Fix a key exchange protocol Π and an attacker ${\mathcal A}$

We define the key-exchange experiment $KE_{A,\Pi}^{eav}(n)$ as follows:

- The honest parties run Π using n as the security parameter.
- The interaction results in a transcript τ and in a shared key $k \in \{0,1\}^n$

Fix a key exchange protocol Π and an attacker ${\mathcal A}$

We define the **key-exchange experiment** $KE_{A,\Pi}^{eav}(n)$ as follows:

- The honest parties run Π using n as the security parameter.
- The interaction results in a transcript τ and in a shared key $k \in \{0,1\}^n$
- A random bit b is chosen u.a.r. from $\{0,1\}$.
 - If b = 0 then $k' \leftarrow k$.
 - Otherwise (when b = 1) k' is chosen as a random uniform string from $\{0, 1\}^n$.

Fix a key exchange protocol Π and an attacker ${\mathcal A}$

We define the **key-exchange experiment** $KE_{A,\Pi}^{eav}(n)$ as follows:

- The honest parties run Π using n as the security parameter.
- The interaction results in a transcript τ and in a shared key $k \in \{0,1\}^n$
- A random bit b is chosen u.a.r. from $\{0,1\}$.
 - If b = 0 then $k' \leftarrow k$.
 - Otherwise (when b = 1) k' is chosen as a random uniform string from $\{0, 1\}^n$.
- \mathcal{A} is given k' and the transcript τ
- \mathcal{A} outputs a bit $b' \in \{0,1\}$

Fix a key exchange protocol Π and an attacker ${\mathcal A}$

We define the **key-exchange experiment** $KE_{A,\Pi}^{eav}(n)$ as follows:

- The honest parties run Π using n as the security parameter.
- The interaction results in a transcript τ and in a shared key $k \in \{0,1\}^n$
- A random bit b is chosen u.a.r. from $\{0,1\}$.
 - If b = 0 then $k' \leftarrow k$.
 - Otherwise (when b = 1) k' is chosen as a random uniform string from $\{0, 1\}^n$.
- \mathcal{A} is given k' and the transcript τ
- \mathcal{A} outputs a bit $b' \in \{0,1\}$

The outcome of the experiment is defined to be 1 if b' = b and 0 otherwise

 $\begin{array}{c} \text{Messages exchanged} \\ \text{following } \Pi \end{array}$

:

k

 $\begin{array}{c} \text{Messages exchanged} \\ \text{following } \Pi \end{array}$

Key Exchange: Formal Security Definition

Definition: A key-exchange protocol Π is secure in the presence of an eavesdropper if for all probabilistic polynomial-time adversaries \mathcal{A} there is a negligible function ε such that

$$\Pr[\mathsf{KE}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1] \le \frac{1}{2} + \varepsilon(n).$$

Key Exchange: Formal Security Definition

Definition: A key-exchange protocol Π is secure in the presence of an eavesdropper if for all probabilistic polynomial-time adversaries \mathcal{A} there is a negligible function ε such that

$$\Pr[\mathsf{KE}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n) = 1] \le \frac{1}{2} + \varepsilon(n).$$

Notice that being unable to compute k from the transcript τ is not a strong enough security guarantee

- The requirement we impose is **stronger**. Namely k must look just like a random string.
- This is necessary since we are going to use k for private-key cryptography.

Let \mathcal{G} be a probabilistic polynomial-time algorithm that, on input 1^n , outputs a description of a cyclic group G, its order q, where q is a n-bit integer, and a generator $g \in G$.

• Alice runs $\mathcal{G}(1^n)$ to obtain (G, q, g).

Whitfield Diffie

Let \mathcal{G} be a probabilistic polynomial-time algorithm that, on input 1^n , outputs a description of a cyclic group G, its order q, where q is a n-bit integer, and a generator $g \in G$.

- Alice runs $\mathcal{G}(\mathbf{1}^n)$ to obtain (G, q, g).
- Alice chooses a uniform $x \in \{0, 1, \dots, q-1\}$ and computes $h_A = g^x$

Whitfield Diffie

Let \mathcal{G} be a probabilistic polynomial-time algorithm that, on input 1^n , outputs a description of a cyclic group G, its order q, where q is a n-bit integer, and a generator $g \in G$.

- Alice runs $\mathcal{G}(\mathbf{1}^n)$ to obtain (G, q, g).
- Alice chooses a uniform $x \in \{0, 1, \dots, q-1\}$ and computes $h_A = g^x$
- Alice sends (G, q, g, h_A) to Bob

Whitfield Diffie

Let \mathcal{G} be a probabilistic polynomial-time algorithm that, on input 1^n , outputs a description of a cyclic group G, its order q, where q is a n-bit integer, and a generator $g \in G$.

- Alice runs $\mathcal{G}(\mathbf{1}^n)$ to obtain (G, q, g).
- Alice chooses a uniform $x \in \{0, 1, \dots, q-1\}$ and computes $h_A = g^x$
- Alice sends (G, q, g, h_A) to Bob
- Bob receives (G, q, g, h_A) , chooses a uniform $y \in \{0, 1, \dots, q-1\}$ and computes $h_B = g^y$.

Whitfield Diffie

Let \mathcal{G} be a probabilistic polynomial-time algorithm that, on input 1^n , outputs a description of a cyclic group G, its order q, where q is a n-bit integer, and a generator $g \in G$.

- Alice runs $\mathcal{G}(\mathbf{1}^n)$ to obtain (G, q, g).
- Alice chooses a uniform $x \in \{0, 1, \dots, q-1\}$ and computes $h_A = g^x$
- Alice sends (G, q, g, h_A) to Bob
- Bob receives (G, q, g, h_A) , chooses a uniform $y \in \{0, 1, \dots, q-1\}$ and computes $h_B = g^y$.
- Bob sends h_B to Alice and outputs $k = h_A^y$

Whitfield Diffie

Let \mathcal{G} be a probabilistic polynomial-time algorithm that, on input 1^n , outputs a description of a cyclic group G, its order q, where q is a n-bit integer, and a generator $g \in G$.

- Alice runs $\mathcal{G}(\mathbf{1}^n)$ to obtain (G, q, g).
- Alice chooses a uniform $x \in \{0, 1, \dots, q-1\}$ and computes $h_A = g^x$
- Alice sends (G,q,g,h_A) to Bob
- Bob receives (G, q, g, h_A) , chooses a uniform $y \in \{0, 1, \dots, q-1\}$ and computes $h_B = g^y$.
- Bob sends h_B to Alice and outputs $k = h_A^y$
- Alice receives h_B from Bob and outputs $k = h_B^x$

Whitfield Diffie

Let \mathcal{G} be a probabilistic polynomial-time algorithm that, on input 1^n , outputs a description of a cyclic group G, its order q, where q is a n-bit integer, and a generator $g \in G$.

- Alice runs $\mathcal{G}(1^n)$ to obtain (G, q, g).
- Alice chooses a uniform $x \in \{0, 1, \dots, q-1\}$ and computes $h_A = g^x$
- Alice sends (G, q, g, h_A) to Bob
- Bob receives (G, q, g, h_A) , chooses a uniform $y \in \{0, 1, \dots, q-1\}$ and computes $h_B = g^y$.
- Bob sends h_B to Alice and outputs $k = h_A^y$
- Alice receives h_B from Bob and outputs $k = h_B^x$

Notice that $k = h_A^y = (g^x)^y = g^{xy} = (g^y)^x = h_B^x$

Whitfield Diffie

Let \mathcal{G} be a probabilistic polynomial-time algorithm that, on input 1^n , outputs a description of a cyclic group G, its order q, where q is a n-bit integer, and a generator $g \in G$.

