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We define the key-exchange experiment KEeav
A,Π(n) as follows:
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• The honest parties run Π using n as the security parameter.

• The interaction results in a transcript τ and in a shared key k ∈ {0, 1}n
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We define the key-exchange experiment KEeav
A,Π(n) as follows:

Fix a key exchange protocol Π and an attacker A

• The honest parties run Π using n as the security parameter.

• The interaction results in a transcript τ and in a shared key k ∈ {0, 1}n

• A random bit b is chosen u.a.r. from {0, 1}.
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• Otherwise (when b = 1) k′ is chosen as a random uniform string from {0, 1}n.

• A is given k′ and the transcript τ

• A outputs a bit b′ ∈ {0, 1}

The outcome of the experiment is defined to be 1 if b′ = b and 0 otherwise
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Key Exchange: Formal Security Definition

Definition: A key-exchange protocol Π is secure in the presence of an eavesdropper if for all
probabilistic polynomial-time adversaries A there is a negligible function ε such that

Pr[KEeav
A,Π(n) = 1] ≤ 1

2
+ ε(n).



Key Exchange: Formal Security Definition

Definition: A key-exchange protocol Π is secure in the presence of an eavesdropper if for all
probabilistic polynomial-time adversaries A there is a negligible function ε such that

Pr[KEeav
A,Π(n) = 1] ≤ 1

2
+ ε(n).

Notice that being unable to compute k from the transcript τ is not a strong enough security guarantee

• The requirement we impose is stronger. Namely k must look just like a random string.

• This is necessary since we are going to use k for private-key cryptography.
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Whitfield Diffie Martin Hellman

Let G be a probabilistic polynomial-time algorithm that, on
input 1n , outputs a description of a cyclic group G, its
order q, where q is a n-bit integer, and a generator g ∈ G.

• Alice runs G(1n) to obtain (G, q, g).

• Alice chooses a uniform x ∈ {0, 1, . . . , q − 1} and
computes hA = gx

• Alice sends (G, q, g, hA) to Bob

• Bob receives (G, q, g, hA), chooses a uniform
y ∈ {0, 1, . . . , q − 1} and computes hB = gy.

• Bob sends hB to Alice and outputs k = hy
A

• Alice receives hB from Bob and outputs k = hx
B

In practice the group G and the
generator g are fixed and already
known by Alice and Bob

Alice only needs to send hA to Bob
Notice that k = hy

A = (gx)y = gxy = (gy)x = hx
B
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Diffie-Hellman Key Exchange: Security

The adversary sees (or knows already) G, q, g

The adversary sees hA = gx and hB = gy

The shared key is k = gxy

What kind of assumption do we need to guarantee security of the Diffie-Hellman Key Exchange?

Wait... what were the assumptions again?

A reminder...



Reminder: The Discrete Logarithm Assumption

For a group-generation algorithm G and an algorithm A, define the experiment DLogA,G(n) as:

• Run G(1n) to obtain (G, q, g), where G is a cyclic group of order q (where q is a n-bit
integer), and g is a generator of G.

• A outputs x ∈ {0, . . . q − 1}
• The outcome of the experiment is 1 if gx = h. Otherwise the outcome is 0.

• Choose a uniform h ∈ G.

• G, q, g and h are given to A

Definition The discrete-logarithm problem is hard relative to G if for all probabilistic
polynomial-time algorithms A there exists a negligible function ε

Pr[DLogA,G(n) = 1] ≤ ε(n).

The discrete logarithm assumption: there exists a group-generation algorithm G for which the
discrete-logarithm problem is hard



Reminder: The CHD Problem and Assumption

Given g, h1, h2 ∈ G, define: DHg(h1, h2) = glogg h1·logg h2

The Computational Diffie-Hellman (CDH) problem is that of computing DHg(h1, h2) given a
group G, a generator g, and two elements h1, and h2 chosen u.a.r. from G

The CDH assumption: there exists a group-generation algorithm G for which the CDH problem
is hard

Definition The CDH problem is hard relative to G if for all probabilistic polynomial-time
algorithms A there exists a negligible function ε such that

Pr[A(G, q, g, h1, h2) = DHg(h1, h2)] = ε(n),

where the probabilities are taken over the experiment in which G(1n) outputs (G, q, g), and
uniform h1, h2 ∈ G are chosen.



