 a generator?

Yes!

Yes

Cyclic Groups

If G has a generator, then G is called a cyclic group

• A cyclic group can have multiple generators

• Not every element of a cyclic group is a generator

Examples:

• Is Z8 cyclic (under addition modulo 8)?

⟨1⟩ = {0, 1, 2, 3, . . . , 7} = Z8

• Is 2 a generator?

• Is 1 a generator?

Yes!

Yes

Cyclic Groups

If G has a generator, then G is called a cyclic group

• A cyclic group can have multiple generators

• Not every element of a cyclic group is a generator

Examples:

• Is Z8 cyclic (under addition modulo 8)?

⟨1⟩ = {0, 1, 2, 3, . . . , 7} = Z8

• Is 2 a generator? ⟨2⟩ = {0, 2, 4, 6} ̸= Z8

• Is 1 a generator?

Yes!

Yes

No

Cyclic Groups

If G has a generator, then G is called a cyclic group

• A cyclic group can have multiple generators

• Not every element of a cyclic group is a generator

Examples:

• Is Z8 cyclic (under addition modulo 8)?

⟨1⟩ = {0, 1, 2, 3, . . . , 7} = Z8

• Is Z∗
9 cyclic (under multiplication modulo 9)?

• Is 2 a generator? ⟨2⟩ = {0, 2, 4, 6} ̸= Z8

• Is 1 a generator?

Yes!

Yes

No

Cyclic Groups

If G has a generator, then G is called a cyclic group

• A cyclic group can have multiple generators

• Not every element of a cyclic group is a generator

Examples:

• Is Z8 cyclic (under addition modulo 8)?

⟨1⟩ = {0, 1, 2, 3, . . . , 7} = Z8

• Is Z∗
9 cyclic (under multiplication modulo 9)?

• Is 4 a generator?

• Is 2 a generator? ⟨2⟩ = {0, 2, 4, 6} ̸= Z8

• Is 1 a generator?

Yes!

Yes

No

Cyclic Groups

If G has a generator, then G is called a cyclic group

• A cyclic group can have multiple generators

• Not every element of a cyclic group is a generator

Examples:

• Is Z8 cyclic (under addition modulo 8)?

⟨1⟩ = {0, 1, 2, 3, . . . , 7} = Z8

• Is Z∗
9 cyclic (under multiplication modulo 9)?

• Is 4 a generator? ⟨4⟩ = {1, 4, 7} ̸= ZN

• Is 2 a generator? ⟨2⟩ = {0, 2, 4, 6} ̸= Z8

• Is 1 a generator?

Yes!

Yes

No

No

Cyclic Groups

If G has a generator, then G is called a cyclic group

• A cyclic group can have multiple generators

• Not every element of a cyclic group is a generator

Examples:

• Is Z8 cyclic (under addition modulo 8)?

⟨1⟩ = {0, 1, 2, 3, . . . , 7} = Z8

• Is Z∗
9 cyclic (under multiplication modulo 9)?

• Is 4 a generator? ⟨4⟩ = {1, 4, 7} ̸= ZN

• Is 2 a generator?

• Is 2 a generator? ⟨2⟩ = {0, 2, 4, 6} ̸= Z8

• Is 1 a generator?

Yes!

Yes

No

No

Cyclic Groups

If G has a generator, then G is called a cyclic group

• A cyclic group can have multiple generators

• Not every element of a cyclic group is a generator

Examples:

• Is Z8 cyclic (under addition modulo 8)?

⟨1⟩ = {0, 1, 2, 3, . . . , 7} = Z8

• Is Z∗
9 cyclic (under multiplication modulo 9)?

⟨2⟩ = {1, 2, 4, 8, 7, 5} = ZN

• Is 4 a generator? ⟨4⟩ = {1, 4, 7} ̸= ZN

Yes!

• Is 2 a generator?

• Is 2 a generator? ⟨2⟩ = {0, 2, 4, 6} ̸= Z8

• Is 1 a generator?

Yes!

Yes

No

Yes

No

Cyclic Groups

If G has a generator, then G is called a cyclic group

• A cyclic group can have multiple generators

• Not every element of a cyclic group is a generator

Examples:

• Is Z8 cyclic (under addition modulo 8)?

⟨1⟩ = {0, 1, 2, 3, . . . , 7} = Z8

• Is Z∗
9 cyclic (under multiplication modulo 9)?

⟨2⟩ = {1, 2, 4, 8, 7, 5} = ZN

• Is 4 a generator? ⟨4⟩ = {1, 4, 7} ̸= ZN

Yes!

• Is 2 a generator?

• Is 5 a generator?

• Is 2 a generator? ⟨2⟩ = {0, 2, 4, 6} ̸= Z8

• Is 1 a generator?

Yes!

Yes

No

Yes

No

Cyclic Groups

If G has a generator, then G is called a cyclic group

• A cyclic group can have multiple generators

• Not every element of a cyclic group is a generator

Examples:

• Is Z8 cyclic (under addition modulo 8)?

⟨1⟩ = {0, 1, 2, 3, . . . , 7} = Z8

• Is Z∗
9 cyclic (under multiplication modulo 9)?

⟨2⟩ = {1, 2, 4, 8, 7, 5} = ZN

• Is 4 a generator? ⟨4⟩ = {1, 4, 7} ̸= ZN

Yes!

• Is 2 a generator?

• Is 5 a generator? ⟨5⟩ = {1, 5, 7, 8, 4, 2} = ZN

• Is 2 a generator? ⟨2⟩ = {0, 2, 4, 6} ̸= Z8

• Is 1 a generator?

Yes!

Yes

No

Yes

No

Yes

Cyclic Groups

If G has a generator, then G is called a cyclic group

• A cyclic group can have multiple generators

• Not every element of a cyclic group is a generator

Examples:

• Is Z8 cyclic (under addition modulo 8)?

