
Public-Key Setting

Why study private key cryptography at all?

• If two parties with to communicate, they can always generate two public/secret key pairs instead of
a secret shared key

• Public-key schemes are slower

• Public-key schemes require longer keys

• Public-key schemes have larger ciphertext expansion

• Public-key schemes require stronger assumptions

These issues can
be mitigated

Encrypting long messages

The public key encryption schemes we will see are defined for short messages

How can we encrypt long (arbitrary length) messages?

Encrypting long messages

The public key encryption schemes we will see are defined for short messages

How can we encrypt long (arbitrary length) messages?

Easy solution: Split the message into small blocks, and encrypt each block separately

Encrypting long messages

The public key encryption schemes we will see are defined for short messages

How can we encrypt long (arbitrary length) messages?

Easy solution: Split the message into small blocks, and encrypt each block separately

m = m1 ∥m2 ∥m3 ∥ . . .

Enc′(m) = Encpk(m1) ∥Encpk(m2) ∥Encpk(m3) ∥ . . .

Dec′sk is defined in the obvious way

Π = (Gen,Enc,Dec)

Encrypting long messages

The public key encryption schemes we will see are defined for short messages

How can we encrypt long (arbitrary length) messages?

Easy solution: Split the message into small blocks, and encrypt each block separately

If Π is CPA-secure (for short length messages), then the above scheme (Dec,Enc′,Dec′) is
CPA-secure for arbitrary length messages.

m = m1 ∥m2 ∥m3 ∥ . . .

Enc′(m) = Encpk(m1) ∥Encpk(m2) ∥Encpk(m3) ∥ . . .

Dec′sk is defined in the obvious way

Π = (Gen,Enc,Dec)

Encrypting long messages

The public key encryption schemes we will see are defined for short messages

How can we encrypt long (arbitrary length) messages?

Easy solution: Split the message into small blocks, and encrypt each block separately

Drawbacks:

• Slow

If Π is CPA-secure (for short length messages), then the above scheme (Dec,Enc′,Dec′) is
CPA-secure for arbitrary length messages.

m = m1 ∥m2 ∥m3 ∥ . . .

Enc′(m) = Encpk(m1) ∥Encpk(m2) ∥Encpk(m3) ∥ . . .

Dec′sk is defined in the obvious way

Π = (Gen,Enc,Dec)

Encrypting long messages

The public key encryption schemes we will see are defined for short messages

How can we encrypt long (arbitrary length) messages?

Easy solution: Split the message into small blocks, and encrypt each block separately

Drawbacks:

• Slow

• Ciphertext, expansion

If Π is CPA-secure (for short length messages), then the above scheme (Dec,Enc′,Dec′) is
CPA-secure for arbitrary length messages.

m = m1 ∥m2 ∥m3 ∥ . . .

Enc′(m) = Encpk(m1) ∥Encpk(m2) ∥Encpk(m3) ∥ . . .

Dec′sk is defined in the obvious way

Π = (Gen,Enc,Dec)

Encrypting long messages

The public key encryption schemes we will see are defined for short messages

How can we encrypt long (arbitrary length) messages?

Easy solution: Split the message into small blocks, and encrypt each block separately

Drawbacks:

• Slow

• Ciphertext, expansion

If Π is CPA-secure (for short length messages), then the above scheme (Dec,Enc′,Dec′) is
CPA-secure for arbitrary length messages.

m = m1 ∥m2 ∥m3 ∥ . . .

Enc′(m) = Encpk(m1) ∥Encpk(m2) ∥Encpk(m3) ∥ . . .

Dec′sk is defined in the obvious way

Π = (Gen,Enc,Dec)

Can we do better?