Definition The DDH problem is hard relative to G if for all probabilistic polynomial-time
algorithms A there exists a negligible function ε such that

�� Pr[A(G, q, g, gx, gy, gz) = 1]− Pr[A(G, q, g, gx, gy, gxy) = 1]
�� ≤ ε(n),

where the probabilities are taken over the experiment in which G(1n) outputs (G, q, g), and then
uniform x, y, z ∈ {0, 1, . . . , q − 1} are chosen (therefore gx and gy are uniformly distributed in G).

Reminder: the DDH Problem and Assumption

The DDH assumption: there exists a group-generation algorithm G for which the DDH problem
is hard
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If the Discrete-Logarithm assumption does not hold, then computing discrete logarithms is easy for all
groups output by poly-time group generation algorithms

In particular, it is easy for our group G
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Diffie-Hellman Key Exchange: Security (Roadmap)

We will argue that the DDH assumption is also a sufficient condition

We first need to address a technical subtlety

• Intuitively, the DDH assumption guarantees that it is hard to distinguish k = gxy from a random
group element

• The KEeav
A,Π(n) experiment asks to distinguish k from a random n-bit string
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Diffie-Hellman Key Exchange: Security (Roadmap)

We will argue that the DDH assumption is also a sufficient condition

We first need to address a technical subtlety

• Intuitively, the DDH assumption guarantees that it is hard to distinguish k = gxy from a random
group element

• The KEeav
A,Π(n) experiment asks to distinguish k from a random n-bit string

• In general, a random n-bit string is not even a group element

• =⇒ It can be easy to tell a random n-bit string apart from k by simply testing whether it is a
group element

Solution (roadmap):

• We revise the KEeav
A,Π(n) experiment to take into account groups

• We prove security w.r.t. the revised experiment

• We argue that the shared key k can be turned into a (essentially random) n-bit string



Diffie-Hellman Key Exchange: Revised Experiment

We define the key-exchange experiment cKEeav

A,Π(n) as follows:

Fix a group G, a key exchange protocol Π, and an attacker A

• The honest parties run Π using n as the security parameter.

• The interaction results in a transcript τ and in a shared key k ∈ G

• A random bit b is chosen u.a.r. from {0, 1}.
• If b = 0 then k′ ← k.

• Otherwise (when b = 1) k′ is chosen as a random element from G.

• A is given k′ and the transcript τ

• A outputs a bit b′ ∈ {0, 1}

The outcome of the experiment is defined to be 1 if b′ = b and 0 otherwise



Diffie-Hellman Key Exchange: Security Proof

Theorem: If the DDH problem is hard relative to G, then the Diffie–Hellman key-exchange protocol

Π is secure in the presence of an eavesdropper with respect to the modified experiment cKEeav

A,Π(n)

Proof:

We show that a probabilistic polynomial-time adversary A that wins the experiment cKEeav

A,Π(n) with
non-negligible advantage, can be used to design a probabilistic polynomial-time algorithm that solves
the DDH problem with non-negligible gap.

• Suppose towards a contradiction that there exists A such that Pr[cKEeav

A,Π(n) = 1] = 1
2 + ε(n) for

non-negligible ε(n).
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We have shown the (conditional) security of the Diffie-Hellman protocol with respect to the modified

experiment cKEeav

A,Π(n)

The Diffie-Hellman key exchange returns a group element k = gxy that is indistinguishable from a
random one to any polynomial-time adversary

What we actually need is a shared key k∗, i.e., a n-bit binary string indistinguishable from a random
string (to any polynomial-time adversary)

How do we do that?

Key derivation! Use a hash function H and set k∗ = H(k)

This is secure if we model H as a random oracle
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So far we have considered eavesdropping adversaries

What about active adversaries?

