The Key Exchange Experiment

Fix a key exchange protocol II and an attacker A

€av

We define the key-exchange experiment KE{'};;(n) as follows:

e The honest parties run II using n as the security parameter.

e The interaction results in a transcript 7 and in a shared key k € {0,1}"

=

o=

The Key Exchange Experiment

Fix a key exchange protocol II and an attacker A

€av

We define the key-exchange experiment KE{'};;(n) as follows:

e The honest parties run II using n as the security parameter.

e The interaction results in a transcript 7 and in a shared key k € {0,1}* [I'E
e A random bit b is chosen u.a.r. from {0, 1}.

o If b =0 then kK’ «+ L.

e Otherwise (when b = 1) k' is chosen as a random uniform string from {0, 1}".

The Key Exchange Experiment

Fix a key exchange protocol II and an attacker A

€av

We define the key-exchange experiment KE{'};;(n) as follows:

e The honest parties run II using n as the security parameter.

e The interaction results in a transcript 7 and in a shared key k£ € {0,1}" ['I'E
e A random bit b is chosen u.a.r. from {0, 1}.

o If b =0 then kK’ «+ L.

e Otherwise (when b = 1) k' is chosen as a random uniform string from {0, 1}".

310 =

e A is given k' and the transcript 7

e A outputs a bit ¥’ € {0, 1}

The Key Exchange Experiment

Fix a key exchange protocol II and an attacker A

We define the key-exchange experiment KE

The honest parties run II using n as the security parameter.

The interaction results in a transcript 7 and in a shared key k& € {0,1}" I

Am(n) as follows:

A random bit b is chosen u.a.r. from {0, 1}.

o If b =0 then kK’ «+ L.

e Otherwise (when b = 1) k' is chosen as a random uniform string from {0, 1}".

A is given k£’ and the transcript 7
A outputs a bit ¥’ € {0, 1}

=

The outcome of the experiment is defined to be 1 if b’ = b and 0 otherwise

The Key Exchange Experiment

The Key Exchange Experiment

Messages exchanged
following 11

The Key Exchange Experiment

Messages exchanged
following 11

ifb=0
ifb=1

The Key Exchange Experiment

Messages exchanged
following 11

ifb=0
ifb=1

k/

The Key Exchange Experiment

Messages exchanged
following 11

a1 E e

k/

guess b’ about b

==

L k ifb=0
| random n-bit string if b=1

/ifb’:b
KES 11(n)
x 1 £ b

Key Exchange: Formal Security Definition

Definition: A key-exchange protocol II is secure in the presence of an eavesdropper if for all
probabilistic polynomial-time adversaries A there is a negligible function € such that

1
PrKEF(n) = 1] < 5 +¢(n).

Key Exchange: Formal Security Definition

Definition: A key-exchange protocol II is secure in the presence of an eavesdropper if for all
probabilistic polynomial-time adversaries A there is a negligible function € such that

1
PrKEF(n) = 1] < 5 +¢(n).

Notice that being unable to compute k£ from the transcript 7 is not a strong enough security guarantee
e The requirement we impose is stronger. Namely & must look just like a random string.

e This is necessary since we are going to use k for private-key cryptography.

Diffie-Hellman Key Exchange

Let G be a probabilistic polynomial-time algorithm that, on
input 1™ , outputs a description of a cyclic group G, its
order g, where ¢ is a n-bit integer, and a generator g € GG.

e Alice runs G(1") to obtain (G,q,g).

Whitfield Diffie Martin Hellman

Diffie-Hellman Key Exchange

Let G be a probabilistic polynomial-time algorithm that, on
input 1™ , outputs a description of a cyclic group G, its
order ¢, where ¢ is a n-bit integer, and a generator g € G.

e Alice runs G(1") to obtain (G,q,g).

e Alice chooses a uniform = € {0,1,...,¢q— 1} and
computes hy = g*

Whitfield Diffie Martin Hellman

Diffie-Hellman Key Exchange

Let G be a probabilistic polynomial-time algorithm that, on
input 1™ , outputs a description of a cyclic group G, its
order ¢, where ¢ is a n-bit integer, and a generator g € G.

e Alice runs G(1") to obtain (G,q,g).

e Alice chooses a uniform = € {0,1,...,¢q— 1} and
computes hy = g*

e Alice sends (G, q,g,ha) to Bob

Whitfield Diffie

Martin Hellman

Diffie-Hellman Key Exchange

Let G be a probabilistic polynomial-time algorithm that, on
input 1™ , outputs a description of a cyclic group G, its
order ¢, where ¢ is a n-bit integer, and a generator g € G.

e Alice runs G(1") to obtain (G,q,g).

e Alice chooses a uniform = € {0,1,...,¢q— 1} and
computes hy = g*

e Alice sends (G, q,g,ha) to Bob

e Bob receives (G, q,g,ha), chooses a uniform
y€40,1,...,q— 1} and computes hg = g¥.

Whitfield Diffie

Martin Hellman

Diffie-Hellman Key Exchange

Let G be a probabilistic polynomial-time algorithm that, on
input 1™ , outputs a description of a cyclic group G, its
order ¢, where ¢ is a n-bit integer, and a generator g € G.

e Alice runs G(1") to obtain (G,q,g).

e Alice chooses a uniform = € {0,1,...,¢q— 1} and
computes hy = g*

e Alice sends (G, q,g,ha) to Bob

e Bob receives (G, q,g,ha), chooses a uniform Whitfield Diffie Martin Hellman
y€40,1,...,q— 1} and computes hg = g¥.

e Bob sends hp to Alice and outputs k = h¥

Diffie-Hellman Key Exchange

Let G be a probabilistic polynomial-time algorithm that, on
input 1™ , outputs a description of a cyclic group G, its
order ¢, where ¢ is a n-bit integer, and a generator g € G.

Alice runs G(1™) to obtain (G, q, g).

Alice chooses a uniform x € {0,1,...,¢ — 1} and
computes hy = g*

Alice sends (G, q,g,ha) to Bob

Bob receives (G, q,g,ha), chooses a uniform
y€40,1,...,q— 1} and computes hg = g¥.

Bob sends hp to Alice and outputs k = h%

Alice receives hp from Bob and outputs k = hj

Whitfield Diffie

Martin Hellman

Diffie-Hellman Key Exchange

Let G be a probabilistic polynomial-time algorithm that, on
input 1™ , outputs a description of a cyclic group G, its
order ¢, where ¢ is a n-bit integer, and a generator g € G.

Alice runs G(1™) to obtain (G, q, g).

Alice chooses a uniform x € {0,1,...,¢ — 1} and
computes hy = g*

Alice sends (G, q,g,ha) to Bob

Bob receives (G, q,g,ha), chooses a uniform
y€40,1,...,q— 1} and computes hg = g¥.

Bob sends hp to Alice and outputs k = h%

Alice receives hp from Bob and outputs k = h%

Notice that k = b’ = (¢7)Y = ¢™¥ = (¢¥)” = h}

Whitfield Diffie

Martin Hellman

Diffie-Hellman Key Exchange

Let G be a probabilistic polynomial-time algorithm that, on
input 1™ , outputs a description of a cyclic group G, its
order q, where ¢ is a n-bit integer, and a generator g € G.

e Alice runs G(1") to obtain (G,q,g).

e Alice chooses a uniform = € {0,1,...,¢q— 1} and
computes hy = g*

e Alice sends (G, q,9,ha) to Bob

e Bob receives (G, q,g,ha), chooses a uniform Whitfield Diffie Martin Hellman
y € {0,1,...,g— 1} and computes hp = g¥.