Hybrid encryption

Idea:

• Use a public-key encryption scheme to encrypt a key k for a private-key encryption scheme

• Use k to encrypt m

• The ciphertext contains both the encryption of k and the encryption of m

Hybrid encryption

Idea:

• Use a public-key encryption scheme to encrypt a key k for a private-key encryption scheme

• Use k to encrypt m

• The ciphertext contains both the encryption of k and the encryption of m

Note: the resulting scheme is a public-key encryption scheme

• the key k does not need to be shared by the parties beforehand

Hybrid encryption

Idea:

• Use a public-key encryption scheme to encrypt a key k for a private-key encryption scheme

• Use k to encrypt m

• The ciphertext contains both the encryption of k and the encryption of m

Note: the resulting scheme is a public-key encryption scheme

• the key k does not need to be shared by the parties beforehand

Benefits:

• Fast (public-key encryption is used only for the first block)

Hybrid encryption

Idea:

• Use a public-key encryption scheme to encrypt a key k for a private-key encryption scheme

• Use k to encrypt m

• The ciphertext contains both the encryption of k and the encryption of m

Note: the resulting scheme is a public-key encryption scheme

• the key k does not need to be shared by the parties beforehand

Benefits:

• Fast (public-key encryption is used only for the first block)

• Asymptotically optimal ciphertext expansion: the only blocks that are expanded are the first (due
to public-key encryption) and possibly the last (due to padding)

Key Encapsulation Mechanism

The idea is better formalized by the notion of Key Encapsulation Mechanism (KEM)

We are only using the public-key encryption scheme to encrypt a symmetric secret key

We don’t need the fully fledged formal definition of a public-key encryption scheme for such task

Key Encapsulation Mechanism

The idea is better formalized by the notion of Key Encapsulation Mechanism (KEM)

We are only using the public-key encryption scheme to encrypt a symmetric secret key

We don’t need the fully fledged formal definition of a public-key encryption scheme for such task

A Key Encapsulation Mechanism consists of three algorithms:

• Gen is a randomized polynomial-time algorithm that takes as input the security parameter 1n and
outputs a public/secret key pair (pk, sk), where pk and sk have length at least n.

Key Encapsulation Mechanism

The idea is better formalized by the notion of Key Encapsulation Mechanism (KEM)

We are only using the public-key encryption scheme to encrypt a symmetric secret key

We don’t need the fully fledged formal definition of a public-key encryption scheme for such task

A Key Encapsulation Mechanism consists of three algorithms:

• Gen is a randomized polynomial-time algorithm that takes as input the security parameter 1n and
outputs a public/secret key pair (pk, sk), where pk and sk have length at least n.

• Encaps is a randomized polynomial-time encapsulation algorithm that takes as input a public key
pk and 1

n, and outputs a pair (c, k) where c is a ciphertext and k ∈ {0, 1}ℓ(n), for some key
length ℓ(n). We write this as (c, k)← Encapspk(1

n).

Key Encapsulation Mechanism

The idea is better formalized by the notion of Key Encapsulation Mechanism (KEM)

We are only using the public-key encryption scheme to encrypt a symmetric secret key

We don’t need the fully fledged formal definition of a public-key encryption scheme for such task

A Key Encapsulation Mechanism consists of three algorithms:

• Gen is a randomized polynomial-time algorithm that takes as input the security parameter 1n and
outputs a public/secret key pair (pk, sk), where pk and sk have length at least n.

• Encaps is a randomized polynomial-time encapsulation algorithm that takes as input a public key
pk and 1

n, and outputs a pair (c, k) where c is a ciphertext and k ∈ {0, 1}ℓ(n), for some key
length ℓ(n). We write this as (c, k)← Encapspk(1

n).

• Decaps is a deterministic polynomial-time decapsulation algorithm that takes as input a secret
key sk and a ciphertext c and outputs a key k or a special symbol ⊥. We denote an execution of
this algorithm by Decapssk(c).

Key Encapsulation Mechanism

The idea is better formalized by the notion of Key Encapsulation Mechanism (KEM)

We are only using the public-key encryption scheme to encrypt a symmetric secret key

We don’t need the fully fledged formal definition of a public-key encryption scheme for such task

A Key Encapsulation Mechanism consists of three algorithms:

• Gen is a randomized polynomial-time algorithm that takes as input the security parameter 1n and
outputs a public/secret key pair (pk, sk), where pk and sk have length at least n.