⟨1⟩ = {0, 1, 2, 3, . . . , 7} = Z8

• Is Z∗
9 cyclic (under multiplication modulo 9)?

⟨2⟩ = {1, 2, 4, 8, 7, 5} = ZN

• Is 4 a generator? ⟨4⟩ = {1, 4, 7} ̸= ZN

Yes!

• Is 2 a generator?

• Is 5 a generator? ⟨5⟩ = {1, 5, 7, 8, 4, 2} = ZN

• Is 2 a generator? ⟨2⟩ = {0, 2, 4, 6} ̸= Z8

• Is 1 a generator?

Yes!

Yes

No

Yes

No

Yes

Notice that the
elements are generated
in a different order

Cyclic Groups

• Is Z∗
12 cyclic?

Cyclic Groups

• Is Z∗
12 cyclic?

• ⟨5⟩ = {1, 5}
• ⟨7⟩ = {1, 7}

No. Recall that Z∗
12 = {1, 5, 7, 11}

• ⟨11⟩ = {1, 11}

Cyclic Groups

• Is Z∗
12 cyclic?

• ⟨5⟩ = {1, 5}
• ⟨7⟩ = {1, 7}

No. Recall that Z∗
12 = {1, 5, 7, 11}

When is a a group cyclic?

• ⟨11⟩ = {1, 11}

Cyclic Groups

• Is Z∗
12 cyclic?

• ⟨5⟩ = {1, 5}
• ⟨7⟩ = {1, 7}

No. Recall that Z∗
12 = {1, 5, 7, 11}

When is a a group cyclic? A sufficient condition:

Theorem: Any group of prime order p is cyclic, and every non-identity element is a generator

• ⟨11⟩ = {1, 11}

Cyclic Groups

• Is Z∗
12 cyclic?

• ⟨5⟩ = {1, 5}
• ⟨7⟩ = {1, 7}

No. Recall that Z∗
12 = {1, 5, 7, 11}

When is a a group cyclic? A sufficient condition:

Theorem: Any group of prime order p is cyclic, and every non-identity element is a generator

Fix a g ∈ G with g ̸= 1 and let i be the smallest positive integer such that gi = 1.Proof:

This integer exists by Fermat’s little theorem and we have i > 1 since g1 = g ̸= 1.

• ⟨11⟩ = {1, 11}

Cyclic Groups

• Is Z∗
12 cyclic?

• ⟨5⟩ = {1, 5}
• ⟨7⟩ = {1, 7}

No. Recall that Z∗
12 = {1, 5, 7, 11}

When is a a group cyclic? A sufficient condition:

Theorem: Any group of prime order p is cyclic, and every non-identity element is a generator

Fix a g ∈ G with g ̸= 1 and let i be the smallest positive integer such that gi = 1.Proof:

This integer exists by Fermat’s little theorem and we have i > 1 since g1 = g ̸= 1.

gp = 1

• ⟨11⟩ = {1, 11}

Cyclic Groups

• Is Z∗
12 cyclic?

• ⟨5⟩ = {1, 5}
• ⟨7⟩ = {1, 7}

No. Recall that Z∗
12 = {1, 5, 7, 11}

When is a a group cyclic? A sufficient condition:

Theorem: Any group of prime order p is cyclic, and every non-identity element is a generator

Fix a g ∈ G with g ̸= 1 and let i be the smallest positive integer such that gi = 1.Proof:

This integer exists by Fermat’s little theorem and we have i > 1 since g1 = g ̸= 1.

gp = 1 =⇒ gp mod i = 1

• ⟨11⟩ = {1, 11}

Cyclic Groups

• Is Z∗
12 cyclic?

• ⟨5⟩ = {1, 5}
• ⟨7⟩ = {1, 7}

No. Recall that Z∗
12 = {1, 5, 7, 11}

When is a a group cyclic? A sufficient condition:

Theorem: Any group of prime order p is cyclic, and every non-identity element is a generator

Fix a g ∈ G with g ̸= 1 and let i be the smallest positive integer such that gi = 1.Proof:

This integer exists by Fermat’s little theorem and we have i > 1 since g1 = g ̸= 1.

gp = 1 =⇒ gp mod i = 1

Since p mod i < i, the choice of i ensures that p mod i = 0

• ⟨11⟩ = {1, 11}

Cyclic Groups

• Is Z∗
12 cyclic?

• ⟨5⟩ = {1, 5}
• ⟨7⟩ = {1, 7}

No. Recall that Z∗
12 = {1, 5, 7, 11}

When is a a group cyclic? A sufficient condition:

Theorem: Any group of prime order p is cyclic, and every non-identity element is a generator

Fix a g ∈ G with g ̸= 1 and let i be the smallest positive integer such that gi = 1.Proof:

This integer exists by Fermat’s little theorem and we have i > 1 since g1 = g ̸= 1.

gp = 1 =⇒ gp mod i = 1

Since p mod i < i, the choice of i ensures that p mod i = 0 =⇒ i is a divisor of p

• ⟨11⟩ = {1, 11}

Cyclic Groups

• Is Z∗
12 cyclic?

• ⟨5⟩ = {1, 5}
• ⟨7⟩ = {1, 7}

No. Recall that Z∗
12 = {1, 5, 7, 11}

When is a a group cyclic? A sufficient condition:

Theorem: Any group of prime order p is cyclic, and every non-identity element is a generator

Fix a g ∈ G with g ̸= 1 and let i be the smallest positive integer such that gi = 1.Proof:

This integer exists by Fermat’s little theorem and we have i > 1 since g1 = g ̸= 1.

gp = 1 =⇒ gp mod i = 1

Since p mod i < i, the choice of i ensures that p mod i = 0 =⇒ i is a divisor of p

The only divisor of p greater than 1 is p

• ⟨11⟩ = {1, 11}

Cyclic Groups

• Is Z∗
12 cyclic?