In practice the group G and the
generator g are fixed and already
known by Alice and Bob

e Bob sends hp to Alice and outputs k = h¥

o Alice receives hp from Bob and outputs £ = h%

Alice only needs to send h** to Bob

Notice that k = b’ = (¢7)¥ = ¢™¥ = (¢¥)” = h}

Diffie-Hellman Key Exchange

l h < Insecure Channel >

Suppose that Alice and Bob agreed to use a group GG of order ¢ and a generator g € G.

e Pick x u.a.r. from {0,...,q—1} e Pick y u.a.r. from {0,...,q—1}

Diffie-Hellman Key Exchange

l h < Insecure Channel >

Suppose that Alice and Bob agreed to use a group GG of order ¢ and a generator g € G.

e Pick x u.a.r. from {0,...,q—1} e Pick y u.a.r. from {0,...,q—1}

e Compute hyq = g* e Compute hg = g¥

Diffie-Hellman Key Exchange

l h < Insecure Channel >

Suppose that Alice and Bob agreed to use a group GG of order ¢ and a generator g € G.

e Pick x u.a.r. from {0,...,q—1} e Pick y u.a.r. from {0,...,q—1}
e Compute hy = g” e Compute hg = g¥
e Send h4 to Bob o

<«—1— o Send hp to Alice

Diffie-Hellman Key Exchange

, < Insecure Channel >

Suppose that Alice and Bob agreed to use a group GG of order ¢ and a generator g € G.

e Pick x u.a.r. from {0,...,q—1} e Pick y u.a.r. from {0,...,q—1}
e Compute hy = g” e Compute hg = g¥
e Send hy to Bob —_—
<«—1— o Send hp to Alice
e Compute h’% = (¢¥)* = g™V e Compute hY = (¢*)¥ = g*¥

Diffie-Hellman Key Exchange

, < Insecure Channel >

Suppose that Alice and Bob agreed to use a group GG of order ¢ and a generator g € G.

e Pick x u.a.r. from {0,...,q—1} e Pick y u.a.r. from {0,...,q—1}
e Compute hy = g” e Compute hg = g¥
e Send hy to Bob —_—
<«—1— o Send hp to Alice
e Compute h’% = (g¥)* =|g™¥ e Compute hY = (¢*)Y =|g*¥

0)==> The shared secret key is k = g*V

Diffie-Hellman Key Exchange

Alice Bob

Common paint

Secret colours 9 y

T

\
A

>

AN
I
Q

S

>
oy
I
Q

<

Public transport
(assume that
) _——

mixture separation
is expensive) a hA
Secret colours @ y

Common secret -

8

>
oy

k= h, = gov k= hY = g

Diffie-Hellman Key Exchange: Example

Suppose that Alice and Bob agreed to use the group G = Z7; (of order ¢ = 10) and the generator g = 2

This is just for the sake of the example! Recall that Z7; is not a good choice!

e Alice picks x =4 e Bob picks y =3
(chosen u.a.r. from {0,...,10}) (chosen u.a.r. from {0,...,10})

Diffie-Hellman Key Exchange: Example

Suppose that Alice and Bob agreed to use the group G = Z7; (of order ¢ = 10) and the generator g = 2

This is just for the sake of the example! Recall that Z7; is not a good choice!

e Alice picks x =4 e Bob picks y =3
(chosen u.a.r. from {0,...,10}) (chosen u.a.r. from {0,...,10})

e Alice computes h4 = 24 e Bob computes hp = 23

Diffie-Hellman Key Exchange: Example

Suppose that Alice and Bob agreed to use the group G = Z7; (of order ¢ = 10) and the generator g = 2

This is just for the sake of the example! Recall that Z7; is not a good choice!

e Alice picks x =4 e Bob picks y =3
(chosen u.a.r. from {0,...,10}) (chosen u.a.r. from {0,...,10})

e Alice computes hy =2* =5 e Bob computes hg =23 =8

Diffie-Hellman Key Exchange: Example

Suppose that Alice and Bob agreed to use the group G = Z7; (of order ¢ = 10) and the generator g = 2

This is just for the sake of the example! Recall that Z7; is not a good choice!

e Alice picks x =4
(chosen u.a.r. from {0,...,10})

e Alice computes hy =2* =5

e Alice sends h4 to Bob

e Bob picks y =3
(chosen u.a.r. from {0,...,10})

e Bob computes hg =23 =8

o ha

— e Bob sends hg to Alice

Diffie-Hellman Key Exchange: Example

Suppose that Alice and Bob agreed to use the group G = Z7; (of order ¢ = 10) and the generator g = 2

This is just for the sake of the example! Recall that Z7; is not a good choice!

e Alice picks x =4 e Bob picks y =3
(chosen u.a.r. from {0,...,10}) (chosen u.a.r. from {0,...,10})
e Alice computes hy =2* =5 e Bob computes hg =23 =8
e Alice sends h4 to Bob —4—» N
hp a—— e Bob sends hp to Alice
e Alice computes k = 8* =4 e Bob computes k£ = 53 = 4

The shared secret key is k£ =4

Diffie-Hellman Key Exchange: Example

Suppose that Alice and Bob agreed to use the group G = Z7; (of order ¢ = 10) and the generator g = 2

This is just for the sake of the example! Recall that Z7; is not a good choice!

e Alice picks x =4 e Bob picks y =3
(chosen u.a.r. from {0,...,10}) (chosen u.a.r. from {0,...,10})
e Alice computes hy =2* =5 D e Bob computes hg =23 =8
e Alice sends h4 to Bob —4—» ha
hp a—— e Bob sends hp to Alice
e Alice computes k = 8* =4 e Bob computes k£ = 53 = 4

The shared secret key is k£ =4

Diffie-Hellman Key Exchange: Security

The adversary sees (or knows already) G, q, g —

0=

The adversary sees hy = g* and hg = g¥

The shared key is k = g*¥

What kind of assumption do we need to guarantee security of the Diffie-Hellman Key Exchange?

Diffie-Hellman Key Exchange: Security

The adversary sees (or knows already) G, q, g —

0=

The adversary sees hy = g* and hg = g¥

The shared key is k = g*¥

What kind of assumption do we need to guarantee security of the Diffie-Hellman Key Exchange?

Wait... what were the assumptions again?

A reminder...

Reminder: The Discrete Logarithm Assumption

For a group-generation algorithm G and an algorithm A, define the experiment DLog 4 5(n) as:

e Run G(1") to obtain (G, q, g), where GG is a cyclic group of order ¢ (where g is a n-bit
integer), and g is a generator of G.

e Choose a uniform h € G.
e (G,q,g and h are given to A
e Aoutputs x € {0,...q— 1}

e The outcome of the experiment is 1 if g* = h. Otherwise the outcome is O.

Definition The discrete-logarithm problem is hard relative to G if for all probabilistic
polynomial-time algorithms A there exists a negligible function ¢

Pr[DlLog 4 g(n) = 1] < e(n).

The discrete logarithm assumption: there exists a group-generation algorithm G for which the
discrete-logarithm problem is hard

Reminder: The CHD Problem and Assumption

Given g, hl, ho € (G, define: DHg(hl, hz) = glOgg hi-log, ho

The Computational Diffie-Hellman (CDH) problem is that of computing DH,(hq, h2) given a
group GG, a generator g, and two elements hq, and hs chosen u.a.r. from G

Definition The CDH problem is hard relative to G if for all probabilistic polynomial-time
algorithms A there exists a negligible function ¢ such that

PY[A<G7Q797 hla h2) — DHg(h17 h2>] =S 8(77,),

where the probabilities are taken over the experiment in which G(1™) outputs (G, ¢, g), and
uniform hq, he € GG are chosen.