- Alice runs $\mathcal{G}(\mathbf{1}^n)$ to obtain (G, q, g).
- Alice chooses a uniform $x \in \{0, 1, \dots, q-1\}$ and computes $h_A = g^x$
- Alice sends (G, q, g, h_A) to Bob
- Bob receives (G, q, g, h_A) , chooses a uniform $y \in \{0, 1, \dots, q-1\}$ and computes $h_B = g^y$.
- Bob sends h_B to Alice and outputs $k = h_A^y$
- Alice receives h_B from Bob and outputs $k = h_B^x$

Notice that $k = h_A^y = (g^x)^y = g^{xy} = (g^y)^x = h_B^x$

Whitfield Diffie

Martin Hellman

In practice the group G and the generator g are fixed and already known by Alice and Bob

Alice only needs to send h^A to Bob

Suppose that Alice and Bob agreed to use a group G of order q and a generator $g \in G$.

• Pick x u.a.r. from $\{0, \ldots, q-1\}$

• Pick y u.a.r. from $\{0, \ldots, q-1\}$

Suppose that Alice and Bob agreed to use a group G of order q and a generator $g \in G$.

- Pick x u.a.r. from $\{0, \ldots, q-1\}$
- Compute $h_A = g^x$

- Pick y u.a.r. from $\{0, \ldots, q-1\}$
- Compute $h_B = g^y$

Suppose that Alice and Bob agreed to use a group G of order q and a generator $g \in G$.

- Pick x u.a.r. from $\{0, ..., q-1\}$ • Compute $h_B = g^y$ • Compute $h_A = g^x$ • Send h_A to Bob • Send h_B to Alice
 - Pick y u.a.r. from $\{0, \ldots, q-1\}$

Suppose that Alice and Bob agreed to use a group G of order q and a generator $g \in G$.

• Pick x u.a.r. from $\{0, \dots, q-1\}$ • Compute $h_A = g^x$ • Send h_A to Bob • Compute $h_B^x = (g^y)^x = g^{xy}$ • Compute $h_B^y = (g^x)^y = g^{xy}$

Suppose that Alice and Bob agreed to use a group G of order q and a generator $g \in G$.

• Pick x u.a.r. from $\{0, \dots, q-1\}$ • Compute $h_A = g^x$ • Send h_A to Bob • Compute $h_B^x = (g^y)^x = g^{xy}$ • Compute $h_B^y = (g^x)^y = g^{xy}$

The shared secret key is $k = g^{xy}$

Suppose that Alice and Bob agreed to use the group $G = \mathbb{Z}_{11}^*$ (of order q = 10) and the generator g = 2

This is just for the sake of the example! Recall that Z_{11}^* is **not** a good choice!

Alice picks x = 4 (chosen u.a.r. from {0,...,10}) Bob picks y = 3 (chosen u.a.r. from {0,...,10})

Suppose that Alice and Bob agreed to use the group $G = \mathbb{Z}_{11}^*$ (of order q = 10) and the generator g = 2

This is just for the sake of the example! Recall that Z_{11}^* is **not** a good choice!

- Alice picks x = 4 (chosen u.a.r. from {0,...,10})
- Alice computes $h_A = 2^4$

- Bob picks y = 3 (chosen u.a.r. from {0,...,10})
- Bob computes $h_B = 2^3$

Suppose that Alice and Bob agreed to use the group $G = \mathbb{Z}_{11}^*$ (of order q = 10) and the generator g = 2

This is just for the sake of the example! Recall that Z_{11}^* is **not** a good choice!

- Alice picks x = 4 (chosen u.a.r. from {0,...,10})
- Alice computes $h_A = 2^4 = 5$

- Bob picks y = 3 (chosen u.a.r. from {0,...,10})
- Bob computes $h_B = 2^3 = 8$

Suppose that Alice and Bob agreed to use the group $G = \mathbb{Z}_{11}^*$ (of order q = 10) and the generator g = 2This is just for the sake of the example! Recall that Z_{11}^* is **not** a good choice!

Suppose that Alice and Bob agreed to use the group $G = \mathbb{Z}_{11}^*$ (of order q = 10) and the generator g = 2This is just for the sake of the example! Recall that Z_{11}^* is **not** a good choice!

The shared secret key is k = 4

Suppose that Alice and Bob agreed to use the group $G = \mathbb{Z}_{11}^*$ (of order q = 10) and the generator g = 2This is just for the sake of the example! Recall that Z_{11}^* is **not** a good choice!

The shared secret key is k = 4

Diffie-Hellman Key Exchange: Security

The adversary sees (or knows already) G, q, g

The adversary sees $h_A = g^x$ and $h_B = g^y$

The shared key is $k = g^{xy}$

What kind of assumption do we need to guarantee security of the Diffie-Hellman Key Exchange?

Diffie-Hellman Key Exchange: Security

The adversary sees (or knows already) G, q, g

The adversary sees $h_A = g^x$ and $h_B = g^y$

The shared key is $k = g^{xy}$

What kind of assumption do we need to guarantee security of the Diffie-Hellman Key Exchange?

Wait... what were the assumptions again?

A reminder...

Reminder: The Discrete Logarithm Assumption

For a group-generation algorithm \mathcal{G} and an algorithm \mathcal{A} , define the experiment $\mathsf{DLog}_{\mathcal{A},\mathcal{G}}(n)$ as:

- Run $\mathcal{G}(1^n)$ to obtain (G, q, g), where G is a cyclic group of order q (where q is a n-bit integer), and g is a generator of G.
- Choose a uniform $h \in G$.
- G, q, g and h are given to \mathcal{A}
- \mathcal{A} outputs $x \in \{0, \dots, q-1\}$
- The outcome of the experiment is 1 if $g^x = h$. Otherwise the outcome is 0.

Definition The discrete-logarithm problem is hard relative to \mathcal{G} if for all probabilistic polynomial-time algorithms \mathcal{A} there exists a negligible function ε

 $\Pr[\mathsf{DLog}_{\mathcal{A},\mathcal{G}}(n)=1] \le \varepsilon(n).$

The discrete logarithm assumption: there exists a group-generation algorithm \mathcal{G} for which the discrete-logarithm problem is hard

Reminder: The CHD Problem and Assumption

Given $g, h_1, h_2 \in G$, define: $\mathsf{DH}_g(h_1, h_2) = g^{\log_g h_1 \cdot \log_g h_2}$

The **Computational Diffie-Hellman (CDH) problem** is that of computing $DH_g(h_1, h_2)$ given a group G, a generator g, and two elements h_1 , and h_2 chosen u.a.r. from G

Definition The CDH problem is hard relative to \mathcal{G} if for all probabilistic polynomial-time algorithms \mathcal{A} there exists a negligible function ε such that

$$\Pr[\mathcal{A}(G, q, g, h_1, h_2) = \mathsf{DH}_g(h_1, h_2)] = \varepsilon(n),$$

where the probabilities are taken over the experiment in which $\mathcal{G}(1^n)$ outputs (G, q, g), and uniform $h_1, h_2 \in G$ are chosen.