• Encaps is a randomized polynomial-time encapsulation algorithm that takes as input a public key
pk and 1

n, and outputs a pair (c, k) where c is a ciphertext and k ∈ {0, 1}ℓ(n), for some key
length ℓ(n). We write this as (c, k)← Encapspk(1

n).

• Decaps is a deterministic polynomial-time decapsulation algorithm that takes as input a secret
key sk and a ciphertext c and outputs a key k or a special symbol ⊥. We denote an execution of
this algorithm by Decapssk(c).

Correctness: if (c, k)← Encapspk(1
n) then Decapssk(c) = k, except for negligible probability.

Key Encapsulation Mechanism

The idea is better formalized by the notion of Key Encapsulation Mechanism (KEM)

We are only using the public-key encryption scheme to encrypt a symmetric secret key

We don’t need the fully fledged formal definition of a public-key encryption scheme for such task

A Key Encapsulation Mechanism consists of three algorithms:

• Gen is a randomized polynomial-time algorithm that takes as input the security parameter 1n and
outputs a public/secret key pair (pk, sk), where pk and sk have length at least n.

• Encaps is a randomized polynomial-time encapsulation algorithm that takes as input a public key
pk and 1

n, and outputs a pair (c, k) where c is a ciphertext and k ∈ {0, 1}ℓ(n), for some key
length ℓ(n). We write this as (c, k)← Encapspk(1

n).

• Decaps is a deterministic polynomial-time decapsulation algorithm that takes as input a secret
key sk and a ciphertext c and outputs a key k or a special symbol ⊥. We denote an execution of
this algorithm by Decapssk(c).

Correctness: if (c, k)← Encapspk(1
n) then Decapssk(c) = k, except for negligible probability.

Note: a public-key encryption scheme is a possible way to build a KEM

The KEM/DEM Paradigm

Unsurprisingly... we can use a KEM Π = (Gen,Encaps,Decaps) and a private-key encryption scheme
Π′ = (Gen′,Enc′,Dec′) to build a public-key encryption scheme Πhy = (Genhy,Enchy,Dechy).

(that’s the whole point of introducing KEMs)

The KEM/DEM Paradigm

Unsurprisingly... we can use a KEM Π = (Gen,Encaps,Decaps) and a private-key encryption scheme
Π′ = (Gen′,Enc′,Dec′) to build a public-key encryption scheme Πhy = (Genhy,Enchy,Dechy).

(that’s the whole point of introducing KEMs)

• The private-key encryption scheme Π′ is called a Data Encapsulation Mechanism (DEM)

The KEM/DEM Paradigm

Unsurprisingly... we can use a KEM Π = (Gen,Encaps,Decaps) and a private-key encryption scheme
Π′ = (Gen′,Enc′,Dec′) to build a public-key encryption scheme Πhy = (Genhy,Enchy,Dechy).

(that’s the whole point of introducing KEMs)

• The private-key encryption scheme Π′ is called a Data Encapsulation Mechanism (DEM)

• Assume that Π′ uses keys of length ℓ(n), i.e., the keys output Encaps and Gen′ are “compatible”

The KEM/DEM Paradigm

Unsurprisingly... we can use a KEM Π = (Gen,Encaps,Decaps) and a private-key encryption scheme
Π′ = (Gen′,Enc′,Dec′) to build a public-key encryption scheme Πhy = (Genhy,Enchy,Dechy).

(that’s the whole point of introducing KEMs)

• The private-key encryption scheme Π′ is called a Data Encapsulation Mechanism (DEM)

• Assume that Π′ uses keys of length ℓ(n), i.e., the keys output Encaps and Gen′ are “compatible”

Genhy(1n): (pk, sk)← Gen(1n); Return (pk, sk)

The KEM/DEM Paradigm

Unsurprisingly... we can use a KEM Π = (Gen,Encaps,Decaps) and a private-key encryption scheme
Π′ = (Gen′,Enc′,Dec′) to build a public-key encryption scheme Πhy = (Genhy,Enchy,Dechy).