The Diffie-Hellman Key Exchange is vulnerable to the Man-in-the-Middle attack

• And adversary interacts with both Alice and Bob

• On Alice’s side, the adversary pretends to be Bob and runs Bob’s side of the Diffie-Hellman protocol

• On Bob’s side, the adversary pretends to be Alice and runs Alice’s side of the Diffie-Hellman protocol

• At the end of the protocol Alice and Bob have two different keys kA, kB and both of these keys
are known to the Adversary

• When a message is sent from A to B (or vice-versa) the adversary can decrypt it with kA, read
and possibily alter the plaintext, and re-encrypt it with kB

kA kA kB kBDH DH
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Man-in-the-Middle attacks can’t be avoided if Alice and Bob don’t know anything
about each other and don’t trust any 3rd-party

Man-in-the-Middle Attack

• In general we want authenticated key exchange protocols

• Can be achieved with public-key cryptography and digital signatures/certificates

kA kA kB kB

What can we do against this attack?

• Modern key-exchange protocols (e.g., TLS) provide authentication

DH DH



Private-Key Setting

Two (or more) parties who wish to communicate secretly need to share a uniform secret key k in advance

The same key can be used for both sending and receiving

• Each party can both send an receive

• If multiple parties share the same key, there is no way to distinguish them

The key must be kept secret!

• If an attacker gets to know k we lose all the security guarantees
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• A public key pk

• A secret key (or private key) sk

The public key is. . . public

• No need to keep it secret

• In fact it is often widely disseminated

The secret key must be kept. . . secret
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• Used by anybody that wishes to send messages to the party

• Security must hold even if an attacker knows pk
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Public-Key Setting

We assume that the involved parties are able to obtain (untampered) copies of the public keys

• The attacker is just an eavesdropper; or

• The attacker remains passive during key distribution

Advantages:

• Key distribution: Keys can be distributed over a public channel

• Key management: Each user needs a single public/secret key pair.

• In a system with N users, there are Θ(N) key pairs, instead of Θ(N2) private-keys

• Open systems: Two parties with no prior relationship can find each others’ public keys*

*Requires a trusted third party

• The recipient does not even need to know who the sender is
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Public-Key Setting

Why study private key cryptography at all?

• If two parties wish to communicate, they can always generate two public/secret key pairs instead of
a secret shared key

• Public-key schemes are slower

• Public-key schemes require longer keys

• Public-key schemes have larger ciphertext expansion

• Public-key schemes require stronger assumptions

These issues can
be mitigated

But...
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Public-Key Encryption

• Bob generates a public/secret key pair (pk, sk)

• Bob shares pk with Alice

• Alice encrypts her message m using Bob’s public key pk

c ← Encpk(m)

Bob decrypts the ciphertext c using his secret key sk

m ← Decsk(c)

Insecure Channelc ← Encpk(m) m ← Decsk(c)
m

c

m
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Public-key Encryption Schemes: Definition

A public-key encryption scheme consists of three algorithms:

• Gen is a randomized algorithm that takes 1n as input and
outputs a pair of keys (pk, sk), each of length at least n.
The public key defines a message space Mpk

Gen (pk, sk)

• Enc is a randomized algorithm that takes as input a public key
pk and a message (or plaintext) m ∈ Mpk and outputs a
ciphertext c obtained by encrypting m with key pk.

Encpk
m ∈ Mpk

pk

Encpk(m) denotes an execution of Enc with inputs pk and m
c

• Dec is a deterministic algorithm that takes as input a secret
key sk and a ciphertext c and outputs a message m ∈ Mpk or
a special symbol ⊥ denoting failure.

Decsk(c) denotes an execution of Dec with inputs sk and c

Correctness: We must have Decsk(Encpk(m) ) = m for any m ∈ Mpk, except for negligible
probability (over the randomness of Gen and Enc).