The CDH assumption: there exists a group-generation algorithm G for which the CDH problem
is hard

Reminder: the DDH Problem and Assumption

Definition The DDH problem is hard relative to G if for all probabilistic polynomial-time
algorithms A there exists a negligible function ¢ such that

| PrlA(G,q,9,9%,¢",97) = 1] = Pr[A(G,q,9,9",9",9") = 1] | <e(n),

where the probabilities are taken over the experiment in which G(1") outputs (G, ¢, g), and then
uniform x,y,z € {0,1,...,q — 1} are chosen (therefore g* and g¥ are uniformly distributed in G3).

The DDH assumption: there exists a group-generation algorithm G for which the DDH problem
is hard

Diffie-Hellman Key Exchange: Security (DLog)

The adversary sees (or knows already) G, q, g

0=

The adversary sees hy = g* and hp = g¥

The shared key is k = g™

If the Discrete-Logarithm assumption does not hold, then computing discrete logarithms is easy for all
groups output by poly-time group generation algorithms

In particular, it is easy for our group G

Diffie-Hellman Key Exchange: Security (DLog)

The adversary sees (or knows already) G, q, g

0=

The adversary sees hy = g* and hp = g¥

The shared key is k = g™

If the Discrete-Logarithm assumption does not hold, then computing discrete logarithms is easy for all
groups output by poly-time group generation algorithms

In particular, it is easy for our group G

e The adversary knows hy4 = ¢°*

e It can recover x = log, ha with non-negligible probability
gg glig

e Once z is known, it can compute h} = g*Y =k

Diffie-Hellman Key Exchange: Security (DLog)

The adversary sees (or knows already) G, q, g

0=

The adversary sees hy = g* and hp = g¥

The shared key is k = g™

If the Discrete-Logarithm assumption does not hold, then computing discrete logarithms is easy for all
groups output by poly-time group generation algorithms

In particular, it is easy for our group G

e The adversary knows hy4 = ¢°*

e It can recover x = log, ha with non-negligible probability

e Once z is known, it can compute h} = g*Y =k

The Discrete-Logarithm assumption is a necessary condition

Diffie-Hellman Key Exchange: Security (CDH)

The adversary sees (or knows already) G, q, g

0=

The adversary sees hy = g* and hp = g¥

The shared key is k = g™

If the CDH assumption does not hold, then computing DH(:, -) is easy for all groups output by
poly-time group generation algorithms

In particular, it is easy for our group G

Diffie-Hellman Key Exchange: Security (CDH)

The adversary sees (or knows already) G, q, g

0=

The adversary sees hy = g* and hp = g¥

The shared key is k = g™

If the CDH assumption does not hold, then computing DH(:, -) is easy for all groups output by
poly-time group generation algorithms

In particular, it is easy for our group G

e The adversary knows hy = ¢g* and hg = ¢¥

e It can compute DH,(ha,hp) = g'°8s "alo8s s — g2y — |
with non negligible probability

Diffie-Hellman Key Exchange: Security (CDH)

The adversary sees (or knows already) G, q, g

0=

The adversary sees hy = g* and hp = g¥

The shared key is k = g™

If the CDH assumption does not hold, then computing DH(:, -) is easy for all groups output by
poly-time group generation algorithms

In particular, it is easy for our group G

e The adversary knows hy = ¢g* and hg = ¢¥

e It can compute DH,(ha,hp) = g'°8s "alo8s s — g2y — |
with non negligible probability

The CDH assumption is a necessary condition

Diffie-Hellman Key Exchange: Security (DDH)

The adversary sees (or knows already) G, q, g

0=

The adversary sees hy = g* and hp = g¥

The shared key is k = g™

If the DDH assumption does not hold then, given g, g%, and ¢Y, it possible to distinguish k = ¢®® from

a group element chosen uniformly at random (for all groups output by poly-time group generation
algorithms).

In particular, this holds for our group G.

Diffie-Hellman Key Exchange: Security (DDH)

The adversary sees (or knows already) G, q, g

0=

The adversary sees hy = g* and hp = g¥

The shared key is k = g™

If the DDH assumption does not hold then, given g, g%, and ¢Y, it possible to distinguish k = ¢®® from

a group element chosen uniformly at random (for all groups output by poly-time group generation
algorithms).

In particular, this holds for our group G.

e The adversary knows h4 = ¢* and hg = ¢¥

e It can tell £ apart from a random group element with a
non-negligible advantage over random guessing

e It can use this to win the KE{';;(n) experiment

Diffie-Hellman Key Exchange: Security (DDH)

The adversary sees (or knows already) G, q, g

0=

The adversary sees hy = g* and hp = g¥

The shared key is k = g™

If the DDH assumption does not hold then, given g, g%, and ¢Y, it possible to distinguish k = ¢®® from

a group element chosen uniformly at random (for all groups output by poly-time group generation
algorithms).

In particular, this holds for our group G.

e The adversary knows h4 = ¢* and hg = ¢¥

e It can tell £ apart from a random group element with a
non-negligible advantage over random guessing

e It can use this to win the KE{';;(n) experiment

The DDH assumption is a necessary condition

Diffie-Hellman Key Exchange: Security (Roadmap)

We will argue that the DDH assumption is also a sufficient condition

We first need to address a technical subtlety

e Intuitively, the DDH assumption guarantees that it is hard to distinguish £ = ¢*¥ from a random
group element

e The KE{'1(n) experiment asks to distinguish k from a random n-bit string

Diffie-Hellman Key Exchange: Security (Roadmap)

We will argue that the DDH assumption is also a sufficient condition

We first need to address a technical subtlety

e Intuitively, the DDH assumption guarantees that it is hard to distinguish £ = ¢*¥ from a random
group element

e The KE{'1(n) experiment asks to distinguish k from a random n-bit string

e In general, a random n-bit string is not even a group element

e — It can be easy to tell a random n-bit string apart from k by simply testing whether it is a
group element

Diffie-Hellman Key Exchange: Security (Roadmap)

We will argue that the DDH assumption is also a sufficient condition

We first need to address a technical subtlety

e Intuitively, the DDH assumption guarantees that it is hard to distinguish £ = ¢*¥ from a random
group element

e The KE{'1(n) experiment asks to distinguish k from a random n-bit string
e In general, a random n-bit string is not even a group element

e — It can be easy to tell a random n-bit string apart from k by simply testing whether it is a
group element

Solution (roadmap):

e We revise the KE{'[;(n) experiment to take into account groups
e We prove security w.r.t. the revised experiment

e We argue that the shared key k can be turned into a (essentially random) n-bit string

Diffie-Hellman Key Exchange: Revised Experiment

Fix a group G, a key exchange protocol II, and an attacker A

We define the key-exchange experiment R\Ejvn(n) as follows:

e The honest parties run II using n as the security parameter.
e The interaction results in a transcript 7 and in a shared key k£ € G
e A random bit b is chosen u.a.r. from {0, 1}.

o If b =0 then kK’ «+ k.

e Otherwise (when b = 1) k£’ is chosen as a random element from G.

o A is given £’ and the transcript 7 E
e A outputs a bit ¥’ € {0, 1}

The outcome of the experiment is defined to be 1 if b’ = b and 0 otherwise

o=

Diffie-Hellman Key Exchange: Security Proof

Theorem: If the DDH problem is hard relative to GG, then the Diffie—Hellman key-exchange protocol

—~ €aVv

IT is secure in the presence of an eavesdropper with respect to the modified experiment KEA,H(n)

Proof:
We show that a probabilistic polynomial-time adversary A that wins the experiment R\Ejvn(n) with
non-negligible advantage, can be used to design a probabilistic polynomial-time algorithm that solves

the DDH problem with non-negligible gap.
e Suppose towards a contradiction that there exists .4 such that Pr[R\EjYH(n) =1] =1 +&(n) for
non-negligible £(n).