• ⟨5⟩ = {1, 5}
• ⟨7⟩ = {1, 7}

No. Recall that Z∗
12 = {1, 5, 7, 11}

When is a a group cyclic? A sufficient condition:

Theorem: Any group of prime order p is cyclic, and every non-identity element is a generator

Fix a g ∈ G with g ̸= 1 and let i be the smallest positive integer such that gi = 1.Proof:

This integer exists by Fermat’s little theorem and we have i > 1 since g1 = g ̸= 1.

gp = 1 =⇒ gp mod i = 1

Since p mod i < i, the choice of i ensures that p mod i = 0 =⇒ i is a divisor of p

The only divisor of p greater than 1 is p =⇒ i = p

• ⟨11⟩ = {1, 11}

Cyclic Groups

• Is Z∗
12 cyclic?

• ⟨5⟩ = {1, 5}
• ⟨7⟩ = {1, 7}

No. Recall that Z∗
12 = {1, 5, 7, 11}

When is a a group cyclic? A sufficient condition:

Theorem: Any group of prime order p is cyclic, and every non-identity element is a generator

Fix a g ∈ G with g ̸= 1 and let i be the smallest positive integer such that gi = 1.Proof:

This integer exists by Fermat’s little theorem and we have i > 1 since g1 = g ̸= 1.

□

gp = 1 =⇒ gp mod i = 1

Since p mod i < i, the choice of i ensures that p mod i = 0 =⇒ i is a divisor of p

The only divisor of p greater than 1 is p =⇒ i = p =⇒ g is a generator.

• ⟨11⟩ = {1, 11}

Theorem: If p is prime then Z∗
p is cyclic

Theorem: Any group of prime order p is cyclic, and every non-identity element is a generator

Cyclic Groups: Sufficient Conditions

Theorem: If p is prime then Z∗
p is cyclic

Notice that the order of Z∗
p is ϕ(p) = p− 1, which is not prime (for p > 3)

̸⇒

Theorem: Any group of prime order p is cyclic, and every non-identity element is a generator

Cyclic Groups: Sufficient Conditions

Cyclic Groups: Sampling and Discrete Logarithms

Let G be a cyclic group of order m, and let g be a generator

• We can easily sample (u.a.r.) an element h from G

Cyclic Groups: Sampling and Discrete Logarithms

Let G be a cyclic group of order m, and let g be a generator

• Choose x ∈ {0, 1, 2, . . . ,m− 1} u.a.r.

• Compute h = gx

• Return h

• We can easily sample (u.a.r.) an element h from G

Cyclic Groups: Sampling and Discrete Logarithms

Let G be a cyclic group of order m, and let g be a generator

• Choose x ∈ {0, 1, 2, . . . ,m− 1} u.a.r.

• Compute h = gx

• Return h

• Given an element h ∈ G, there is a unique value x ∈ {0, 1, . . . ,m− 1} such that gx = h

• We can easily sample (u.a.r.) an element h from G

Cyclic Groups: Sampling and Discrete Logarithms

Let G be a cyclic group of order m, and let g be a generator

• Choose x ∈ {0, 1, 2, . . . ,m− 1} u.a.r.

• Compute h = gx

• Return h

• Given an element h ∈ G, there is a unique value x ∈ {0, 1, . . . ,m− 1} such that gx = h

• We can easily sample (u.a.r.) an element h from G

Definition: the discrete logarithm of h with respect to g (in the group G of order m) is denoted
by logg h and is the unique value x ∈ {0, 1, . . . ,m− 1} such that gx = h.

Discrete Logarithms

What is log2 9 in Z∗
11?

Discrete Logarithms

What is log2 9 in Z∗
11?

20 = 1 21 = 2 22 = 4 23 = 8 24 = 5 25 = 10 26 = 9

Discrete Logarithms

What is log2 9 in Z∗
11?

20 = 1 21 = 2 22 = 4 23 = 8 24 = 5 25 = 10 26 = 9

log2 9 = 6

Discrete Logarithms

What is log2 9 in Z∗
11?

What is log8 6 in Z∗
11?

20 = 1 21 = 2 22 = 4 23 = 8 24 = 5 25 = 10 26 = 9

log2 9 = 6

Discrete Logarithms

What is log2 9 in Z∗
11?

What is log8 6 in Z∗
11?

20 = 1 21 = 2 22 = 4 23 = 8 24 = 5 25 = 10 26 = 9

log2 9 = 6

80 = 1 81 = 8 82 = 9 83 = 6

Discrete Logarithms

What is log2 9 in Z∗
11?

What is log8 6 in Z∗
11?

20 = 1 21 = 2 22 = 4 23 = 8 24 = 5 25 = 10 26 = 9

log2 9 = 6

80 = 1 81 = 8 82 = 9 83 = 6

log8 6 = 3

Discrete Logarithms

What is log2 9 in Z∗
11?

What is log8 6 in Z∗
11?

20 = 1 21 = 2 22 = 4 23 = 8 24 = 5 25 = 10 26 = 9

log2 9 = 6

80 = 1 81 = 8 82 = 9 83 = 6

log8 6 = 3

What is log2 1656755742 in Z∗
3092091139?

Discrete Logarithms

What is log2 9 in Z∗
11?

What is log8 6 in Z∗
11?

20 = 1 21 = 2 22 = 4 23 = 8 24 = 5 25 = 10 26 = 9

log2 9 = 6

80 = 1 81 = 8 82 = 9 83 = 6

log8 6 = 3

What is log2 1656755742 in Z∗
3092091139?

The Discrete Logarithm Problem

The discrete logarithm problem in G: given a generator g and an element h, compute logg h

The Discrete Logarithm Problem

The discrete logarithm problem in G: given a generator g and an element h, compute logg h

Discrete logarithm assumption in G (informal):
Solving the discrete logarithm problem in G is hard when h is chosen u.a.r.