(that’s the whole point of introducing KEMs)

• The private-key encryption scheme Π′ is called a Data Encapsulation Mechanism (DEM)

• Assume that Π′ uses keys of length ℓ(n), i.e., the keys output Encaps and Gen′ are “compatible”

Genhy(1n): (pk, sk)← Gen(1n); Return (pk, sk)

Enchypk(m):

• (c, k)← Encapspk(1
n)

• c′ ← Enc′k(m)

• Return c ∥ c′

The KEM/DEM Paradigm

Unsurprisingly... we can use a KEM Π = (Gen,Encaps,Decaps) and a private-key encryption scheme
Π′ = (Gen′,Enc′,Dec′) to build a public-key encryption scheme Πhy = (Genhy,Enchy,Dechy).

(that’s the whole point of introducing KEMs)

• The private-key encryption scheme Π′ is called a Data Encapsulation Mechanism (DEM)

• Assume that Π′ uses keys of length ℓ(n), i.e., the keys output Encaps and Gen′ are “compatible”

Genhy(1n): (pk, sk)← Gen(1n); Return (pk, sk)

Enchypk(m):

• (c, k)← Encapspk(1
n)

• c′ ← Enc′k(m)

• Return c ∥ c′

Dechysk (c
′′):

• Parse c′′ as c∥c′

• k ← Decapssk(c)

• m← Dec′k(c
′)

• Return m

(return ⊥ if this fails)

CPA-Security of KEMs
Let Π = (Gen,Encaps,Decaps) be a KEM and let A be an algorithm. We denote the following
experiment by KEMcpa

A,Π

• A key pair (pk, sk)← Gen(1n) is generated

• (c, k)← Encapspk(1
n)

• A uniform random bit b ∈ {0, 1} is generated
• If b = 0, we set k̂ = k. Otherwise (b = 1) we choose k̂ u.a.r. from {0, 1}ℓ(n)

• The values of pk, c, and k̂ are sent to A
• A outputs a guess b′ ∈ {0, 1} about b
• The outcome of the experiment is defined to be 1 if b′ = b, and 0 otherwise

CPA-Security of KEMs
Let Π = (Gen,Encaps,Decaps) be a KEM and let A be an algorithm. We denote the following
experiment by KEMcpa

A,Π

• A key pair (pk, sk)← Gen(1n) is generated

• (c, k)← Encapspk(1
n)

• A uniform random bit b ∈ {0, 1} is generated
• If b = 0, we set k̂ = k. Otherwise (b = 1) we choose k̂ u.a.r. from {0, 1}ℓ(n)

• The values of pk, c, and k̂ are sent to A
• A outputs a guess b′ ∈ {0, 1} about b
• The outcome of the experiment is defined to be 1 if b′ = b, and 0 otherwise

Definition: A key-encapsulation mechanism Π is CPA-secure if, for every probabilistic
polynomial-time adversary A, there is a negligible function ε such that:

Pr[KEMcpa

A,Π(n) = 1] ≤ 1

2
+ ε(n)

CPA-Security of Hybrid encryption

Theorem: If Π is a CPA-secure KEM and Π′ is an EAV-secure private-key encryption
scheme then Πhy (as previously defined) is a CPA-secure public-key encryption scheme.

CPA-Security of Hybrid encryption

Notice that only EAV-security is needed for Π′ !

Theorem: If Π is a CPA-secure KEM and Π′ is an EAV-secure private-key encryption
scheme then Πhy (as previously defined) is a CPA-secure public-key encryption scheme.

Why?

CPA-Security of Hybrid encryption

Notice that only EAV-security is needed for Π′ !

Theorem: If Π is a CPA-secure KEM and Π′ is an EAV-secure private-key encryption
scheme then Πhy (as previously defined) is a CPA-secure public-key encryption scheme.

Why?

• A new key k is used for each encryption!

High-level idea of the proof:

• Let k∗ be a key chosen u.a.r. from {0, 1}ℓ(n)

• Let ∼∼∼ denote the relation “being indistinguishable by a polynomial-time adversary” defined over
probability distributions

• Notice that ∼∼∼ is reflexive, symmetric, and transitive when applied a polynomial number of times

Theorem: If Π is a CPA-secure KEM and Π′ is an EAV-secure private-key encryption
scheme then Πhy (as previously defined) is a CPA-secure public-key encryption scheme.