Diffie-Hellman Key Exchange: Security Proof

Theorem: If the DDH problem is hard relative to GG, then the Diffie—Hellman key-exchange protocol

—~ €aVv

IT is secure in the presence of an eavesdropper with respect to the modified experiment KEA,H(n)

Proof:
We show that a probabilistic polynomial-time adversary A that wins the experiment R\Ejvn(n) with
non-negligible advantage, can be used to design a probabilistic polynomial-time algorithm that solves

the DDH problem with non-negligible gap.
e Suppose towards a contradiction that there exists .4 such that Pr[R\EjYH(n) =1] =1 +&(n) for
non-negligible £(n).

e To solve the DDH problem... we use A itself!

Diffie-Hellman Key Exchange: Security Proof

Theorem: If the DDH problem is hard relative to GG, then the Diffie—Hellman key-exchange protocol

—~ €aVv

IT is secure in the presence of an eavesdropper with respect to the modified experiment KEA,H(n)

Proof:
We show that a probabilistic polynomial-time adversary A that wins the experiment R\Ejvn(n) with
non-negligible advantage, can be used to design a probabilistic polynomial-time algorithm that solves

the DDH problem with non-negligible gap.
e Suppose towards a contradiction that there exists .4 such that Pr[R\EjYH(n) =1] =1 +&(n) for
non-negligible £(n).

e To solve the DDH problem... we use A itself!

— €aVv

PriKE 4 1(n) =1[b=1]

Diffie-Hellman Key Exchange: Security Proof

Theorem: If the DDH problem is hard relative to GG, then the Diffie—Hellman key-exchange protocol

—~ €aVv

IT is secure in the presence of an eavesdropper with respect to the modified experiment KEA,H(n)

Proof:
We show that a probabilistic polynomial-time adversary A that wins the experiment R\Ejvn(n) with
non-negligible advantage, can be used to design a probabilistic polynomial-time algorithm that solves

the DDH problem with non-negligible gap.
e Suppose towards a contradiction that there exists .4 such that Pr[R\EjYH(n) =1] =1 +&(n) for
non-negligible £(n).

e To solve the DDH problem... we use A itself!

—~ eaVv

PrlKE4 n(n) =1]b=1]=PrlA(G,q,9,9".9%,9%) = 1]

Diffie-Hellman Key Exchange: Security Proof

Theorem: If the DDH problem is hard relative to GG, then the Diffie—Hellman key-exchange protocol

—~ €aVv

IT is secure in the presence of an eavesdropper with respect to the modified experiment KEA,H(n)

Proof:
We show that a probabilistic polynomial-time adversary A that wins the experiment R\Ejvn(n) with
non-negligible advantage, can be used to design a probabilistic polynomial-time algorithm that solves

the DDH problem with non-negligible gap.
e Suppose towards a contradiction that there exists .4 such that Pr[R\EjYH(n) =1] =1 +&(n) for
non-negligible £(n).

e To solve the DDH problem... we use A itself!

PI'[R\ET::/H(H) =1 ‘ b= 1] - PI[A(Gv q’g’gx’gy’gz) — 1} u%

Diffie-Hellman Key Exchange: Security Proof

Theorem: If the DDH problem is hard relative to GG, then the Diffie—Hellman key-exchange protocol

—~ €aVv

IT is secure in the presence of an eavesdropper with respect to the modified experiment KEA,H(n)

Proof:
We show that a probabilistic polynomial-time adversary A that wins the experiment R\Ejvn(n) with
non-negligible advantage, can be used to design a probabilistic polynomial-time algorithm that solves

the DDH problem with non-negligible gap.
e Suppose towards a contradiction that there exists .4 such that Pr[R\EjYH(n) =1] =1 +&(n) for
non-negligible £(n).

e To solve the DDH problem... we use A itself! k' = g* for some z chosen

/\ u.a.r. from {0,...,q— 1}

PI'[R\ET::/H(H) =1 ‘ b= 1] - PI[A(Gv q’g’gx’gy’gz) — 1} u%

Diffie-Hellman Key Exchange: Security Proof

Theorem: If the DDH problem is hard relative to GG, then the Diffie—Hellman key-exchange protocol

—~ €aVv

IT is secure in the presence of an eavesdropper with respect to the modified experiment KEA,H(n)

Proof:

—~ €aVv
We show that a probabilistic polynomial-time adversary A that wins the experiment KE 4 ;(n) with
non-negligible advantage, can be used to design a probabilistic polynomial-time algorithm that solves

the DDH problem with non-negligible gap.

—~ €aVv

e Suppose towards a contradiction that there exists A such that Pr[KE 4 ;j(n) = 1] = 5 + &(n) for

non-negligible £(n).

e To solve the DDH problem... we use A itself!

o

PI'[R\Ej:/H(n) =1 ‘ b=]: PI[A(Gv q’g’gx’gy’gz) — 1}

— €aVv

Pr[KE s 1(n) = 1] b= 0]

k' = g* for some z chosen
u.a.r. from {0,...,q — 1}

3

Diffie-Hellman Key Exchange: Security Proof

Theorem: If the DDH problem is hard relative to GG, then the Diffie—Hellman key-exchange protocol

—~ €aVv

IT is secure in the presence of an eavesdropper with respect to the modified experiment KEA,H(n)

Proof:

—~ €aVv
We show that a probabilistic polynomial-time adversary A that wins the experiment KE 4 ;(n) with
non-negligible advantage, can be used to design a probabilistic polynomial-time algorithm that solves

the DDH problem with non-negligible gap.
—~ €aVv

e Suppose towards a contradiction that there exists A such that Pr[KE 4 ;j(n) = 1] = 5 + &(n) for
non-negligible £(n).

e To solve the DDH problem... we use A itself! k' = g* for some z chosen

/\ u.a.r. from {0,...,q— 1}

PI'[R\ET::/H(H) =1 ‘ b= 1] - PI[A(Gv q’g’gx’gy’gz) — 1} u%

—~ eaVv

PrKE4 i(n) =1]b=0]=Pr[A(G,q,9,9", 9%, g") = 0]

Diffie-Hellman Key Exchange: Security Proof

Theorem: If the DDH problem is hard relative to GG, then the Diffie—Hellman key-exchange protocol

—~ €aVv

IT is secure in the presence of an eavesdropper with respect to the modified experiment KEA,H(n)

Proof:

—~ €aVv
We show that a probabilistic polynomial-time adversary A that wins the experiment KE 4 ;(n) with
non-negligible advantage, can be used to design a probabilistic polynomial-time algorithm that solves

the DDH problem with non-negligible gap.
—~ €aVv

e Suppose towards a contradiction that there exists A such that Pr[KE 4 ;j(n) = 1] = 5 + &(n) for
non-negligible £(n).