The Discrete Logarithm Problem

The discrete logarithm problem in G: given a generator g and an element h, compute logg h

Discrete logarithm assumption in G (informal):
Solving the discrete logarithm problem in G is hard when h is chosen u.a.r.

How do we formalize this?

The Discrete Logarithm Problem

The discrete logarithm problem in G: given a generator g and an element h, compute logg h

Discrete logarithm assumption in G (informal):
Solving the discrete logarithm problem in G is hard when h is chosen u.a.r.

How do we formalize this?

Let G be a polynomial-time group-generation algorithm that takes 1n as input, and outputs:

• (a description of) a cyclic group G;

• the order q of G with log q ≥ n;

• a generator g of G.

The Discrete Logarithm Assumption

For a group-generation algorithm G and an algorithm A, define the experiment DLogA,G(n) as:

• Run G(1n) to obtain (G, q, g), where G is a cyclic group of order q (and q is an n-bit
integer), and g is a generator of G.

• A outputs x ∈ {0, . . . q − 1}
• The outcome of the experiment is 1 if gx = h. Otherwise the outcome is 0.

• Choose a uniform h ∈ G.

• G, q, g and h are given to A

The Discrete Logarithm Assumption

For a group-generation algorithm G and an algorithm A, define the experiment DLogA,G(n) as:

• Run G(1n) to obtain (G, q, g), where G is a cyclic group of order q (and q is an n-bit
integer), and g is a generator of G.

• A outputs x ∈ {0, . . . q − 1}
• The outcome of the experiment is 1 if gx = h. Otherwise the outcome is 0.

• Choose a uniform h ∈ G.

• G, q, g and h are given to A

Definition The discrete-logarithm problem is hard relative to G if, for every probabilistic
polynomial-time algorithm A, there exists a negligible function ε such that

Pr[DLogA,G(n) = 1] ≤ ε(n).

The Discrete Logarithm Assumption

For a group-generation algorithm G and an algorithm A, define the experiment DLogA,G(n) as:

• Run G(1n) to obtain (G, q, g), where G is a cyclic group of order q (and q is an n-bit
integer), and g is a generator of G.

• A outputs x ∈ {0, . . . q − 1}
• The outcome of the experiment is 1 if gx = h. Otherwise the outcome is 0.

• Choose a uniform h ∈ G.

• G, q, g and h are given to A

Definition The discrete-logarithm problem is hard relative to G if, for every probabilistic
polynomial-time algorithm A, there exists a negligible function ε such that

Pr[DLogA,G(n) = 1] ≤ ε(n).

The discrete logarithm assumption: there exists a group-generation algorithm G for which the
discrete-logarithm problem is hard.

The Diffie-Hellman Problem(s)
We need two more related (but not equivalent) assumptions:

Given g, h1, h2 ∈ G, define: DHg(h1, h2) = glogg h1·logg h2

The Diffie-Hellman Problem(s)
We need two more related (but not equivalent) assumptions:

Given g, h1, h2 ∈ G, define: DHg(h1, h2) = glogg h1·logg h2

In other words, if gx1 = h1 and gx2 = h2 then: DHg(h1, h2) = gx1·x2

The Diffie-Hellman Problem(s)
We need two more related (but not equivalent) assumptions:

Given g, h1, h2 ∈ G, define: DHg(h1, h2) = glogg h1·logg h2

In other words, if gx1 = h1 and gx2 = h2 then: DHg(h1, h2) = gx1·x2 = hx2
1 = hx1

2

The Diffie-Hellman Problem(s)
We need two more related (but not equivalent) assumptions:

Given g, h1, h2 ∈ G, define: DHg(h1, h2) = glogg h1·logg h2

In other words, if gx1 = h1 and gx2 = h2 then: DHg(h1, h2) = gx1·x2 = hx2
1 = hx1

2

The Computational Diffie-Hellman (CDH) problem is that of computing DHg(h1, h2) given a
group G, a generator g, and two elements h1, and h2 chosen u.a.r. from G

The Diffie-Hellman Problem(s)
We need two more related (but not equivalent) assumptions:

Given g, h1, h2 ∈ G, define: DHg(h1, h2) = glogg h1·logg h2

In other words, if gx1 = h1 and gx2 = h2 then: DHg(h1, h2) = gx1·x2 = hx2
1 = hx1

2

The Computational Diffie-Hellman (CDH) problem is that of computing DHg(h1, h2) given a
group G, a generator g, and two elements h1, and h2 chosen u.a.r. from G

Definition The CDH problem is hard relative to G if, for every probabilistic polynomial-time
algorithm A, there exists a negligible function ε such that

Pr[A(G, q, g, h1, h2) = DHg(h1, h2)] = ε(n),

where the probabilities are taken over the experiment in which G(1n) outputs (G, q, g), and
uniform h1, h2 ∈ G are chosen.

The Diffie-Hellman Problem(s)
We need two more related (but not equivalent) assumptions:

Given g, h1, h2 ∈ G, define: DHg(h1, h2) = glogg h1·logg h2

In other words, if gx1 = h1 and gx2 = h2 then: DHg(h1, h2) = gx1·x2 = hx2
1 = hx1

2

The Computational Diffie-Hellman (CDH) problem is that of computing DHg(h1, h2) given a
group G, a generator g, and two elements h1, and h2 chosen u.a.r. from G

The CDH assumption: there exists a group-generation algorithm G for which the CDH problem
is hard

Definition The CDH problem is hard relative to G if, for every probabilistic polynomial-time
algorithm A, there exists a negligible function ε such that

Pr[A(G, q, g, h1, h2) = DHg(h1, h2)] = ε(n),

where the probabilities are taken over the experiment in which G(1n) outputs (G, q, g), and
uniform h1, h2 ∈ G are chosen.