CPA-Security of Hybrid encryption

High-level idea of the proof:

• Let k∗ be a key chosen u.a.r. from {0, 1}ℓ(n)

(pk,Enchypk(m0)) (pk,Enchypk(m1))
∼∼∼

• Let ∼∼∼ denote the relation “being indistinguishable by a polynomial-time adversary” defined over
probability distributions

• Notice that ∼∼∼ is reflexive, symmetric, and transitive when applied a polynomial number of times

we want this

Theorem: If Π is a CPA-secure KEM and Π′ is an EAV-secure private-key encryption
scheme then Πhy (as previously defined) is a CPA-secure public-key encryption scheme.

CPA-Security of Hybrid encryption

High-level idea of the proof:

• Let k∗ be a key chosen u.a.r. from {0, 1}ℓ(n)

(pk,Enchypk(m0)) = (pk, c,Enc′k(m0)) (pk,Enchypk(m1))
∼∼∼

• Let ∼∼∼ denote the relation “being indistinguishable by a polynomial-time adversary” defined over
probability distributions

• Notice that ∼∼∼ is reflexive, symmetric, and transitive when applied a polynomial number of times

we want this

Theorem: If Π is a CPA-secure KEM and Π′ is an EAV-secure private-key encryption
scheme then Πhy (as previously defined) is a CPA-secure public-key encryption scheme.

CPA-Security of Hybrid encryption

High-level idea of the proof:

• Let k∗ be a key chosen u.a.r. from {0, 1}ℓ(n)

(pk,Enchypk(m0)) = (pk, c,Enc′k(m0)) (pk,Enchypk(m1))(pk, c,Enc′k(m1)) =
∼∼∼

• Let ∼∼∼ denote the relation “being indistinguishable by a polynomial-time adversary” defined over
probability distributions

• Notice that ∼∼∼ is reflexive, symmetric, and transitive when applied a polynomial number of times

we want this

Theorem: If Π is a CPA-secure KEM and Π′ is an EAV-secure private-key encryption
scheme then Πhy (as previously defined) is a CPA-secure public-key encryption scheme.

CPA-Security of Hybrid encryption

High-level idea of the proof:

• Let k∗ be a key chosen u.a.r. from {0, 1}ℓ(n)

(pk,Enchypk(m0)) = (pk, c,Enc′k(m0)) (pk,Enchypk(m1))(pk, c,Enc′k(m1)) =
∼∼∼

• Let ∼∼∼ denote the relation “being indistinguishable by a polynomial-time adversary” defined over
probability distributions

• Notice that ∼∼∼ is reflexive, symmetric, and transitive when applied a polynomial number of times

we want this

∼∼∼

Theorem: If Π is a CPA-secure KEM and Π′ is an EAV-secure private-key encryption
scheme then Πhy (as previously defined) is a CPA-secure public-key encryption scheme.

CPA-Security of Hybrid encryption

From CPA-security
of the KEM Π

(can’t tell k and k
∗ apart)

(pk, c,Enc′k∗(m0))

High-level idea of the proof:

• Let k∗ be a key chosen u.a.r. from {0, 1}ℓ(n)

(pk,Enchypk(m0)) = (pk, c,Enc′k(m0)) (pk,Enchypk(m1))(pk, c,Enc′k(m1)) =
∼∼∼

• Let ∼∼∼ denote the relation “being indistinguishable by a polynomial-time adversary” defined over
probability distributions

• Notice that ∼∼∼ is reflexive, symmetric, and transitive when applied a polynomial number of times

we want this

∼∼∼ ∼∼∼

Theorem: If Π is a CPA-secure KEM and Π′ is an EAV-secure private-key encryption
scheme then Πhy (as previously defined) is a CPA-secure public-key encryption scheme.