e To solve the DDH problem... we use A itself! k' = g* for some z chosen

/\ u.a.r. from {0,...,q— 1}

PI'[R\ET::/H(H) =1 ‘ b= 1] - PI[A(Gv q’g’gx’gy’gz) — 1} u%

—~ eaVv

PrKE4 i(n) =1]b=0]=Pr[A(G,q,9,9" 9%, g") = 0]

W =k=gv A

Diffie-Hellman Key Exchange: Security Proof

Theorem: If the DDH problem is hard relative to GG, then the Diffie—Hellman key-exchange protocol

—~ €aVv

IT is secure in the presence of an eavesdropper with respect to the modified experiment KEA,H(n)

Proof:

—~ €aVv
We show that a probabilistic polynomial-time adversary A that wins the experiment KE 4 ;(n) with
non-negligible advantage, can be used to design a probabilistic polynomial-time algorithm that solves

the DDH problem with non-negligible gap.
—~ €aVv

e Suppose towards a contradiction that there exists A such that Pr[KE 4 ;j(n) = 1] = 5 + &(n) for
non-negligible £(n).

e To solve the DDH problem... we use A itself! k' = g* for some z chosen

/\ u.a.r. from {0,...,q— 1}

PI'[R\ET::/H(H) =1 ‘ b= 1] - PI[A(Gv q’g’gx’gy’gz) — 1} u%

—~ eaVv

Pr[KEA,H(n) =1 ‘ b= O] — PI[A(Gv Q7979x79yagxy) = O] =1- Pl”[.A(G,q,g,gx,gy,gxy) — 1]

W =k=gv A

Diffie-Hellman Key Exchange: Security Proof (cont.)

—~ €aV

PrKE, (n) =1|b=1] =PrlA(G, q,9,9", ¢",9°) = 1]

—~ €aV

PI’[KEA,H(’I?,) — 1 ‘ b — O] — 1 - PT[A(G7Q7gvnggyag$y> — 1]

Diffie-Hellman Key Exchange: Security Proof (cont.)

—~ €aV

PrKE, (n) =1|b=1] =PrlA(G, q,9,9", ¢",9°) = 1]

—~ €aV

PI’[KEA,H(’I?,) — 1 ‘ b — O] — 1 - PT[A(G7Q7gvnggyag$y> — 1]

—~ €aVv —~ €aVv

2 +e(n) = Pr[KE 4 (n) = 1] = 5 Pr[KE 4 g(n) =1 b= 0]+ %Pr[R\EA:/H(n) =1|b=1]

Diffie-Hellman Key Exchange: Security Proof (cont.)

—~ €aV

PrKE g(n) =1|b=1] =PrlA(G.q.9,9".9",9%) = 1]

—~ €aV

PI’[KEAJH(’I?,) — 1 ‘ b — O] — 1 - PT[A(G7Q7gvgw7gyagxy> — 1]

—~ €aVv —~ €aVv —~ €aVv

3 +e(n) = PriKE (n) = 1] = 1 Pr[KE, (n) =1 | b= 0] + 4 Pr[KE, (n) =1 | b= 1]

PrlA(G, ¢, 9.9%. ¢Y. ") = 1] + 3 - Pr[A(G, ¢, 9. g%, ¢¥, g°) = 1]

N

1
2

Diffie-Hellman Key Exchange: Security Proof (cont.)
PriKE . (n) = 1| b=1] =Pr[A(G.q.9.9" g",9°) = 1]

—~ €aV

Pr[KE q(n) =1|b=0] =1-Pr[A(G,q,9.9%, 9", g") = 1]

+ () — eav _— eav —~ eav

= Pr[KE4 (n) =1] = 3 Pr[KE4 y(n) =1 b=0]+ 5 Pr[KE g(n) = 1] b=1]

1
2

N | —
[\3|,_.

PrlA(G,q,9,.9".9Y,g"Y) = 1] + 1 - Pr[A(G, q,9. 9%, ¢%,9%) = 1]

(=Pr[A(G.q.9,9%, 9%, g") = 1] + Pr[A(G, ¢, 9, 9%, Y, 9%) = 1])

+

N | —
N

Diffie-Hellman Key Exchange: Security Proof (cont.)

PrKE (n) =1|b=1] =PrlA(G,q,9,9",9",9%) = 1]
—~ eaVv 1]

Pr[KE 4 (n) =1]b=0] =1-Pr[A(G,q,9.9%,9Y,g") =

—~ €aVv —~ €aVv —~ €aVv

3 +e(n) = PriKE (n) = 1] = 1 Pr[KE, (n) =1 | b= 0] + 4 Pr[KE, (n) =1 | b= 1]

PrlA(G,q,9,.9".9Y,g"Y) = 1] + 1 - Pr[A(G, q,9. 9%, ¢%,9%) = 1]

N | —
[\3|,_.

- (=Pr[A(G,4,9,9%,9%,9™) = 1] + Pr[A(G, ¢, 9, 9%, 9%, 97) = 1])

N | —
[\3|,_.

|
+ 5 - | Pr[A(G,q,9.9%,9",9") = 1] = P1[A(G,q,9,9%,9Y,9%) = 1]

N —
l\.’JIv—\

Diffie-Hellman Key Exchange: Security Proof (cont.)

—~ €aV

PrKE g(n) =1|b=1] =PrlA(G.q.9,9".9",9%) = 1]

—~ €aV

Pr[KE q(n) =1|b=0] =1-Pr[A(G,q,9.9%, 9", g") = 1]

—~ €aVv —~ €aVv —~ €aVv

% +e(n) = Pr[KEA,H(n) =1] = %Pr[KEA’H(n) =1[b=0]+ 2 Pr[KEA n(n)=1|b=1]
PrlA(G,q,9,9%,9%,9"Y) = 1] + 5 - Pr[A(G, ¢, 9,9, 9Y,97) = 1]
- (—=Pr[A(G,q,9,9%,97,9™) = 1] + Pr[A(G, q,9,9%,97,9°) = 1])

‘Pr (G,q,9.9%,9Y,9"Y) = 1] — Pr[A(G, ¢,9,9%,9Y,9%) = 1]‘

N | —
N

N | —
[\3|,_.

|
|

N —
l\.’JIv—\

‘ PrlA(G,q,9,9%, 9%, 9™) = 1] = PrlA(G.¢.9,9", 9%, 97) = 1] ‘ > 2e(n)

Diffie-Hellman Key Exchange: Security Proof (cont.)

—~ €aV

PrKE g(n) =1|b=1] =PrlA(G.q.9,9".9",9%) = 1]

PI’[KEAJH(’I?,) — 1 ‘ b — O] — 1 - PT[A(G7Q7gvgm7gy7gxy) — 1]

5 - PrlA(G,q,9,9%,9Y,9"Y) = 1] + 5 - Pr[A(G, ¢, 9,9, 9Y,97) = 1]

5 - (=Pr[A(G,q,9,9%. 9%, 9"Y) = 1] + Pr[A(G, ¢, 9, 9%, 9¥,g7) = 1])

IA

|
T+3- ‘ PrlA(G,q.9,9", 9", 9") = 1] = Pr[A(G,q,9,9", 9%, 9%) = 1] ‘

Not

‘ PrlA(G,q,9,9%,9%,9") = 1] = PrlA(G,¢,9,9%, 9%, 97) = 1] ‘ > 2e(n) | egligible

Turning a random group element into a random binary string

We have shown the (conditional) security of the Diffie-Hellman protocol with respect to the modified

—~ €aVv

experiment KE 4 11(n)

The Diffie-Hellman key exchange returns a group element k£ = ¢g*¥ that is indistinguishable from a
random one to any polynomial-time adversary

What we actually need is a shared key k*, i.e., a n-bit binary string indistinguishable from a random
string (to any polynomial-time adversary)

How do we do that?