The CDH assumption: there exists a group-generation algorithm \mathcal{G} for which the CDH problem is hard

Reminder: the DDH Problem and Assumption

Definition The DDH problem is hard relative to \mathcal{G} if for all probabilistic polynomial-time algorithms \mathcal{A} there exists a negligible function ε such that

 $\left| \operatorname{Pr}[\mathcal{A}(G,q,g,g^{x},g^{y},g^{z})=1] - \operatorname{Pr}[\mathcal{A}(G,q,g,g^{x},g^{y},g^{xy})=1] \right| \leq \varepsilon(n),$

where the probabilities are taken over the experiment in which $\mathcal{G}(1^n)$ outputs (G, q, g), and then uniform $x, y, z \in \{0, 1, \dots, q-1\}$ are chosen (therefore g^x and g^y are uniformly distributed in G).

The DDH assumption: there exists a group-generation algorithm \mathcal{G} for which the DDH problem is hard
Diffie-Hellman Key Exchange: Security (DLog)

The adversary sees (or knows already) G,q,g

The adversary sees $h_A = g^x$ and $h_B = g^y$

The shared key is $k = g^{xy}$

If the Discrete-Logarithm assumption does not hold, then computing discrete logarithms is easy for all groups output by poly-time group generation algorithms

In particular, it is easy for our group G

Diffie-Hellman Key Exchange: Security (DLog)

The adversary sees (or knows already) G,q,g

The adversary sees $h_A = g^x$ and $h_B = g^y$

The shared key is $k = g^{xy}$

If the Discrete-Logarithm assumption does not hold, then computing discrete logarithms is easy for all groups output by poly-time group generation algorithms

In particular, it is easy for our group G

- The adversary knows $h_A = g^x$
- It can recover $x = \log_q h_A$ with non-negligible probability
- Once x is known, it can compute $h_B^x = g^{xy} = k$

Diffie-Hellman Key Exchange: Security (DLog)

The adversary sees (or knows already) G,q,g

The adversary sees $h_A = g^x$ and $h_B = g^y$

The shared key is $k = g^{xy}$

If the Discrete-Logarithm assumption does not hold, then computing discrete logarithms is easy for all groups output by poly-time group generation algorithms

In particular, it is easy for our group G

- The adversary knows $h_A = g^x$
- It can recover $x = \log_q h_A$ with non-negligible probability
- Once x is known, it can compute $h_B^x = g^{xy} = k$

The Discrete-Logarithm assumption is a necessary condition

Diffie-Hellman Key Exchange: Security (CDH)

The adversary sees (or knows already) G,q,g

The adversary sees $h_A = g^x$ and $h_B = g^y$

The shared key is $k = g^{xy}$

If the CDH assumption does not hold, then computing $DH(\cdot, \cdot)$ is easy for all groups output by poly-time group generation algorithms

In particular, it is easy for our group G

Diffie-Hellman Key Exchange: Security (CDH)

The adversary sees (or knows already) G,q,g

The adversary sees $h_A = g^x$ and $h_B = g^y$

The shared key is $k = g^{xy}$

If the CDH assumption does not hold, then computing $DH(\cdot, \cdot)$ is easy for all groups output by poly-time group generation algorithms

In particular, it is easy for our group G

- The adversary knows $h_A = g^x$ and $h_B = g^y$
- It can compute $\mathsf{DH}_g(h_A, h_B) = g^{\log_g h_A \cdot \log_g h_B} = g^{xy} = k$ with non negligible probability

Diffie-Hellman Key Exchange: Security (CDH)

The adversary sees (or knows already) G,q,g

The adversary sees $h_A = g^x$ and $h_B = g^y$

The shared key is $k = g^{xy}$

If the CDH assumption does not hold, then computing $DH(\cdot, \cdot)$ is easy for all groups output by poly-time group generation algorithms

In particular, it is easy for our group G

- The adversary knows $h_A = g^x$ and $h_B = g^y$
- It can compute $DH_g(h_A, h_B) = g^{\log_g h_A \cdot \log_g h_B} = g^{xy} = k$ with non negligible probability

The CDH assumption is a necessary condition

Diffie-Hellman Key Exchange: Security (DDH)

The adversary sees (or knows already) G, q, gThe adversary sees $h_A = g^x$ and $h_B = g^y$

The shared key is $k = g^{xy}$

If the DDH assumption does not hold then, given g, g^x , and g^y , it possible to distinguish $k = g^{ab}$ from a group element chosen uniformly at random (for all groups output by poly-time group generation algorithms).

In particular, this holds for our group G.

Diffie-Hellman Key Exchange: Security (DDH)

The adversary sees (or knows already) G, q, g

The adversary sees $h_A = g^x$ and $h_B = g^y$

The shared key is $k = g^{xy}$

If the DDH assumption does not hold then, given g, g^x , and g^y , it possible to distinguish $k = g^{ab}$ from a group element chosen uniformly at random (for all groups output by poly-time group generation algorithms).

In particular, this holds for our group G.

- The adversary knows $h_A = g^x$ and $h_B = g^y$
- It can tell k apart from a random group element with a non-negligible advantage over random guessing
- It can use this to win the $\mathsf{KE}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n)$ experiment

Diffie-Hellman Key Exchange: Security (DDH)

The adversary sees (or knows already) G,q,g

The adversary sees $h_A = g^x$ and $h_B = g^y$

The shared key is $k = g^{xy}$

If the DDH assumption does not hold then, given g, g^x , and g^y , it possible to distinguish $k = g^{ab}$ from a group element chosen uniformly at random (for all groups output by poly-time group generation algorithms).

In particular, this holds for our group G.

- The adversary knows $h_A = g^x$ and $h_B = g^y$
- It can tell k apart from a random group element with a non-negligible advantage over random guessing
- It can use this to win the $\mathsf{KE}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n)$ experiment

The DDH assumption is a necessary condition

Diffie-Hellman Key Exchange: Security (Roadmap)

We will argue that the DDH assumption is also a sufficient condition

We first need to address a technical subtlety

- Intuitively, the DDH assumption guarantees that it is hard to distinguish $k = g^{xy}$ from a random group element
- The $KE_{\mathcal{A},\Pi}^{eav}(n)$ experiment asks to distinguish k from a random n-bit string

Diffie-Hellman Key Exchange: Security (Roadmap)

We will argue that the DDH assumption is also a sufficient condition

We first need to address a technical subtlety

- Intuitively, the DDH assumption guarantees that it is hard to distinguish $k = g^{xy}$ from a random group element
- The $KE_{A,\Pi}^{eav}(n)$ experiment asks to distinguish k from a random n-bit string
- In general, a random n-bit string is not even a group element
- \implies It can be easy to tell a random *n*-bit string apart from *k* by simply testing whether it is a group element

Diffie-Hellman Key Exchange: Security (Roadmap)

We will argue that the DDH assumption is also a sufficient condition

We first need to address a technical subtlety

- Intuitively, the DDH assumption guarantees that it is hard to distinguish $k = g^{xy}$ from a random group element
- The $KE_{A,\Pi}^{eav}(n)$ experiment asks to distinguish k from a random n-bit string
- In general, a random n-bit string is not even a group element
- \implies It can be easy to tell a random *n*-bit string apart from *k* by simply testing whether it is a group element