Decskc

sk

m

1n
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• A chooses two distinct messages m0,m1 ∈ M
• A uniform random bit b ∈ {0, 1} is generated

• A outputs a guess b′ ∈ {0, 1} about b

• The outcome of the experiment is defined to be 1 if b′ = b, and 0 otherwise

Experiment PubKeav
A,Π(n):

• A random key pair (pk, sk) ← Gen(1n) is generated

• The public key pk is sent to A

• The challenge ciphertext c = Encpk(mb), and given to A
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Some observations on the PubKeav
A,Π experiment

The adversary has access to the public key pk

• It can choose m0 and m1 as a function of pk

• It can encrypt any message with pk by itself

• This definition already allows the attacker to perform chosen-plaintext attacks

• No need for an encryption oracle!

Let’s revise the name... PubKeav
A,Π PubKcpa

A,Π

Definition: A public key encryption scheme Π is CPA-secure if, for every probabilistic
polynomial-time adversary A, there is a negligible function ε such that:

Pr[PubKcpa
A,Π(n) = 1] ≤ 1

2
+ ε(n)



Some consequences

Any public-key encryption scheme that is CPA-secure is also
CPA-secure for multiple encryptions

(just like the private-key setting)

No deterministic public-key encryption scheme can be CPA-secure

(just like the private-key setting)
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Some consequences

There is no such thing as a perfectly secret public key encryption scheme

We show that an adversary can always decrypt a ciphertext c ← Encpk(m) using a brute-force attack.

(obviously, this adversary won’t run in polynomial-time)

• The adversary enumerates all possible messages m′ ∈ Mpk:

Let R be an upper bound to the number of random bits used by the encryption algorithm

• For each m′, the adversary enumerates all R-bit binary strings r

• The adversary runs Encpk(m
′) using r as the random bits to obtain a ciphertext c′

• If c = c′: Claim that the plaintext m is exactly m′. Stop.

Notice that:

• This algorithm must eventually stop (when m′ = m and r are the random bits used by c ← Encpk(m))

• It cannot return m′ ̸= m since this would imply Encpk(m
′) = c (for some randomness r) and hence

m = Decsk(c) = Decsk(Encpk(m
′))

Assume, for simplicity, that the decryption algorithm never fails.

This contradicts correctness.



Security Against Chosen-Ciphertext Attacks

Chosen-Ciphertext attacks are also a concern in the public-key setting

In fact, they can even be easier to execute

Think of the following scenario:

• The adversary intercepts the encrypted body of an email from Alice to Bob

• The adversary sends the encrypted body to Bob from his address

• Bob’s reply might reveal information about the plaintext

• If the adversary is lucky, the reply email will contain a full decryption of the original message!
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Think of the following scenario:

• The adversary intercepts the encrypted body of an email from Alice to Bob
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It is possible to define CCA-security also for public-key encryption schemes

• In the private-key setting we have seen a stronger notion of security: authenticated encryption

• We will see another mechanism to guarantee authentication (digital signature schemes)

(recall that anybody with the public key can encrypt messages)

• The definition of authenticated encryption does not immediately extend to the public-key setting



Definition of CCA-Security

• A chooses two distinct messages m0,m1 ∈ M
• A uniform random bit b ∈ {0, 1} is generated

• A outputs a guess b′ ∈ {0, 1} about b

• The outcome of the experiment is defined to be 1 if b′ = b, and 0 otherwise

Experiment PubKcca
A,Π(n):

• A random key pair (pk, sk) ← Gen(1n) is generated and pk is sent to A

• The challenge ciphertext c is computed by Encpk(mb), and given to A

• A interacts with a decryption oracle

• A interacts with a decryption oracle but cannot request a decryption of c

Definition: A public key encryption scheme Π is CCA-secure if, for every probabilistic
polynomial-time adversary A, there is a negligible function ε such that:

Pr[PubKcca
A,Π(n) = 1] ≤ 1

2
+ ε(n)
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Private-Key Setting Public-Key Setting

Secrecy

Integrity

Private-Key Encryption
Schemes

Public-Key Encryption
Schemes

Message Authentication
Codes

Digital Signature
Schemes