Turning a random group element into a random binary string

We have shown the (conditional) security of the Diffie-Hellman protocol with respect to the modified

—~ €aVv

experiment KE 4 11(n)

The Diffie-Hellman key exchange returns a group element k£ = ¢g*¥ that is indistinguishable from a
random one to any polynomial-time adversary

What we actually need is a shared key k*, i.e., a n-bit binary string indistinguishable from a random
string (to any polynomial-time adversary)

How do we do that?

Key derivation! Use a hash function H and set k* = H (k)

This is secure if we model H as a random oracle

Man-in-the-Middle Attack

So far we have considered eavesdropping adversaries

What about active adversaries?

Man-in-the-Middle Attack

So far we have considered eavesdropping adversaries
What about active adversaries?

The Diffie-Hellman Key Exchange is vulnerable to the Man-in-the-Middle attack

Man-in-the-Middle Attack

So far we have considered eavesdropping adversaries
What about active adversaries?
The Diffie-Hellman Key Exchange is vulnerable to the Man-in-the-Middle attack
e And adversary interacts with both Alice and Bob
e On Alice's side, the adversary pretends to be Bob and runs Bob's side of the Diffie-Hellman protocol

e On Bob's side, the adversary pretends to be Alice and runs Alice’s side of the Diffie-Hellman protocol

Man-in-the-Middle Attack

So far we have considered eavesdropping adversaries
What about active adversaries?
The Diffie-Hellman Key Exchange is vulnerable to the Man-in-the-Middle attack
e And adversary interacts with both Alice and Bob
e On Alice's side, the adversary pretends to be Bob and runs Bob's side of the Diffie-Hellman protocol

e On Bob's side, the adversary pretends to be Alice and runs Alice’s side of the Diffie-Hellman protocol

e At the end of the protocol Alice and Bob have two different keys k4, kg and both of these keys
are known to the Adversary

e When a message is sent from A to B (or vice-versa) the adversary can decrypt it with k4, read
and possibily alter the plaintext, and re-encrypt it with kp

Man-in-the-Middle Attack

What can we do against this attack?

Man-in-the-Middle Attack

What can we do against this attack?

Man-in-the-Middle attacks can’t be avoided if Alice and Bob don’t know anything
about each other and don’t trust any 3rd-party

Man-in-the-Middle Attack

What can we do against this attack?

Man-in-the-Middle attacks can’t be avoided if Alice and Bob don’t know anything
about each other and don’t trust any 3rd-party

e In general we want authenticated key exchange protocols
e Can be achieved with public-key cryptography and digital signatures/certificates

e Modern key-exchange protocols (e.g., TLS) provide authentication

Private-Key Setting

Two (or more) parties who wish to communicate secretly need to share a uniform secret key k in advance

The same key can be used for both sending and receiving
e Each party can both send an receive

e |f multiple parties share the same key, there is no way to distinguish them

The key must be kept secret!

e If an attacker gets to know k£ we lose all the security guarantees

Public-Key Setting

One party generates a pair of keys:

e A public key pk @w»
e A secret key (or private key) sk @w»

Public-Key Setting

One party generates a pair of keys:

e A public key pk @w»
e A secret key (or private key) sk @w»

The public key is. .. public
e No need to keep it secret
e In fact it is often widely disseminated
e Used by anybody that wishes to send messages to the party

e Security must hold even if an attacker knows pk

Public-Key Setting

One party generates a pair of keys:

e A public key pk @w»
e A secret key (or private key) sk @w»

The public key is. .. public
e No need to keep it secret
e In fact it is often widely disseminated
e Used by anybody that wishes to send messages to the party

e Security must hold even if an attacker knows pk

The secret key must be kept. . . secret

e It is only used by the party that generated it

Public-Key Setting

We assume that the involved parties are able to obtain (untampered) copies of the public keys
e The attacker is just an eavesdropper; or

e The attacker remains passive during key distribution

Public-Key Setting

We assume that the involved parties are able to obtain (untampered) copies of the public keys
e The attacker is just an eavesdropper; or

e The attacker remains passive during key distribution

Advantages:

e Key distribution: Keys can be distributed over a public channel

Public-Key Setting

We assume that the involved parties are able to obtain (untampered) copies of the public keys
e The attacker is just an eavesdropper; or

e The attacker remains passive during key distribution

Advantages:

e Key distribution: Keys can be distributed over a public channel
e Key management: Each user needs a single public/secret key pair.

e In a system with N users, there are © (V) key pairs, instead of ©(N?) private-keys

Public-Key Setting

We assume that the involved parties are able to obtain (untampered) copies of the public keys
e The attacker is just an eavesdropper; or

e The attacker remains passive during key distribution

Advantages:

e Key distribution: Keys can be distributed over a public channel
e Key management: Each user needs a single public/secret key pair.

e In a system with N users, there are © (V) key pairs, instead of ©(N?) private-keys

e Open systems: Two parties with no prior relationship can find each others’ public keys*

e The recipient does not even need to know who the sender is

*Requires a trusted third party

Public-Key Setting

Why study private key cryptography at all?

e If two parties wish to communicate, they can always generate two public/secret key pairs instead of
a secret shared key

But...

Public-Key Setting

Why study private key cryptography at all?

e If two parties wish to communicate, they can always generate two public/secret key pairs instead of
a secret shared key

But...

e Public-key schemes are slower

Public-Key Setting

Why study private key cryptography at all?

e If two parties wish to communicate, they can always generate two public/secret key pairs instead of
a secret shared key

But...

e Public-key schemes are slower

e Public-key schemes require longer keys

Public-Key Setting

Why study private key cryptography at all?
e If two parties wish to communicate, they can always generate two public/secret key pairs instead of

a secret shared key

But...

e Public-key schemes are slower
e Public-key schemes require longer keys

e Public-key schemes have larger ciphertext expansion

Public-Key Setting

Why study private key cryptography at all?
e If two parties wish to communicate, they can always generate two public/secret key pairs instead of

a secret shared key

But...

e Public-key schemes are slower
e Public-key schemes require longer keys
e Public-key schemes have larger ciphertext expansion

e Public-key schemes require stronger assumptions

Public-Key Setting

Why study private key cryptography at all?

e If two parties wish to communicate, they can always generate two public/secret key pairs instead of
a secret shared key

But...

e Public-key schemes are slower <

These issues can
be mitigated

e Public-key schemes require longer keys
e Public-key schemes have larger ciphertext expansion J

e Public-key schemes require stronger assumptions

Public-Key Encryption

e Bob generates a public/secret key pair (pk, sk) P P

e Bob shares pk with Alice @w»

Public-Key Encryption

¢ < Encp(m)

e Bob generates a public/secret key pair (pk, sk) P P

e Bob shares pk with Alice @w»
e Alice encrypts her message m using Bob's public key pk @

c < Encpr(m)

Public-Key Encryption

¢ < Encp(m) Insecure Channel >
c

e Bob generates a public/secret key pair (pk, sk) P P

e Bob shares pk with Alice @w»
e Alice encrypts her message m using Bob's public key pk @

c < Encpr(m)

Public-Key Encryption

¢ < Encp(m) Insecure Channel >
c

e Bob generates a public/secret key pair (pk, sk) P P

e Bob shares pk with Alice @w»
e Alice encrypts her message m using Bob's public key pk @

c < Encpr(m)

Bob decrypts the ciphertext c using his secret key sk @

m <— Decgp(c)