Solution (roadmap):

- We revise the $\mathsf{KE}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n)$ experiment to take into account groups
- We prove security w.r.t. the revised experiment
- We argue that the shared key k can be turned into a (essentially random) n-bit string

Diffie-Hellman Key Exchange: Revised Experiment

Fix a group G, a key exchange protocol Π , and an attacker \mathcal{A}

We define the key-exchange experiment $\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n)$ as follows:

- The honest parties run Π using n as the security parameter.
- The interaction results in a transcript au and in a shared key $k \in G$
- A random bit b is chosen u.a.r. from $\{0, 1\}$.
 - If b = 0 then $k' \leftarrow k$.
 - Otherwise (when b = 1) k' is chosen as a random element from G.
- \mathcal{A} is given k' and the transcript τ
- \mathcal{A} outputs a bit $b' \in \{0, 1\}$

The outcome of the experiment is defined to be 1 if b' = b and 0 otherwise

Theorem: If the DDH problem is hard relative to G, then the Diffie–Hellman key-exchange protocol Π is secure in the presence of an eavesdropper with respect to the modified experiment $\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n)$

Proof:

We show that a probabilistic polynomial-time adversary \mathcal{A} that wins the experiment $\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n)$ with non-negligible advantage, can be used to design a probabilistic polynomial-time algorithm that solves the DDH problem with non-negligible gap.

• Suppose towards a contradiction that there exists \mathcal{A} such that $\Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1] = \frac{1}{2} + \varepsilon(n)$ for non-negligible $\varepsilon(n)$.

Theorem: If the DDH problem is hard relative to G, then the Diffie–Hellman key-exchange protocol Π is secure in the presence of an eavesdropper with respect to the modified experiment $\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n)$

Proof:

We show that a probabilistic polynomial-time adversary \mathcal{A} that wins the experiment $\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n)$ with non-negligible advantage, can be used to design a probabilistic polynomial-time algorithm that solves the DDH problem with non-negligible gap.

- Suppose towards a contradiction that there exists \mathcal{A} such that $\Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1] = \frac{1}{2} + \varepsilon(n)$ for non-negligible $\varepsilon(n)$.
- To solve the DDH problem... we use \mathcal{A} itself!

Theorem: If the DDH problem is hard relative to G, then the Diffie–Hellman key-exchange protocol Π is secure in the presence of an eavesdropper with respect to the modified experiment $\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n)$

Proof:

We show that a probabilistic polynomial-time adversary \mathcal{A} that wins the experiment $\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n)$ with non-negligible advantage, can be used to design a probabilistic polynomial-time algorithm that solves the DDH problem with non-negligible gap.

- Suppose towards a contradiction that there exists \mathcal{A} such that $\Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1] = \frac{1}{2} + \varepsilon(n)$ for non-negligible $\varepsilon(n)$.
- To solve the DDH problem... we use \mathcal{A} itself!

 $\Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1 \mid b = 1]$

Theorem: If the DDH problem is hard relative to G, then the Diffie–Hellman key-exchange protocol Π is secure in the presence of an eavesdropper with respect to the modified experiment $\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n)$

Proof:

We show that a probabilistic polynomial-time adversary \mathcal{A} that wins the experiment $\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n)$ with non-negligible advantage, can be used to design a probabilistic polynomial-time algorithm that solves the DDH problem with non-negligible gap.

- Suppose towards a contradiction that there exists \mathcal{A} such that $\Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1] = \frac{1}{2} + \varepsilon(n)$ for non-negligible $\varepsilon(n)$.
- To solve the DDH problem... we use \mathcal{A} itself!

 $\Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1 \mid b = 1] = \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^z) = 1]$

Theorem: If the DDH problem is hard relative to G, then the Diffie–Hellman key-exchange protocol Π is secure in the presence of an eavesdropper with respect to the modified experiment $\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n)$

Proof:

We show that a probabilistic polynomial-time adversary \mathcal{A} that wins the experiment $\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n)$ with non-negligible advantage, can be used to design a probabilistic polynomial-time algorithm that solves the DDH problem with non-negligible gap.

- Suppose towards a contradiction that there exists \mathcal{A} such that $\Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1] = \frac{1}{2} + \varepsilon(n)$ for non-negligible $\varepsilon(n)$.
- To solve the DDH problem... we use \mathcal{A} itself!

 $\Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1 \mid b = 1] = \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^z) = 1]$

Theorem: If the DDH problem is hard relative to G, then the Diffie–Hellman key-exchange protocol Π is secure in the presence of an eavesdropper with respect to the modified experiment $\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n)$

Proof:

We show that a probabilistic polynomial-time adversary \mathcal{A} that wins the experiment $\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n)$ with non-negligible advantage, can be used to design a probabilistic polynomial-time algorithm that solves the DDH problem with non-negligible gap.

• Suppose towards a contradiction that there exists \mathcal{A} such that $\Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1] = \frac{1}{2} + \varepsilon(n)$ for non-negligible $\varepsilon(n)$.

• To solve the DDH problem... we use
$$\mathcal{A}$$
 itself!

$$\Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1 \mid b = 1] = \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^z) = 1]$$

$$\widehat{\mathsf{LE}}^{\mathsf{eav}}(n) = 1 \mid b = 1] = \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^z) = 1]$$

$$\widehat{\mathsf{LE}}^{\mathsf{eav}}(n) = 1 \mid b = 1] = \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^z) = 1]$$

Theorem: If the DDH problem is hard relative to G, then the Diffie–Hellman key-exchange protocol Π is secure in the presence of an eavesdropper with respect to the modified experiment $\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n)$

Proof:

We show that a probabilistic polynomial-time adversary \mathcal{A} that wins the experiment $\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n)$ with non-negligible advantage, can be used to design a probabilistic polynomial-time algorithm that solves the DDH problem with non-negligible gap.

• Suppose towards a contradiction that there exists \mathcal{A} such that $\Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1] = \frac{1}{2} + \varepsilon(n)$ for non-negligible $\varepsilon(n)$.

• To solve the DDH problem... we use
$$\mathcal{A}$$
 itself!

$$\Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1 \mid b = 1] = \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^z) = 1]$$

$$\Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1 \mid b = 0]$$

$$k' = g^z \text{ for some } z \text{ chosen} u.a.r. \text{ from } \{0, \dots, q-1\}$$

Theorem: If the DDH problem is hard relative to G, then the Diffie–Hellman key-exchange protocol Π is secure in the presence of an eavesdropper with respect to the modified experiment $\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n)$

Proof:

We show that a probabilistic polynomial-time adversary \mathcal{A} that wins the experiment $\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n)$ with non-negligible advantage, can be used to design a probabilistic polynomial-time algorithm that solves the DDH problem with non-negligible gap.

• Suppose towards a contradiction that there exists \mathcal{A} such that $\Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1] = \frac{1}{2} + \varepsilon(n)$ for non-negligible $\varepsilon(n)$.

z chosen

., q-1

• To solve the DDH problem... we use
$$\mathcal{A}$$
 itself!

$$\Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1 \mid b = 1] = \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^z) = 1]$$

$$\Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1 \mid b = 0] = \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^{xy}) = 0]$$

$$k' = g^z \text{ for some u.a.r. from } \{0, ...\}$$

Theorem: If the DDH problem is hard relative to G, then the Diffie–Hellman key-exchange protocol Π is secure in the presence of an eavesdropper with respect to the modified experiment $\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n)$

Proof:

We show that a probabilistic polynomial-time adversary \mathcal{A} that wins the experiment $\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n)$ with non-negligible advantage, can be used to design a probabilistic polynomial-time algorithm that solves the DDH problem with non-negligible gap.