Given g, h1, h2 ∈ G, define:

The Diffie-Hellman Problem(s)

The Decisional Diffie-Hellman (DDH) problem is that of distinguishing DHg(h1, h2) (computed
as above) from an element chosen u.a.r. from G

DHg(h1, h2) = glogg h1·logg h2

Definition The DDH problem is hard relative to G if, for every probabilistic polynomial-time
algorithm A, there exists a negligible function ε such that

�� Pr[A(G, q, g, gx, gy, gz) = 1]− Pr[A(G, q, g, gx, gy, gxy) = 1]
�� ≤ ε(n),

where the probabilities are taken over the experiment in which G(1n) outputs (G, q, g), and then
uniform x, y, z ∈ {0, 1, . . . , q − 1} are chosen (therefore gx and gy are uniformly distributed in G).

Given g, h1, h2 ∈ G, define:

The Diffie-Hellman Problem(s)

The Decisional Diffie-Hellman (DDH) problem is that of distinguishing DHg(h1, h2) (computed
as above) from an element chosen u.a.r. from G

DHg(h1, h2) = glogg h1·logg h2

Definition The DDH problem is hard relative to G if, for every probabilistic polynomial-time
algorithm A, there exists a negligible function ε such that

�� Pr[A(G, q, g, gx, gy, gz) = 1]− Pr[A(G, q, g, gx, gy, gxy) = 1]
�� ≤ ε(n),

where the probabilities are taken over the experiment in which G(1n) outputs (G, q, g), and then
uniform x, y, z ∈ {0, 1, . . . , q − 1} are chosen (therefore gx and gy are uniformly distributed in G).

Given g, h1, h2 ∈ G, define:

The Diffie-Hellman Problem(s)

The Decisional Diffie-Hellman (DDH) problem is that of distinguishing DHg(h1, h2) (computed
as above) from an element chosen u.a.r. from G

The DDH assumption: there exists a group-generation algorithm G for which the DDH problem
is hard

DHg(h1, h2) = glogg h1·logg h2

Examples
The Computational Diffie-Hellman (CDH) problem is that of computing DHg(h1, h2) given a
group G, a generator g, and two elements h1, and h2 chosen u.a.r. from G

• What is DH2(7, 5) in Z∗
11?

Examples
The Computational Diffie-Hellman (CDH) problem is that of computing DHg(h1, h2) given a
group G, a generator g, and two elements h1, and h2 chosen u.a.r. from G

• What is DH2(7, 5) in Z∗
11?

• ⟨2⟩ = {1, 2, 4, 8, 5, 10, 9, 7, 3, 6}

Examples
The Computational Diffie-Hellman (CDH) problem is that of computing DHg(h1, h2) given a
group G, a generator g, and two elements h1, and h2 chosen u.a.r. from G

• What is DH2(7, 5) in Z∗
11?

• ⟨2⟩ = {1, 2, 4, 8, 5, 10, 9, 7, 3, 6}

• log2 7 = 7 and log2 5 = 4

Examples
The Computational Diffie-Hellman (CDH) problem is that of computing DHg(h1, h2) given a
group G, a generator g, and two elements h1, and h2 chosen u.a.r. from G

• What is DH2(7, 5) in Z∗
11?

• ⟨2⟩ = {1, 2, 4, 8, 5, 10, 9, 7, 3, 6}

• log2 7 = 7 and log2 5 = 4

• 27·4 = 228 = 228 mod ϕ(Z∗
11) = 228 mod 10 = 28 = 3

Examples
The Computational Diffie-Hellman (CDH) problem is that of computing DHg(h1, h2) given a
group G, a generator g, and two elements h1, and h2 chosen u.a.r. from G

• What is DH2(7, 5) in Z∗
11?

• ⟨2⟩ = {1, 2, 4, 8, 5, 10, 9, 7, 3, 6}

• log2 7 = 7 and log2 5 = 4

• 27·4 = 228 = 228 mod ϕ(Z∗
11) = 228 mod 10 = 28 = 3

You have polynomial-time to figure that out with non-negligible probability (in a suitable group)

Examples
The Computational Diffie-Hellman (CDH) problem is that of computing DHg(h1, h2) given a
group G, a generator g, and two elements h1, and h2 chosen u.a.r. from G

• What is DH2(7, 5) in Z∗
11?

• ⟨2⟩ = {1, 2, 4, 8, 5, 10, 9, 7, 3, 6}

• log2 7 = 7 and log2 5 = 4

• 27·4 = 228 = 228 mod ϕ(Z∗
11) = 228 mod 10 = 28 = 3

You have polynomial-time to figure that out with non-negligible probability (in a suitable group)

CDH assumption: no algorithm can do that (in a suitable group)

The Decisional Diffie-Hellman (DDH) problem is that of distinguishing DHg(h1, h2) (computed
as above) from an element chosen u.a.r. from G

• I’m considering the group Z∗
3092091139 and I’m interested in the value DH2(1656755742, 938640663)

• Is 1994993011 the correct answer, or did I just give you a random element from Z∗
3092091139?

Examples

The Decisional Diffie-Hellman (DDH) problem is that of distinguishing DHg(h1, h2) (computed
as above) from an element chosen u.a.r. from G

• I’m considering the group Z∗
3092091139 and I’m interested in the value DH2(1656755742, 938640663)

• Is 1994993011 the correct answer, or did I just give you a random element from Z∗
3092091139?

You have polynomial-time to figure that out (with a non-negligible advantage over random guessing)

Examples

The Decisional Diffie-Hellman (DDH) problem is that of distinguishing DHg(h1, h2) (computed
as above) from an element chosen u.a.r. from G

• I’m considering the group Z∗
3092091139 and I’m interested in the value DH2(1656755742, 938640663)

• Is 1994993011 the correct answer, or did I just give you a random element from Z∗
3092091139?