CPA-Security of Hybrid encryption

From CPA-security
of the KEM Π

(can’t tell k and k
∗ apart)

(pk, c,Enc′k∗(m0)) (pk, c,Enc′k∗(m1))

High-level idea of the proof:

• Let k∗ be a key chosen u.a.r. from {0, 1}ℓ(n)

(pk,Enchypk(m0)) = (pk, c,Enc′k(m0)) (pk,Enchypk(m1))(pk, c,Enc′k(m1)) =
∼∼∼

• Let ∼∼∼ denote the relation “being indistinguishable by a polynomial-time adversary” defined over
probability distributions

• Notice that ∼∼∼ is reflexive, symmetric, and transitive when applied a polynomial number of times

we want this

∼∼∼ ∼∼∼

Theorem: If Π is a CPA-secure KEM and Π′ is an EAV-secure private-key encryption
scheme then Πhy (as previously defined) is a CPA-secure public-key encryption scheme.

CPA-Security of Hybrid encryption

From CPA-security
of the KEM Π

(can’t tell k and k
∗ apart)

(pk, c,Enc′k∗(m0)) (pk, c,Enc′k∗(m1))
∼∼∼ From EAV-security

of the DEM Π′

Security Against Chosen Ciphertext Attacks

Let Π = (Gen,Encaps,Decaps) be a KEM and let A be an algorithm. We denote the following
experiment by KEMcca

A,Π

• A key pair (pk, sk)← Gen(1n) is generated

• (c, k)← Encapspk(1
n)

• A uniform random bit b ∈ {0, 1} is generated
• If b = 0, we set k̂ = k. Otherwise (b = 1) we choose k̂ u.a.r. from {0, 1}ℓ(n)

• The values of pk, c, and k̂ are sent to A

• A outputs a guess b′ ∈ {0, 1} about b
• The outcome of the experiment is defined to be 1 if b′ = b, and 0 otherwise

• A interacts with an oracle providing access to Decapssk(·), but it cannot query the oracle with c

Security Against Chosen Ciphertext Attacks

Let Π = (Gen,Encaps,Decaps) be a KEM and let A be an algorithm. We denote the following
experiment by KEMcca

A,Π

• A key pair (pk, sk)← Gen(1n) is generated

• (c, k)← Encapspk(1
n)

• A uniform random bit b ∈ {0, 1} is generated
• If b = 0, we set k̂ = k. Otherwise (b = 1) we choose k̂ u.a.r. from {0, 1}ℓ(n)

• The values of pk, c, and k̂ are sent to A

• A outputs a guess b′ ∈ {0, 1} about b
• The outcome of the experiment is defined to be 1 if b′ = b, and 0 otherwise

• A interacts with an oracle providing access to Decapssk(·), but it cannot query the oracle with c

Definition: A key-encapsulation mechanism Π is CCA-secure if, for every probabilistic
polynomial-time adversary A, there is a negligible function ε such that:

Pr[KEMcca

A,Π(n) = 1] ≤ 1

2
+ ε(n)

CCA-Security of Hybrid encryption

Theorem: If Π is a CCA-secure KEM and Π′ is an CCA-secure private-key encryption
scheme then Πhy (as previously defined) is a CCA-secure public-key encryption scheme.

We can combine a CCA-secure KEM and a CCA-secure DEM to obtain a CCA-secure public-key
encryption scheme:

CCA-Security of Hybrid encryption

Theorem: If Π is a CCA-secure KEM and Π′ is an CCA-secure private-key encryption
scheme then Πhy (as previously defined) is a CCA-secure public-key encryption scheme.

We can combine a CCA-secure KEM and a CCA-secure DEM to obtain a CCA-secure public-key
encryption scheme:

Why do we need both Π and Π′ to be CCA-secure?

CCA-Security of Hybrid encryption

Theorem: If Π is a CCA-secure KEM and Π′ is an CCA-secure private-key encryption
scheme then Πhy (as previously defined) is a CCA-secure public-key encryption scheme.

We can combine a CCA-secure KEM and a CCA-secure DEM to obtain a CCA-secure public-key
encryption scheme:

Why do we need both Π and Π′ to be CCA-secure?

• If Π is not CCA-secure then the adversary can attack the encapsulation mechanism and gain
information about/recover the DEM key.