• Suppose towards a contradiction that there exists \mathcal{A} such that $\Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1] = \frac{1}{2} + \varepsilon(n)$ for non-negligible $\varepsilon(n)$.

• To solve the DDH problem... we use
$$\mathcal{A}$$
 itself!

$$\Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1 \mid b = 1] = \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^z) = 1]$$

$$\Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1 \mid b = 0] = \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^{xy}) = 0]$$

$$k' = k = g^{xy}$$

Theorem: If the DDH problem is hard relative to G, then the Diffie–Hellman key-exchange protocol Π is secure in the presence of an eavesdropper with respect to the modified experiment $\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n)$

Proof:

We show that a probabilistic polynomial-time adversary \mathcal{A} that wins the experiment $\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n)$ with non-negligible advantage, can be used to design a probabilistic polynomial-time algorithm that solves the DDH problem with non-negligible gap.

• Suppose towards a contradiction that there exists \mathcal{A} such that $\Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1] = \frac{1}{2} + \varepsilon(n)$ for non-negligible $\varepsilon(n)$.

• To solve the DDH problem... we use
$$\mathcal{A}$$
 itself!

$$\Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1 \mid b = 1] = \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^z) = 1]$$

$$\Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1 \mid b = 0] = \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^{xy}) = 0] = 1 - \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^{xy}) = 1]$$

$$k' = k = g^{xy}$$

$$\frac{1}{2} + \varepsilon(n) = \Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1] = \frac{1}{2}\Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1 \mid b = 0] + \frac{1}{2}\Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1 \mid b = 1]$$

$$\frac{1}{2} + \varepsilon(n) = \Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1] = \frac{1}{2} \Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1 \mid b = 0] + \frac{1}{2} \Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1 \mid b = 1]$$
$$= \frac{1}{2} - \frac{1}{2} \cdot \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^{xy}) = 1] + \frac{1}{2} \cdot \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^z) = 1]$$

$$\frac{1}{2} + \varepsilon(n) = \Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1] = \frac{1}{2} \Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1 \mid b = 0] + \frac{1}{2} \Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1 \mid b = 1]$$

$$= \frac{1}{2} - \frac{1}{2} \cdot \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^{xy}) = 1] + \frac{1}{2} \cdot \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^z) = 1]$$

$$= \frac{1}{2} + \frac{1}{2} \cdot (-\Pr[\mathcal{A}(G, q, g, g^x, g^y, g^{xy}) = 1] + \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^z) = 1])$$

$$\begin{aligned} \frac{1}{2} + \varepsilon(n) &= \Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1] = \frac{1}{2} \Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1 \mid b = 0] + \frac{1}{2} \Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1 \mid b = 1] \\ &= \frac{1}{2} - \frac{1}{2} \cdot \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^{xy}) = 1] + \frac{1}{2} \cdot \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^z) = 1] \\ &= \frac{1}{2} + \frac{1}{2} \cdot \left(-\Pr[\mathcal{A}(G, q, g, g^x, g^y, g^{xy}) = 1] + \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^z) = 1]\right) \\ &\leq \frac{1}{2} + \frac{1}{2} \cdot \left|\Pr[\mathcal{A}(G, q, g, g^x, g^y, g^{xy}) = 1] - \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^z) = 1]\right| \end{aligned}$$

Diffie-Hellman Key Exchange: Security Proof (cont.)

$$\Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1 \mid b = 1] = \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^z) = 1]$$

$$\Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1 \mid b = 0] = 1 - \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^{xy}) = 1]$$

$$\begin{aligned} \frac{1}{2} + \varepsilon(n) &= \Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1] = \frac{1}{2} \Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1 \mid b = 0] + \frac{1}{2} \Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1 \mid b = 1] \\ &= \frac{1}{2} - \frac{1}{2} \cdot \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^{xy}) = 1] + \frac{1}{2} \cdot \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^z) = 1] \\ &= \frac{1}{2} + \frac{1}{2} \cdot \left(-\Pr[\mathcal{A}(G, q, g, g^x, g^y, g^{xy}) = 1] + \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^z) = 1]\right) \\ &\leq \frac{1}{2} + \frac{1}{2} \cdot \left|\Pr[\mathcal{A}(G, q, g, g^x, g^y, g^{xy}) = 1] - \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^z) = 1]\right| \end{aligned}$$

$$\Pr[\mathcal{A}(G, q, g, g^x, g^y, g^{xy}) = 1] - \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^z) = 1] \Big| \ge 2\varepsilon(n)$$

Diffie-Hellman Key Exchange: Security Proof (cont.)

$$\Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1 \mid b = 1] = \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^z) = 1]$$

$$\Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1 \mid b = 0] = 1 - \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^{xy}) = 1]$$

$$\begin{aligned} \frac{1}{2} + \varepsilon(n) &= \Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1] = \frac{1}{2} \Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1 \mid b = 0] + \frac{1}{2} \Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1 \mid b = 1] \\ &= \frac{1}{2} - \frac{1}{2} \cdot \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^{xy}) = 1] + \frac{1}{2} \cdot \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^z) = 1] \\ &= \frac{1}{2} + \frac{1}{2} \cdot \left(-\Pr[\mathcal{A}(G, q, g, g^x, g^y, g^{xy}) = 1] + \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^z) = 1] \right) \\ &\leq \frac{1}{2} + \frac{1}{2} \cdot \left| \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^{xy}) = 1] - \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^z) = 1] \right| \end{aligned}$$

$$\left| \Pr[\mathcal{A}(G,q,g,g^x,g^y,g^{xy})=1] - \Pr[\mathcal{A}(G,q,g,g^x,g^y,g^z)=1] \right| \ge 2\varepsilon(n)$$
 Not
negligible

Turning a random group element into a random binary string

We have shown the (conditional) security of the Diffie-Hellman protocol with respect to the modified experiment $\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n)$

The Diffie-Hellman key exchange returns a group element $k = g^{xy}$ that is indistinguishable from a random one to any polynomial-time adversary

What we actually need is a shared key k^* , i.e., a *n*-bit binary string indistinguishable from a random string (to any polynomial-time adversary)

How do we do that?

Turning a random group element into a random binary string

We have shown the (conditional) security of the Diffie-Hellman protocol with respect to the modified experiment $\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n)$

The Diffie-Hellman key exchange returns a group element $k = g^{xy}$ that is indistinguishable from a random one to any polynomial-time adversary

What we actually need is a shared key k^* , i.e., a *n*-bit binary string indistinguishable from a random string (to any polynomial-time adversary)

How do we do that?

Key derivation! Use a hash function H and set $k^* = H(k)$

This is secure if we model H as a random oracle

So far we have considered eavesdropping adversaries

What about active adversaries?

- So far we have considered eavesdropping adversaries
- What about active adversaries?
- The Diffie-Hellman Key Exchange is vulnerable to the Man-in-the-Middle attack

So far we have considered eavesdropping adversaries

What about active adversaries?