You have polynomial-time to figure that out (with a non-negligible advantage over random guessing)

DDH assumption: no algorithm can do that (in a suitable group)

Examples

Relating the Discrete Logarithm and the DH Problems

⇐

The Computational Diffie-Hellman (CDH) problem is hard relative to G

The discrete-logarithm problem is hard relative to G

The Decisional Diffie-Hellman (DDH) problem is hard relative to G
⇐

Relating the Discrete Logarithm and the DH Problems

⇐

The Computational Diffie-Hellman (CDH) problem is hard relative to G

The discrete-logarithm problem is hard relative to G

The Decisional Diffie-Hellman (DDH) problem is hard relative to G
⇐

We don’t know whether the
converse implication holds.

Relating the Discrete Logarithm and the DH Problems

⇐

The Computational Diffie-Hellman (CDH) problem is hard relative to G

The discrete-logarithm problem is hard relative to G

The Decisional Diffie-Hellman (DDH) problem is hard relative to G
⇐

We don’t know whether the
converse implication holds.

We know that there are groups for
which the the CDH problem is hard
but the DDH problem is not hard

̸⇒

Hardness of CDH =⇒ Hardness of DL

⇒ The discrete-logarithm problem is hard
relative to G

The Computational Diffie-Hellman (CDH)
problem is hard relative to G

Hardness of CDH =⇒ Hardness of DL

⇒ The discrete-logarithm problem is hard
relative to G

Proof: We show that a polynomial-time algorithm A that solves the discrete-logarithm problem (i.e.,
wins the DLog experiment with non-negligible probability) can be used to solve the CDH problem

Suppose that discrete-logarithm problem is not hard w.r.t. G and consider an algorithm A such that

Pr[DLogA,G(n) = 1] = ε(n) where ε(n) is not negligible.

The Computational Diffie-Hellman (CDH)
problem is hard relative to G

Hardness of CDH =⇒ Hardness of DL

⇒ The discrete-logarithm problem is hard
relative to G

Proof: We show that a polynomial-time algorithm A that solves the discrete-logarithm problem (i.e.,
wins the DLog experiment with non-negligible probability) can be used to solve the CDH problem

Suppose that discrete-logarithm problem is not hard w.r.t. G and consider an algorithm A such that

Pr[DLogA,G(n) = 1] = ε(n) where ε(n) is not negligible.

Build A′ as follows:

• A′ takes as input G, q, g, h1, h2

• A′ simulates A with inputs G, q, g, h1 to compute a candidate x1 = logg h1

• A′ outputs hx1
2

The Computational Diffie-Hellman (CDH)
problem is hard relative to G

(recall that hx1
2 = (glogg h2)x1 = glogg h2·logg h1 = DHg(h1, h2))

Hardness of CDH =⇒ Hardness of DL

⇒ The discrete-logarithm problem is hard
relative to G

Proof: We show that a polynomial-time algorithm A that solves the discrete-logarithm problem (i.e.,
wins the DLog experiment with non-negligible probability) can be used to solve the CDH problem

Suppose that discrete-logarithm problem is not hard w.r.t. G and consider an algorithm A such that

Pr[DLogA,G(n) = 1] = ε(n) where ε(n) is not negligible.

Build A′ as follows:

• A′ takes as input G, q, g, h1, h2

• A′ simulates A with inputs G, q, g, h1 to compute a candidate x1 = logg h1

• A′ outputs hx1
2

The Computational Diffie-Hellman (CDH)
problem is hard relative to G

Pr[A′(G, q, g, h1, h2) = DHg(h1, h2)] ≥ Pr[DLogA,G(n) = 1]

(If A succeeds then A′ succeeds)

(recall that hx1
2 = (glogg h2)x1 = glogg h2·logg h1 = DHg(h1, h2))

Hardness of CDH =⇒ Hardness of DL

⇒ The discrete-logarithm problem is hard
relative to G

Proof: We show that a polynomial-time algorithm A that solves the discrete-logarithm problem (i.e.,
wins the DLog experiment with non-negligible probability) can be used to solve the CDH problem

Suppose that discrete-logarithm problem is not hard w.r.t. G and consider an algorithm A such that

Pr[DLogA,G(n) = 1] = ε(n) where ε(n) is not negligible.

Build A′ as follows:

• A′ takes as input G, q, g, h1, h2

• A′ simulates A with inputs G, q, g, h1 to compute a candidate x1 = logg h1

• A′ outputs hx1
2

The Computational Diffie-Hellman (CDH)
problem is hard relative to G

Pr[A′(G, q, g, h1, h2) = DHg(h1, h2)] ≥ Pr[DLogA,G(n) = 1]

(If A succeeds then A′ succeeds)

= ε(n) non-negligible!

□

(recall that hx1
2 = (glogg h2)x1 = glogg h2·logg h1 = DHg(h1, h2))

Hardness of DDH =⇒ Hardness of CDH

The Decisional Diffie-Hellman (DDH)
problem is hard relative to G

The Computational Diffie-Hellman (CDH)
problem is hard relative to G⇒

Proof: We show that a polynomial-time algorithm A that solves the CDH problem (with non-negligible
probability) can be used to solve the DDH problem

Suppose that CDH problem is not hard w.r.t. G and consider an algorithm A such that

Pr[A(G, q, g, h1, h2) = DHg(h1, h2)] = ε(n), where ε(n) is not negligible.

Hardness of DDH =⇒ Hardness of CDH

The Decisional Diffie-Hellman (DDH)
problem is hard relative to G

The Computational Diffie-Hellman (CDH)
problem is hard relative to G⇒

Proof: We show that a polynomial-time algorithm A that solves the CDH problem (with non-negligible
probability) can be used to solve the DDH problem

Suppose that CDH problem is not hard w.r.t. G and consider an algorithm A such that

Pr[A(G, q, g, h1, h2) = DHg(h1, h2)] = ε(n), where ε(n) is not negligible.

Build A′ as follows:

• A′ takes as input G, q, g, gx, gy, h

• A′ simulates A with inputs G, q, g, gx, gy to compute a candidate h′ = gxy

• A′ outputs 1 if h′ = h. Otherwise A outputs 0

Hardness of DDH =⇒ Hardness of CDH (cont.)