CCA-Security of Hybrid encryption

Theorem: If Π is a CCA-secure KEM and Π′ is an CCA-secure private-key encryption
scheme then Πhy (as previously defined) is a CCA-secure public-key encryption scheme.

We can combine a CCA-secure KEM and a CCA-secure DEM to obtain a CCA-secure public-key
encryption scheme:

Why do we need both Π and Π′ to be CCA-secure?

• If Π is not CCA-secure then the adversary can attack the encapsulation mechanism and gain
information about/recover the DEM key.

• If Π′ is not CCA-secure then the adversary can gain information on the encrypted message by
attacking the DEM

CCA-Security of Hybrid encryption

Theorem: If Π is a CCA-secure KEM and Π′ is an CCA-secure private-key encryption
scheme then Πhy (as previously defined) is a CCA-secure public-key encryption scheme.

We can combine a CCA-secure KEM and a CCA-secure DEM to obtain a CCA-secure public-key
encryption scheme:

Why do we need both Π and Π′ to be CCA-secure?

• If Π is not CCA-secure then the adversary can attack the encapsulation mechanism and gain
information about/recover the DEM key.

• If Π′ is not CCA-secure then the adversary can gain information on the encrypted message by
attacking the DEM

Consider the hybrid encryption using some CCA-secure KEM and the pseudo-OTP DEM.

The ciphertext is: ⟨c, c′⟩ = ⟨c,G(k)⊕m⟩, where G is a PRG.

CCA-Security of Hybrid encryption

Theorem: If Π is a CCA-secure KEM and Π′ is an CCA-secure private-key encryption
scheme then Πhy (as previously defined) is a CCA-secure public-key encryption scheme.

We can combine a CCA-secure KEM and a CCA-secure DEM to obtain a CCA-secure public-key
encryption scheme:

Why do we need both Π and Π′ to be CCA-secure?

• If Π is not CCA-secure then the adversary can attack the encapsulation mechanism and gain
information about/recover the DEM key.

• If Π′ is not CCA-secure then the adversary can gain information on the encrypted message by
attacking the DEM

Consider the hybrid encryption using some CCA-secure KEM and the pseudo-OTP DEM.

The ciphertext is: ⟨c, c′⟩ = ⟨c,G(k)⊕m⟩, where G is a PRG. The DEM is malleable!

CCA-Security of Hybrid encryption

Theorem: If Π is a CCA-secure KEM and Π′ is an CCA-secure private-key encryption
scheme then Πhy (as previously defined) is a CCA-secure public-key encryption scheme.

We can combine a CCA-secure KEM and a CCA-secure DEM to obtain a CCA-secure public-key
encryption scheme:

Why do we need both Π and Π′ to be CCA-secure?

• If Π is not CCA-secure then the adversary can attack the encapsulation mechanism and gain
information about/recover the DEM key.

• If Π′ is not CCA-secure then the adversary can gain information on the encrypted message by
attacking the DEM

Consider the hybrid encryption using some CCA-secure KEM and the pseudo-OTP DEM.

The ciphertext is: ⟨c, c′⟩ = ⟨c,G(k)⊕m⟩, where G is a PRG.

The adversary can compute c′′ = c′ ⊕ 00 . . . 0︸ ︷︷ ︸
|c′|−1 times

1, query the decryption oracle with c′′ to obtain

m′′ = Decsk(⟨c, c′′⟩), and recover m = m′′ ⊕ 00 . . . 01

The DEM is malleable!

El Gamal Encryption

El Gamal Encryption

The Diffie-Hellman key-exchange protocol allows Alice and Bob to agree on a secret shared group
element k ∈ G (for some group G)

El Gamal Encryption

The Diffie-Hellman key-exchange protocol allows Alice and Bob to agree on a secret shared group
element k ∈ G (for some group G)

The element k is indistinguishable from a random element from G to any polynomial-time adversary

El Gamal Encryption

The Diffie-Hellman key-exchange protocol allows Alice and Bob to agree on a secret shared group
element k ∈ G (for some group G)

The element k is indistinguishable from a random element from G to any polynomial-time adversary

We can think of the shared element k as a “private key” that can be used by Bob to encrypt a
message m ∈ G

El Gamal Encryption

The Diffie-Hellman key-exchange protocol allows Alice and Bob to agree on a secret shared group
element k ∈ G (for some group G)

The element k is indistinguishable from a random element from G to any polynomial-time adversary

We can think of the shared element k as a “private key” that can be used by Bob to encrypt a
message m ∈ G

The message is also
a group element!