Public-key Encryption Schemes: Definition

A public-key encryption scheme consists of three algorithms:

1n
e Gen is a randomized algorithm that takes 1™ as input and @ *
outputs a pair of keys (pk, sk), each of length at least n. @ > Gen

—>(pk7 Sk)

The public key defines a message space M,

Public-key Encryption Schemes: Definition

A public-key encryption scheme consists of three algorithms: 1n
e Gen is a randomized algorithm that takes 1™ as input and @ *
outputs a pair of keys (pk, sk), each of length at least n. @ > Gen > (pk, sk)

The public key defines a message space M,

e Enc is a randomized algorithm that takes as input a public key pk
pk and a message (or plaintext) m € M, and outputs a {

ciphertext c obtained by encrypting m with key pk. m € My
— EnCpk; —» C

Enc,,(m) denotes an execution of Enc with inputs pk and m

Public-key Encryption Schemes: Definition

A public-key encryption scheme consists of three algorithms: 1n
e Gen is a randomized algorithm that takes 1™ as input and @ *
outputs a pair of keys (pk, sk), each of length at least n. @ > Gen > (pk, sk)

The public key defines a message space M,

e Enc is a randomized algorithm that takes as input a public key pk
pk and a message (or plaintext) m € M, and outputs a {

ciphertext c obtained by encrypting m with key pk. m € My
— EnCpk; —» C

Enc,,(m) denotes an execution of Enc with inputs pk and m

e Dec is a deterministic algorithm that takes as input a secret sk
key sk and a ciphertext ¢ and outputs a message m € M, or *
a special symbol L denoting failure.

c — » Decyy —» m

Decsi(c) denotes an execution of Dec with inputs sk and ¢

Public-key Encryption Schemes: Definition

A public-key encryption scheme consists of three algorithms: 1n
e Gen is a randomized algorithm that takes 1™ as input and @ *
outputs a pair of keys (pk, sk), each of length at least n. @ > Gen > (pk, sk)

The public key defines a message space M,

e Enc is a randomized algorithm that takes as input a public key pk
pk and a message (or plaintext) m € M, and outputs a {

ciphertext c obtained by encrypting m with key pk. m € My
— EnCpk; —» C

Enc,,(m) denotes an execution of Enc with inputs pk and m

e Dec is a deterministic algorithm that takes as input a secret sk
key sk and a ciphertext ¢ and outputs a message m € M, or *
a special symbol L denoting failure.

c — » Decyy —» m

Decsi(c) denotes an execution of Dec with inputs sk and ¢

Correctness: We must have Decgy(Encyr(m)) = m for any m € M, except for negligible
probability (over the randomness of Gen and Enc).

Security Notion for Public-Key Encryption Schemes?

How do we formalize the notion of security for Public-Key encryption?

e \We can hope to adapt the security definition that we used for Private-Key encryption schemes

Security Notion for Public-Key Encryption Schemes?

How do we formalize the notion of security for Public-Key encryption?

e \We can hope to adapt the security definition that we used for Private-Key encryption schemes

e Let's start simple... security in the presence of an eavesdropper

Security Notion for Public-Key Encryption Schemes?

How do we formalize the notion of security for Public-Key encryption?

e \We can hope to adapt the security definition that we used for Private-Key encryption schemes

e Let's start simple... security in the presence of an eavesdropper

Experiment PrivK’{";(n):

e A random key k is generated (by running Gen)

e A chooses two distinct messages mg, m; € M

e A uniform random bit b € {0,1} is generated

e The challenge ciphertext ¢ = Ency(my), and given to A
e A outputs a guess b’ € {0, 1} about b

e The outcome of the experiment is defined to be 1 if b’ = b, and 0 otherwise

Security Notion for Public-Key Encryption Schemes?

How do we formalize the notion of security for Public-Key encryption?

e \We can hope to adapt the security definition that we used for Private-Key encryption schemes

e Let's start simple... security in the presence of an eavesdropper

€av

Experiment PubK{ " (n):

e A random key k is generated (by running Gen)

e A chooses two distinct messages mg, m; € M

e A uniform random bit b € {0,1} is generated

e The challenge ciphertext ¢ = Ency(my), and given to A
e A outputs a guess b’ € {0, 1} about b

e The outcome of the experiment is defined to be 1 if b’ = b, and 0 otherwise

Security Notion for Public-Key Encryption Schemes?

How do we formalize the notion of security for Public-Key encryption?

e \We can hope to adapt the security definition that we used for Private-Key encryption schemes

e Let's start simple... security in the presence of an eavesdropper

€av

Experiment PubK{ " (n):

e A random key pair (pk, sk) <— Gen(1™) is generated

e A chooses two distinct messages mg, m; € M

e A uniform random bit b € {0,1} is generated

e The challenge ciphertext ¢ = Ency(my), and given to A
e A outputs a guess b’ € {0, 1} about b

e The outcome of the experiment is defined to be 1 if b’ = b, and 0 otherwise

Security Notion for Public-Key Encryption Schemes?

How do we formalize the notion of security for Public-Key encryption?

e \We can hope to adapt the security definition that we used for Private-Key encryption schemes

e Let's start simple... security in the presence of an eavesdropper

€av

Experiment PubK{ " (n):

e A random key pair (pk, sk) <— Gen(1™) is generated

The public key pk is sent to A

e A chooses two distinct messages mg, m; € M

e A uniform random bit b € {0,1} is generated

e The challenge ciphertext ¢ = Ency(my), and given to A
e A outputs a guess b’ € {0, 1} about b

e The outcome of the experiment is defined to be 1 if b’ = b, and 0 otherwise

Security Notion for Public-Key Encryption Schemes?

How do we formalize the notion of security for Public-Key encryption?

e \We can hope to adapt the security definition that we used for Private-Key encryption schemes

e Let's start simple... security in the presence of an eavesdropper

€av

Experiment PubK{ " (n):

e A random key pair (pk, sk) <— Gen(1™) is generated

The public key pk is sent to A

e A chooses two distinct messages mg, m; € M

e A uniform random bit b € {0,1} is generated

e The challenge ciphertext ¢ = Enc,,(my), and given to A
e A outputs a guess b’ € {0, 1} about b

e The outcome of the experiment is defined to be 1 if b’ = b, and 0 otherwise

Some observations on the PubK®;; experiment

The adversary has access to the public key pk

e It can choose my and my as a function of pk

e |t can encrypt any message with pk by itself

Some observations on the PubK®;; experiment

The adversary has access to the public key pk

e It can choose my and my as a function of pk

e |t can encrypt any message with pk by itself

e No need for an encryption oracle!

Some observations on the PubK®}; experiment

The adversary has access to the public key pk
e It can choose my and my as a function of pk

e |t can encrypt any message with pk by itself

e No need for an encryption oracle!

e This definition already allows the attacker to perform chosen-plaintext attacks

Some observations on the PubK®}; experiment

The adversary has access to the public key pk
e It can choose my and my as a function of pk

e |t can encrypt any message with pk by itself

e No need for an encryption oracle!

e This definition already allows the attacker to perform chosen-plaintext attacks

Let's revise the name... PUbKii\h > PUbeélp?I

Some observations on the PubK®}; experiment

The adversary has access to the public key pk

e It can choose my and my as a function of pk

e |t can encrypt any message with pk by itself
e No need for an encryption oracle!

e This definition already allows the attacker to perform chosen-plaintext attacks

Let's revise the name... PUbKii\h > |3ube4PEiT

Definition: A public key encryption scheme 11 is CPA-secure if, for every probabilistic
polynomial-time adversary A, there is a negligible function £ such that:

Pr{PubKT? (n) = 1] < % +e(n)

Some consequences

Any public-key encryption scheme that is CPA-secure is also
CPA-secure for multiple encryptions

(just like the private-key setting)

No deterministic public-key encryption scheme can be CPA-secure

(just like the private-key setting)

Some consequences

There is no such thing as a perfectly secret public key encryption scheme

Some consequences

There is no such thing as a perfectly secret public key encryption scheme
We show that an adversary can always decrypt a ciphertext ¢ <— Enc,,(m) using a brute-force attack.