• A′ takes as input G, q, g, gx, gy, h

• A′ simulates A with inputs G, q, g, gx, gy to compute a candidate h′ = gxy

• A′ outputs 1 if h′ = h. Otherwise A outputs 0

Pr[A′(G, q, g, gx, gy, h) = 1] ≥ Pr[A(G, q, g, gx, gy) = gxy] = ε(n)

Build A′ as follows:

When h = gxy:

• If A succeeds then A′ succeeds

Hardness of DDH =⇒ Hardness of CDH (cont.)

• A′ takes as input G, q, g, gx, gy, h

• A′ simulates A with inputs G, q, g, gx, gy to compute a candidate h′ = gxy

• A′ outputs 1 if h′ = h. Otherwise A outputs 0

Pr[A′(G, q, g, gx, gy, h) = 1] ≥ Pr[A(G, q, g, gx, gy) = gxy] = ε(n)

Build A′ as follows:

When h = gxy:

• If A succeeds then A′ succeeds

When h is an element chosen u.a.r. from G:

• The value of h does not depend on h′

Pr[A′(G, q, g, gx, gy, h) = 1] = Pr[h = h′]

Hardness of DDH =⇒ Hardness of CDH (cont.)

• A′ takes as input G, q, g, gx, gy, h

• A′ simulates A with inputs G, q, g, gx, gy to compute a candidate h′ = gxy

• A′ outputs 1 if h′ = h. Otherwise A outputs 0

Pr[A′(G, q, g, gx, gy, h) = 1] ≥ Pr[A(G, q, g, gx, gy) = gxy] = ε(n)

Build A′ as follows:

When h = gxy:

• If A succeeds then A′ succeeds

When h is an element chosen u.a.r. from G:

• The value of h does not depend on h′

Pr[A′(G, q, g, gx, gy, h) = 1] = Pr[h = h′] = 1
q

Hardness of DDH =⇒ Hardness of CDH (cont.)

• A′ takes as input G, q, g, gx, gy, h

• A′ simulates A with inputs G, q, g, gx, gy to compute a candidate h′ = gxy

• A′ outputs 1 if h′ = h. Otherwise A outputs 0

Pr[A′(G, q, g, gx, gy, h) = 1] ≥ Pr[A(G, q, g, gx, gy) = gxy] = ε(n)

Build A′ as follows:

When h = gxy:

• If A succeeds then A′ succeeds

When h is an element chosen u.a.r. from G:

• The value of h does not depend on h′

Pr[A′(G, q, g, gx, gy, h) = 1] = Pr[h = h′] = 1
q ≤ 1

2n−1

(recall that q is a n-bit number)

negligible

Hardness of DDH =⇒ Hardness of CDH (cont.)

• A′ takes as input G, q, g, gx, gy, h

• A′ simulates A with inputs G, q, g, gx, gy to compute a candidate h′ = gxy

• A′ outputs 1 if h′ = h. Otherwise A outputs 0

Pr[A′(G, q, g, gx, gy, h) = 1] ≥ Pr[A(G, q, g, gx, gy) = gxy] = ε(n)

Build A′ as follows:

When h = gxy:

• If A succeeds then A′ succeeds

When h is an element chosen u.a.r. from G:

• The value of h does not depend on h′

Pr[A′(G, q, g, gx, gy, h) = 1] = Pr[h = h′] = 1
q ≤ 1

2n−1

(recall that q is a n-bit number)

negligible

�� Pr[A′(G, q, g, gx, gy, gz) = 1]− Pr[A′(G, q, g, gx, gy, gxy) = 1]
�� =

���� ε(n)−
1

q

����

Hardness of DDH =⇒ Hardness of CDH (cont.)

• A′ takes as input G, q, g, gx, gy, h

• A′ simulates A with inputs G, q, g, gx, gy to compute a candidate h′ = gxy

• A′ outputs 1 if h′ = h. Otherwise A outputs 0

Pr[A′(G, q, g, gx, gy, h) = 1] ≥ Pr[A(G, q, g, gx, gy) = gxy] = ε(n)

Build A′ as follows:

When h = gxy:

• If A succeeds then A′ succeeds

When h is an element chosen u.a.r. from G:

• The value of h does not depend on h′

Pr[A′(G, q, g, gx, gy, h) = 1] = Pr[h = h′] = 1
q ≤ 1

2n−1

(recall that q is a n-bit number)

negligible

�� Pr[A′(G, q, g, gx, gy, gz) = 1]− Pr[A′(G, q, g, gx, gy, gxy) = 1]
�� =

���� ε(n)−
1

q

���� non-negligible

□

Choice of Groups

The cryptographic schemes can be described in terms of a generic group

• We can focus on the key idea of the construction, ignoring the details of the specific group

• To build the scheme in practice, we can instantiate the theoretical construction with any suitable
group

Choice of Groups

The cryptographic schemes can be described in terms of a generic group

• We can focus on the key idea of the construction, ignoring the details of the specific group

• To build the scheme in practice, we can instantiate the theoretical construction with any suitable
group

Before describing the actual constructions, we briefly argue on some possible choices for these groups

Choice of Groups

The cryptographic schemes can be described in terms of a generic group

• We can focus on the key idea of the construction, ignoring the details of the specific group

• To build the scheme in practice, we can instantiate the theoretical construction with any suitable
group

Before describing the actual constructions, we briefly argue on some possible choices for these groups

We would like the group order to be prime

Choice of Groups

The cryptographic schemes can be described in terms of a generic group

• We can focus on the key idea of the construction, ignoring the details of the specific group

• To build the scheme in practice, we can instantiate the theoretical construction with any suitable
group

Before describing the actual constructions, we briefly argue on some possible choices for these groups

We would like the group order to be prime

• The discrete-logarithm problem in a group of order q becomes easier (not necessarily easy!) if q
has (small) prime factors