The Diffie-Hellman Key Exchange is vulnerable to the Man-in-the-Middle attack

- And adversary interacts with both Alice and Bob
- On Alice's side, the adversary pretends to be Bob and runs Bob's side of the Diffie-Hellman protocol
- On Bob's side, the adversary pretends to be Alice and runs Alice's side of the Diffie-Hellman protocol

So far we have considered eavesdropping adversaries

What about active adversaries?

The Diffie-Hellman Key Exchange is vulnerable to the Man-in-the-Middle attack

- And adversary interacts with both Alice and Bob
- On Alice's side, the adversary pretends to be Bob and runs Bob's side of the Diffie-Hellman protocol
- On Bob's side, the adversary pretends to be Alice and runs Alice's side of the Diffie-Hellman protocol

- At the end of the protocol Alice and Bob have two different keys k_A, k_B and both of these keys are known to the Adversary
- When a message is sent from A to B (or vice-versa) the adversary can decrypt it with k_A , read and possibily alter the plaintext, and re-encrypt it with k_B
Man-in-the-Middle Attack

What can we do against this attack?

Man-in-the-Middle Attack

What can we do against this attack?

Man-in-the-Middle attacks can't be avoided if Alice and Bob don't know anything about each other and don't trust any 3rd-party

Man-in-the-Middle Attack

What can we do against this attack?

Man-in-the-Middle attacks can't be avoided if Alice and Bob don't know anything about each other and don't trust any 3rd-party

- In general we want authenticated key exchange protocols
- Can be achieved with public-key cryptography and digital signatures/certificates
- Modern key-exchange protocols (e.g., TLS) provide authentication

Private-Key Setting

Two (or more) parties who wish to communicate secretly need to share a uniform secret key k in advance

The same key can be used for both sending and receiving

- Each party can both send an receive
- If multiple parties share the same key, there is no way to distinguish them

The key must be kept secret!

• If an attacker gets to know k we lose all the security guarantees

One party generates a pair of keys:

- A public key pk
- A secret key (or private key) sk

One party generates a pair of keys:

- A public key *pk*
- A secret key (or private key) sk

The public key is... public

- No need to keep it secret
- In fact it is often widely disseminated
- Used by anybody that wishes to send messages to the party
- Security must hold even if an attacker knows pk

One party generates a pair of keys:

- A public key *pk*
- A secret key (or private key) sk

The public key is... public

- No need to keep it secret
- In fact it is often widely disseminated
- Used by anybody that wishes to send messages to the party
- Security must hold even if an attacker knows pk

The secret key must be kept...secret

• It is only used by the party that generated it

We assume that the involved parties are able to obtain (untampered) copies of the public keys

- The attacker is just an eavesdropper; or
- The attacker remains passive *during key distribution*

We assume that the involved parties are able to obtain (untampered) copies of the public keys

- The attacker is just an eavesdropper; or
- The attacker remains passive *during key distribution*

Advantages:

• Key distribution: Keys can be distributed over a public channel

We assume that the involved parties are able to obtain (untampered) copies of the public keys

- The attacker is just an eavesdropper; or
- The attacker remains passive *during key distribution*

Advantages:

- Key distribution: Keys can be distributed over a public channel
- Key management: Each user needs a single public/secret key pair.
 - In a system with N users, there are $\Theta(N)$ key pairs, instead of $\Theta(N^2)$ private-keys

We assume that the involved parties are able to obtain (untampered) copies of the public keys

- The attacker is just an eavesdropper; or
- The attacker remains passive *during key distribution*

Advantages:

- Key distribution: Keys can be distributed over a public channel
- Key management: Each user needs a single public/secret key pair.
 - In a system with N users, there are $\Theta(N)$ key pairs, instead of $\Theta(N^2)$ private-keys
- Open systems: Two parties with no prior relationship can find each others' public keys*
 - The recipient does not even need to know who the sender is

*Requires a trusted third party

Why study private key cryptography at all?

• If two parties wish to communicate, they can always generate two public/secret key pairs instead of a secret shared key

Why study private key cryptography at all?

• If two parties wish to communicate, they can always generate two public/secret key pairs instead of a secret shared key

But...

• Public-key schemes are slower

Why study private key cryptography at all?

• If two parties wish to communicate, they can always generate two public/secret key pairs instead of a secret shared key

- Public-key schemes are slower
- Public-key schemes require longer keys

Why study private key cryptography at all?

• If two parties wish to communicate, they can always generate two public/secret key pairs instead of a secret shared key

- Public-key schemes are slower
- Public-key schemes require longer keys
- Public-key schemes have larger ciphertext expansion

Why study private key cryptography at all?

• If two parties wish to communicate, they can always generate two public/secret key pairs instead of a secret shared key

- Public-key schemes are slower
- Public-key schemes require longer keys
- Public-key schemes have larger ciphertext expansion
- Public-key schemes require stronger assumptions

Why study private key cryptography at all?

• If two parties wish to communicate, they can always generate two public/secret key pairs instead of a secret shared key

But...

• Public-key schemes require stronger assumptions

- Bob generates a public/secret key pair (pk, sk)
- Bob shares pk with Alice \bigcirc

- Bob generates a public/secret key pair (pk, sk)
- Bob shares *pk* with Alice •
- Alice encrypts her message m using Bob's public key pk

 $c \leftarrow \mathsf{Enc}_{pk}(m)$

- Bob generates a public/secret key pair (pk, sk)
- Bob shares pk with Alice \bigcirc
- Alice encrypts her message m using Bob's public key pk

 $c \leftarrow \mathsf{Enc}_{pk}(m)$

- Bob generates a public/secret key pair (pk, sk)
- Bob shares *pk* with Alice
- Alice encrypts her message m using Bob's public key pk

 $c \leftarrow \mathsf{Enc}_{pk}(m)$

Bob **decrypts** the ciphertext c using his secret key sk

 $m \leftarrow \mathsf{Dec}_{sk}(c)$

A public-key encryption scheme consists of three algorithms:

Gen is a randomized algorithm that takes 1ⁿ as input and outputs a pair of keys (pk, sk), each of length at least n. The public key defines a message space M_{pk}

A public-key encryption scheme consists of three algorithms:

- Gen is a randomized algorithm that takes 1ⁿ as input and outputs a pair of keys (pk, sk), each of length at least n. The public key defines a message space M_{pk}
- Enc is a randomized algorithm that takes as input a public key pk and a message (or plaintext) m ∈ M_{pk} and outputs a ciphertext c obtained by encrypting m with key pk.

 $Enc_{pk}(m)$ denotes an execution of Enc with inputs pk and m

A public-key encryption scheme consists of three algorithms:

- Gen is a randomized algorithm that takes 1ⁿ as input and outputs a pair of keys (pk, sk), each of length at least n. The public key defines a message space M_{pk}
- Enc is a randomized algorithm that takes as input a public key pk and a message (or plaintext) m ∈ M_{pk} and outputs a ciphertext c obtained by encrypting m with key pk.

 $\operatorname{Enc}_{pk}(m)$ denotes an execution of Enc with inputs pk and m

 Dec is a deterministic algorithm that takes as input a secret key sk and a ciphertext c and outputs a message m ∈ M_{pk} or a special symbol ⊥ denoting failure.

 $Dec_{sk}(c)$ denotes an execution of Dec with inputs sk and c

A public-key encryption scheme consists of three algorithms:

- Gen is a randomized algorithm that takes 1ⁿ as input and outputs a pair of keys (pk, sk), each of length at least n. The public key defines a message space M_{pk}
- Enc is a randomized algorithm that takes as input a public key pk and a message (or plaintext) m ∈ M_{pk} and outputs a ciphertext c obtained by encrypting m with key pk.