(obviously, this adversary won't run in polynomial-time)

Some consequences

There is no such thing as a perfectly secret public key encryption scheme

We show that an adversary can always decrypt a ciphertext ¢ <— Enc,,(m) using a brute-force attack.

(obviously, this adversary won't run in polynomial-time)
Assume, for simplicity, that the decryption algorithm never fails.

Let R be an upper bound to the number of random bits used by the encryption algorithm

Some consequences

There is no such thing as a perfectly secret public key encryption scheme

We show that an adversary can always decrypt a ciphertext ¢ <— Enc,,(m) using a brute-force attack.

(obviously, this adversary won't run in polynomial-time)
Assume, for simplicity, that the decryption algorithm never fails.

Let R be an upper bound to the number of random bits used by the encryption algorithm

e The adversary enumerates all possible messages m’ € M:
e For each m/, the adversary enumerates all R-bit binary strings r

e The adversary runs Enc,i(m’) using r as the random bits to obtain a ciphertext ¢’

e If c = ¢: Claim that the plaintext m is exactly m’. Stop.

Some consequences

There is no such thing as a perfectly secret public key encryption scheme

We show that an adversary can always decrypt a ciphertext ¢ <— Enc,,(m) using a brute-force attack.
(obviously, this adversary won't run in polynomial-time)

Assume, for simplicity, that the decryption algorithm never fails.

Let R be an upper bound to the number of random bits used by the encryption algorithm

e The adversary enumerates all possible messages m’ € M:
e For each m/, the adversary enumerates all R-bit binary strings r

e The adversary runs Enc,i(m’) using r as the random bits to obtain a ciphertext ¢’

e If c = ¢: Claim that the plaintext m is exactly m’. Stop.

Notice that:

e This algorithm must eventually stop (when m' = m and r are the random bits used by ¢ <— Enc,;(m))

Some consequences

There is no such thing as a perfectly secret public key encryption scheme

We show that an adversary can always decrypt a ciphertext ¢ <— Enc,,(m) using a brute-force attack.
(obviously, this adversary won't run in polynomial-time)

Assume, for simplicity, that the decryption algorithm never fails.

Let R be an upper bound to the number of random bits used by the encryption algorithm

e The adversary enumerates all possible messages m’ € M:
e For each m/, the adversary enumerates all R-bit binary strings r

e The adversary runs Enc,i(m’) using r as the random bits to obtain a ciphertext ¢’

e If c = ¢: Claim that the plaintext m is exactly m’. Stop.

Notice that:
e This algorithm must eventually stop (when m' = m and r are the random bits used by ¢ <— Enc,;(m))

e It cannot return m’ # m since this would imply Enc,;(m’) = ¢ (for some randomness) and hence
m = Decgy(c) = Decg(Encpr(m’))

Some consequences

There is no such thing as a perfectly secret public key encryption scheme

We show that an adversary can always decrypt a ciphertext ¢ <— Enc,,(m) using a brute-force attack.
(obviously, this adversary won't run in polynomial-time)

Assume, for simplicity, that the decryption algorithm never fails.

Let R be an upper bound to the number of random bits used by the encryption algorithm

e The adversary enumerates all possible messages m’ € M:
e For each m/, the adversary enumerates all R-bit binary strings r

e The adversary runs Enc,i(m’) using r as the random bits to obtain a ciphertext ¢’

e If c = ¢: Claim that the plaintext m is exactly m’. Stop.

Notice that:
e This algorithm must eventually stop (when m' = m and r are the random bits used by ¢ <— Enc,;(m))

e It cannot return m’ # m since this would imply Enc,;(m’) = ¢ (for some randomness) and hence

— Dec — Dec.i.(Enc !
m Sk(c) sk(En p’“(m)) This contradicts correctness.

Security Against Chosen-Ciphertext Attacks

Chosen-Ciphertext attacks are also a concern in the public-key setting

In fact, they can even be easier to execute

Think of the following scenario:
e The adversary intercepts the encrypted body of an email from Alice to Bob
e The adversary sends the encrypted body to Bob from his address
e Bob's reply might reveal information about the plaintext

e |f the adversary is lucky, the reply email will contain a full decryption of the original message!

Security Against Chosen-Ciphertext Attacks

Chosen-Ciphertext attacks are also a concern in the public-key setting
In fact, they can even be easier to execute

Think of the following scenario:

e The adversary intercepts the encrypted body of an email from Alice to Bob g, a
. is act
e The adversary sends the encrypted body to Bob from his address gov ‘Spt'\o OY’C‘C’\e
decf\.’

e Bob's reply might reveal information about the plaintext

e |f the adversary is lucky, the reply email will contain a full decryption of the original message!

Security Against Chosen-Ciphertext Attacks

Chosen-Ciphertext attacks are also a concern in the public-key setting
In fact, they can even be easier to execute

Think of the following scenario:

e The adversary intercepts the encrypted body of an email from Alice to Bob ‘g, 25 a
. is act
e The adversary sends the encrypted body to Bob from his address gov ‘Spt-‘oﬂ OY’C‘C’\e

e Bob's reply might reveal information about the plaintext

e |f the adversary is lucky, the reply email will contain a full decryption of the original message!

It is possible to define CCA-security also for public-key encryption schemes
e In the private-key setting we have seen a stronger notion of security: authenticated encryption
e The definition of authenticated encryption does not immediately extend to the public-key setting
(recall that anybody with the public key can encrypt messages)

e We will see another mechanism to guarantee authentication (digital signature schemes)

Definition of CCA-Security

CCa

Experiment PubK®%;(n):
e A random key pair (pk, sk) <— Gen(1") is generated and pk is sent to A
e A interacts with a decryption oracle
e A chooses two distinct messages mg, m; € M
e A uniform random bit b € {0, 1} is generated
e The challenge ciphertext c is computed by Enc,,(my), and given to A
e A interacts with a decryption oracle but cannot request a decryption of ¢
e A outputs a guess b’ € {0, 1} about b

e The outcome of the experiment is defined to be 1 if b’ = b, and 0 otherwise

Definition: A public key encryption scheme 11 is CCA-secure if, for every probabilistic
polynomial-time adversary A, there is a negligible function £ such that:

Pr{PubKS(n) = 1] < % +e(n)

Public-Key Setting vs. Private-Key Setting

Private-Key Setting Public-Key Setting
Secrecy Private-Key Encryption
Schemes
Integrity Message Authentication

Codes

Public-Key Setting vs. Private-Key Setting

Private-Key Setting Public-Key Setting
Secrecy Private-Key Encryption Public-Key Encryption
Schemes Schemes
Integrity Message Authentication

Codes

Public-Key Setting vs. Private-Key Setting

Private-Key Setting Public-Key Setting
Secrecy Private-Key Encryption Public-Key Encryption
Schemes Schemes
Integrity Message Authentication Digital Signature

Codes Schemes