Choice of Groups

The cryptographic schemes can be described in terms of a generic group

• We can focus on the key idea of the construction, ignoring the details of the specific group

• To build the scheme in practice, we can instantiate the theoretical construction with any suitable
group

Before describing the actual constructions, we briefly argue on some possible choices for these groups

We would like the group order to be prime

• The discrete-logarithm problem in a group of order q becomes easier (not necessarily easy!) if q
has (small) prime factors

• The DDH problem is easy if the group order has small prime factors

Choice of Groups

The cryptographic schemes can be described in terms of a generic group

• We can focus on the key idea of the construction, ignoring the details of the specific group

• To build the scheme in practice, we can instantiate the theoretical construction with any suitable
group

Before describing the actual constructions, we briefly argue on some possible choices for these groups

We would like the group order to be prime

• The discrete-logarithm problem in a group of order q becomes easier (not necessarily easy!) if q
has (small) prime factors

• The DDH problem is easy if the group order has small prime factors

• Finding a generator in such groups is trivial (pick any element except for the identity)

Choice of Groups: the group Z∗
p

The group Z∗
p, for prime p has several nice properties:

• Easy to represent:

— To identify the group, it suffices to know p.

— Elements are integers in {1, . . . , p− 1}.

Choice of Groups: the group Z∗
p

The group Z∗
p, for prime p has several nice properties:

• Easy to represent:

— To identify the group, it suffices to know p.

— Elements are integers in {1, . . . , p− 1}.

• Trivial to sample one element and to check whether an element is in Z∗
p.

Choice of Groups: the group Z∗
p

The group Z∗
p, for prime p has several nice properties:

• Easy to build a group generation algorithm:

— Pick a n-bit prime p uniformly at random

— Output p (trivial), the order q = p− 1 (trivial), an a group generator (can be found in poly-time)

• Easy to represent:

— To identify the group, it suffices to know p.

— Elements are integers in {1, . . . , p− 1}.

• Trivial to sample one element and to check whether an element is in Z∗
p.

Choice of Groups: the group Z∗
p

The group Z∗
p, for prime p has several nice properties:

• Easy to build a group generation algorithm:

— Pick a n-bit prime p uniformly at random

— Output p (trivial), the order q = p− 1 (trivial), an a group generator (can be found in poly-time)

• Easy to represent:

— To identify the group, it suffices to know p.

— Elements are integers in {1, . . . , p− 1}.

• Trivial to sample one element and to check whether an element is in Z∗
p.

• The discrete-logarithm problem is conjectured to be hard on Z∗
p

Choice of Groups: the group Z∗
p

The group Z∗
p, for prime p has several nice properties:

• Easy to build a group generation algorithm:

— Pick a n-bit prime p uniformly at random

— Output p (trivial), the order q = p− 1 (trivial), an a group generator (can be found in poly-time)

• Easy to represent:

— To identify the group, it suffices to know p.

— Elements are integers in {1, . . . , p− 1}.

• Trivial to sample one element and to check whether an element is in Z∗
p.

• The discrete-logarithm problem is conjectured to be hard on Z∗
p

However

• The order of the group q = p− 1 is not a prime number

• The DDH problem is known not to be hard in such groups (in general)

Choice of Groups: the group of r-th residues modulo p

Solution:

• Pick two prime numbers p, q such that p = qr + 1 for some r

• Consider the set of r-th residues modulo p, defined as:

G = {hr (mod p) | h ∈ Z∗
p}

Choice of Groups: the group of r-th residues modulo p

Solution:

• Pick two prime numbers p, q such that p = qr + 1 for some r

• Consider the set of r-th residues modulo p, defined as:

G = {hr (mod p) | h ∈ Z∗
p}

• The set G is a group (under multiplication modulo p)

Choice of Groups: the group of r-th residues modulo p

Solution:

• Pick two prime numbers p, q such that p = qr + 1 for some r

• Consider the set of r-th residues modulo p, defined as:

G = {hr (mod p) | h ∈ Z∗
p}

• The set G is a group (under multiplication modulo p)

• The order of G is q

Choice of Groups: the group of r-th residues modulo p

Solution:

• Pick two prime numbers p, q such that p = qr + 1 for some r

• Consider the set of r-th residues modulo p, defined as:

G = {hr (mod p) | h ∈ Z∗
p}

• The set G is a group (under multiplication modulo p)

• The order of G is q

• We can quickly pick a uniform element in G: pick h ∈ Z∗
p and return hr

Choice of Groups: the group of r-th residues modulo p

Solution:

• Pick two prime numbers p, q such that p = qr + 1 for some r

• Consider the set of r-th residues modulo p, defined as:

G = {hr (mod p) | h ∈ Z∗
p}

• The set G is a group (under multiplication modulo p)

• The order of G is q

• We can quickly pick a uniform element in G: pick h ∈ Z∗
p and return hr

• There is a polynomial-time algorithm to test whether an element h is in G

Choice of Groups: the group of r-th residues modulo p

Solution:

• Pick two prime numbers p, q such that p = qr + 1 for some r

• Consider the set of r-th residues modulo p, defined as:

G = {hr (mod p) | h ∈ Z∗
p}

• The set G is a group (under multiplication modulo p)

• The order of G is q

• We can quickly pick a uniform element in G: pick h ∈ Z∗
p and return hr

• There is a polynomial-time algorithm to test whether an element h is in G

• There is a polynomial-time algorithm to find a generator of G

Choice of Groups: other options

• Subgroups of finite fields when using the polynomial
representation for elements

• Elliptic curves

• Consider cubic equations modulo p with two
variables x, y of the form

y2 = x3 +Ax+B (mod p)

• Let E(Zp) be the set of points (x, y) ∈ Zp × Zp

that satisfy the equation, plus a special point at
infinity O

• It is possible to define a suitable addition
operation over E(Zp)

• The set E(Zp) is a group under the addition
operation, and the identity element is O