 $\operatorname{Enc}_{pk}(m)$ denotes an execution of Enc with inputs pk and m

 Dec is a deterministic algorithm that takes as input a secret key sk and a ciphertext c and outputs a message m ∈ M_{pk} or a special symbol ⊥ denoting failure.

 $Dec_{sk}(c)$ denotes an execution of Dec with inputs sk and c

Correctness: We must have $\text{Dec}_{sk}(\text{Enc}_{pk}(m)) = m$ for any $m \in \mathcal{M}_{pk}$, except for negligible probability (over the randomness of Gen and Enc).

How do we formalize the notion of security for Public-Key encryption?

• We can hope to adapt the security definition that we used for Private-Key encryption schemes

How do we formalize the notion of security for Public-Key encryption?

- We can hope to adapt the security definition that we used for Private-Key encryption schemes
- Let's start simple... security in the presence of an eavesdropper

How do we formalize the notion of security for Public-Key encryption?

- We can hope to adapt the security definition that we used for Private-Key encryption schemes
- Let's start simple... security in the presence of an eavesdropper

Experiment $\operatorname{Priv}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n)$:

- A random key k is generated (by running Gen)
- \mathcal{A} chooses two distinct messages $m_0, m_1 \in \mathcal{M}$
- A uniform random bit $b \in \{0, 1\}$ is generated
- The challenge ciphertext $c = \text{Enc}_k(m_b)$, and given to \mathcal{A}
- \mathcal{A} outputs a guess $b' \in \{0,1\}$ about b
- The outcome of the experiment is defined to be 1 if b' = b, and 0 otherwise

How do we formalize the notion of security for Public-Key encryption?

- We can hope to adapt the security definition that we used for Private-Key encryption schemes
- Let's start simple... security in the presence of an eavesdropper

Experiment PubK^{eav}_{\mathcal{A},Π}(*n*):

- A random key k is generated (by running Gen)
- \mathcal{A} chooses two distinct messages $m_0, m_1 \in \mathcal{M}$
- A uniform random bit $b \in \{0, 1\}$ is generated
- The challenge ciphertext $c = \text{Enc}_k(m_b)$, and given to \mathcal{A}
- \mathcal{A} outputs a guess $b' \in \{0,1\}$ about b
- The outcome of the experiment is defined to be 1 if b' = b, and 0 otherwise

How do we formalize the notion of security for Public-Key encryption?

- We can hope to adapt the security definition that we used for Private-Key encryption schemes
- Let's start simple... security in the presence of an eavesdropper

Experiment PubK^{eav}_{\mathcal{A},Π}(*n*):

- A random key pair $(pk, sk) \leftarrow \text{Gen}(1^n)$ is generated
- \mathcal{A} chooses two distinct messages $m_0, m_1 \in \mathcal{M}$
- A uniform random bit $b \in \{0, 1\}$ is generated
- The challenge ciphertext $c = \text{Enc}_k(m_b)$, and given to \mathcal{A}
- \mathcal{A} outputs a guess $b' \in \{0,1\}$ about b
- The outcome of the experiment is defined to be 1 if b' = b, and 0 otherwise

How do we formalize the notion of security for Public-Key encryption?

- We can hope to adapt the security definition that we used for Private-Key encryption schemes
- Let's start simple... security in the presence of an eavesdropper

Experiment PubK^{eav}_{A,Π}(*n*):

- A random key pair $(pk, sk) \leftarrow Gen(1^n)$ is generated
- The public key pk is sent to ${\cal A}$
- \mathcal{A} chooses two distinct messages $m_0, m_1 \in \mathcal{M}$
- A uniform random bit $b \in \{0, 1\}$ is generated
- The challenge ciphertext $c = \text{Enc}_k(m_b)$, and given to \mathcal{A}
- \mathcal{A} outputs a guess $b' \in \{0,1\}$ about b
- The outcome of the experiment is defined to be 1 if b' = b, and 0 otherwise

How do we formalize the notion of security for Public-Key encryption?

- We can hope to adapt the security definition that we used for Private-Key encryption schemes
- Let's start simple... security in the presence of an eavesdropper

Experiment PubK^{eav}_{A,Π}(*n*):

- A random key pair $(pk, sk) \leftarrow Gen(1^n)$ is generated
- The public key pk is sent to ${\cal A}$
- \mathcal{A} chooses two distinct messages $m_0, m_1 \in \mathcal{M}$
- A uniform random bit $b \in \{0, 1\}$ is generated
- The challenge ciphertext $c = Enc_{pk}(m_b)$, and given to A
- \mathcal{A} outputs a guess $b' \in \{0,1\}$ about b
- The outcome of the experiment is defined to be 1 if b' = b, and 0 otherwise

The adversary has access to the public key pk

- It can choose m_0 and m_1 as a function of pk
- It can encrypt any message with pk by itself

The adversary has access to the public key $\boldsymbol{p}\boldsymbol{k}$

- It can choose m_0 and m_1 as a function of pk
- It can encrypt any message with pk by itself
- No need for an encryption oracle!

The adversary has access to the public key $\boldsymbol{p}\boldsymbol{k}$

- It can choose m_0 and m_1 as a function of pk
- It can encrypt any message with pk by itself
- No need for an encryption oracle!

The adversary has access to the public key $\boldsymbol{p}\boldsymbol{k}$

- It can choose m_0 and m_1 as a function of pk
- It can encrypt any message with pk by itself
- No need for an encryption oracle!
- This definition already allows the attacker to perform chosen-plaintext attacks

Let's revise the name...

 $\mathsf{PubK}_{\mathcal{A},\Pi}^{\mathsf{eav}}$

PubK

сра Ап
Some observations on the $\mathsf{PubK}_{\mathcal{A},\Pi}^{\mathsf{eav}}$ experiment

The adversary has access to the public key $\boldsymbol{p}\boldsymbol{k}$

- It can choose m_0 and m_1 as a function of pk
- It can encrypt any message with pk by itself
- No need for an encryption oracle!
- This definition already allows the attacker to perform chosen-plaintext attacks

Let's revise the name...

$$\mathsf{PubK}_{\mathcal{A},\Pi}^{\mathsf{eav}}$$

Definition: A public key encryption scheme Π is **CPA-secure** if, for every probabilistic polynomial-time adversary A, there is a negligible function ε such that:

$$\Pr[\mathsf{PubK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1] \le \frac{1}{2} + \varepsilon(n)$$

Any public-key encryption scheme that is CPA-secure is also CPA-secure for multiple encryptions

(just like the private-key setting)

No deterministic public-key encryption scheme can be CPA-secure

(just like the private-key setting)

There is no such thing as a perfectly secret public key encryption scheme

There is no such thing as a perfectly secret public key encryption scheme We show that an adversary can always decrypt a ciphertext $c \leftarrow \text{Enc}_{pk}(m)$ using a brute-force attack. (obviously, this adversary won't run in polynomial-time)

There is no such thing as a perfectly secret public key encryption scheme

We show that an adversary can always decrypt a ciphertext $c \leftarrow \text{Enc}_{pk}(m)$ using a brute-force attack.

(obviously, this adversary won't run in polynomial-time)

Assume, for simplicity, that the decryption algorithm never fails.

Let R be an upper bound to the number of random bits used by the encryption algorithm

There is no such thing as a perfectly secret public key encryption scheme

We show that an adversary can always decrypt a ciphertext $c \leftarrow \text{Enc}_{pk}(m)$ using a brute-force attack.

(obviously, this adversary won't run in polynomial-time)

Assume, for simplicity, that the decryption algorithm never fails.

Let R be an upper bound to the number of random bits used by the encryption algorithm

- The adversary enumerates all possible messages $m' \in \mathcal{M}_{pk}$:
 - $\bullet\,$ For each m', the adversary enumerates all R-bit binary strings r
 - The adversary runs $\operatorname{Enc}_{pk}(m')$ using r as the random bits to obtain a ciphertext c'
 - If c = c': Claim that the plaintext m is exactly m'. Stop.

There is no such thing as a perfectly secret public key encryption scheme

We show that an adversary can always decrypt a ciphertext $c \leftarrow \text{Enc}_{pk}(m)$ using a brute-force attack.

(obviously, this adversary won't run in polynomial-time)

Assume, for simplicity, that the decryption algorithm never fails.

Let R be an upper bound to the number of random bits used by the encryption algorithm

- The adversary enumerates all possible messages $m' \in \mathcal{M}_{pk}$:
 - For each m', the adversary enumerates all R-bit binary strings r
 - The adversary runs $\operatorname{Enc}_{pk}(m')$ using r as the random bits to obtain a ciphertext c'
 - If c = c': Claim that the plaintext m is exactly m'. Stop.

Notice that:

• This algorithm must eventually stop (when m' = m and r are the random bits used by $c \leftarrow \text{Enc}_{pk}(m)$)

There is no such thing as a perfectly secret public key encryption scheme

We show that an adversary can always decrypt a ciphertext $c \leftarrow \text{Enc}_{pk}(m)$ using a brute-force attack.

(obviously, this adversary won't run in polynomial-time)

Assume, for simplicity, that the decryption algorithm never fails.

Let R be an upper bound to the number of random bits used by the encryption algorithm

- The adversary enumerates all possible messages $m' \in \mathcal{M}_{pk}$:
 - For each m', the adversary enumerates all R-bit binary strings r
 - The adversary runs $\operatorname{Enc}_{pk}(m')$ using r as the random bits to obtain a ciphertext c'
 - If c = c': Claim that the plaintext m is exactly m'. Stop.

Notice that:

- This algorithm must eventually stop (when m' = m and r are the random bits used by $c \leftarrow \text{Enc}_{pk}(m)$)
- It cannot return $m' \neq m$ since this would imply $Enc_{pk}(m') = c$ (for some randomness r) and hence $m = Dec_{sk}(c) = Dec_{sk}(Enc_{pk}(m'))$

There is no such thing as a perfectly secret public key encryption scheme

We show that an adversary can always decrypt a ciphertext $c \leftarrow \text{Enc}_{pk}(m)$ using a brute-force attack.

(obviously, this adversary won't run in polynomial-time)

Assume, for simplicity, that the decryption algorithm never fails.

Let R be an upper bound to the number of random bits used by the encryption algorithm

- The adversary enumerates all possible messages $m' \in \mathcal{M}_{pk}$:
 - For each m', the adversary enumerates all R-bit binary strings r
 - The adversary runs $\operatorname{Enc}_{pk}(m')$ using r as the random bits to obtain a ciphertext c'
 - If c = c': Claim that the plaintext m is exactly m'. Stop.

Notice that:

- This algorithm must eventually stop (when m' = m and r are the random bits used by $c \leftarrow \text{Enc}_{pk}(m)$)
- It cannot return m' ≠ m since this would imply Enc_{pk}(m') = c (for some randomness r) and hence m = Dec_{sk}(c) = Dec_{sk}(Enc_{pk}(m'))
 This contradicts correctness.

Security Against Chosen-Ciphertext Attacks

Chosen-Ciphertext attacks are also a concern in the public-key setting

In fact, they can even be easier to execute

Think of the following scenario:

- The adversary intercepts the encrypted body of an email from Alice to Bob
- The adversary sends the encrypted body to Bob from his address
- Bob's reply might reveal information about the plaintext
- If the adversary is lucky, the reply email will contain a full decryption of the original message!

Security Against Chosen-Ciphertext Attacks

Bob is acting as a

decryption oracle

Chosen-Ciphertext attacks are also a concern in the public-key setting

In fact, they can even be easier to execute

- Think of the following scenario:
 - The adversary intercepts the encrypted body of an email from Alice to Bob
 - The adversary sends the encrypted body to Bob from his address
 - Bob's reply might reveal information about the plaintext
 - If the adversary is lucky, the reply email will contain a full decryption of the original message!

Security Against Chosen-Ciphertext Attacks

Chosen-Ciphertext attacks are also a concern in the public-key setting

In fact, they can even be easier to execute

- Think of the following scenario:
 - The adversary intercepts the encrypted body of an email from Alice to Bob
 - The adversary sends the encrypted body to Bob from his address
 - Bob's reply might reveal information about the plaintext
 - If the adversary is lucky, the reply email will contain a full decryption of the original message!

It is possible to define CCA-security also for public-key encryption schemes

- In the private-key setting we have seen a stronger notion of security: authenticated encryption
- The definition of authenticated encryption does not immediately extend to the public-key setting (recall that anybody with the public key can encrypt messages)
- We will see another mechanism to guarantee authentication (digital signature schemes)

Definition of CCA-Security

Experiment $\mathsf{PubK}_{\mathcal{A},\Pi}^{\mathsf{cca}}(n)$:

- A random key pair $(pk, sk) \leftarrow \text{Gen}(1^n)$ is generated and pk is sent to \mathcal{A}
- \mathcal{A} interacts with a decryption oracle
- \mathcal{A} chooses two distinct messages $m_0, m_1 \in \mathcal{M}$
- A uniform random bit $b \in \{0, 1\}$ is generated
- The challenge ciphertext c is computed by $Enc_{pk}(m_b)$, and given to \mathcal{A}
- ${\cal A}$ interacts with a decryption oracle but cannot request a decryption of c
- \mathcal{A} outputs a guess $b' \in \{0,1\}$ about b
- The outcome of the experiment is defined to be 1 if b' = b, and 0 otherwise

Definition: A public key encryption scheme Π is **CCA-secure** if, for every probabilistic polynomial-time adversary A, there is a negligible function ε such that:

$$\Pr[\mathsf{PubK}_{\mathcal{A},\Pi}^{\mathsf{cca}}(n) = 1] \le \frac{1}{2} + \varepsilon(n)$$

Public-Key Setting vs. Private-Key Setting

	Private-Key Setting	Public-Key Setting
Secrecy	Private-Key Encryption Schemes	
Integrity	Message Authentication Codes	

Public-Key Setting vs. Private-Key Setting

	Private-Key Setting	Public-Key Setting
Secrecy	Private-Key Encryption Schemes	Public-Key Encryption Schemes
Integrity	Message Authentication Codes	

Public-Key Setting vs. Private-Key Setting

	Private-Key Setting	Public-Key Setting
Secrecy	Private-Key Encryption Schemes	Public-Key Encryption Schemes
Integrity	Message Authentication Codes	Digital Signature Schemes