El Gamal Encryption

The Diffie-Hellman key-exchange protocol allows Alice and Bob to agree on a secret shared group
element k ∈ G (for some group G)

The element k is indistinguishable from a random element from G to any polynomial-time adversary

We can think of the shared element k as a “private key” that can be used by Bob to encrypt a
message m ∈ G

The message is also
a group element!

In the following Bob will be
sending a message to Alice!

El Gamal Encryption

The Diffie-Hellman key-exchange protocol allows Alice and Bob to agree on a secret shared group
element k ∈ G (for some group G)

The element k is indistinguishable from a random element from G to any polynomial-time adversary

We can think of the shared element k as a “private key” that can be used by Bob to encrypt a
message m ∈ G

To encrypt m, Bob simply computes c = m · k (the product denotes the group operation)

The message is also
a group element!

In the following Bob will be
sending a message to Alice!

El Gamal Encryption

The Diffie-Hellman key-exchange protocol allows Alice and Bob to agree on a secret shared group
element k ∈ G (for some group G)

The element k is indistinguishable from a random element from G to any polynomial-time adversary

We can think of the shared element k as a “private key” that can be used by Bob to encrypt a
message m ∈ G

To encrypt m, Bob simply computes c = m · k (the product denotes the group operation)

The message is also
a group element!

Lemma: Let G be a group, let m ∈ G, and let k be a group element chosen u.a.r. Define c = k ·m.
For any ĉ ∈ G we have: Pr[c = ĉ] = 1

|G| .

In the following Bob will be
sending a message to Alice!

El Gamal Encryption

The Diffie-Hellman key-exchange protocol allows Alice and Bob to agree on a secret shared group
element k ∈ G (for some group G)

The element k is indistinguishable from a random element from G to any polynomial-time adversary

We can think of the shared element k as a “private key” that can be used by Bob to encrypt a
message m ∈ G

To encrypt m, Bob simply computes c = m · k (the product denotes the group operation)

The message is also
a group element!

Lemma: Let G be a group, let m ∈ G, and let k be a group element chosen u.a.r. Define c = k ·m.
For any ĉ ∈ G we have: Pr[c = ĉ] = 1

|G| .

Proof:

= Pr
[
k ·m = ĉ

]

In the following Bob will be
sending a message to Alice!

Pr
[
c = ĉ

]

El Gamal Encryption

The Diffie-Hellman key-exchange protocol allows Alice and Bob to agree on a secret shared group
element k ∈ G (for some group G)

The element k is indistinguishable from a random element from G to any polynomial-time adversary

We can think of the shared element k as a “private key” that can be used by Bob to encrypt a
message m ∈ G

To encrypt m, Bob simply computes c = m · k (the product denotes the group operation)

The message is also
a group element!

Lemma: Let G be a group, let m ∈ G, and let k be a group element chosen u.a.r. Define c = k ·m.
For any ĉ ∈ G we have: Pr[c = ĉ] = 1

|G| .

Proof:

= Pr
[
k ·m = ĉ

]
= Pr

[
k ·m·m−1 = ĉ·m−1

]

In the following Bob will be
sending a message to Alice!

Pr
[
c = ĉ

]

El Gamal Encryption

The Diffie-Hellman key-exchange protocol allows Alice and Bob to agree on a secret shared group
element k ∈ G (for some group G)

The element k is indistinguishable from a random element from G to any polynomial-time adversary

We can think of the shared element k as a “private key” that can be used by Bob to encrypt a
message m ∈ G

To encrypt m, Bob simply computes c = m · k (the product denotes the group operation)

The message is also
a group element!

Lemma: Let G be a group, let m ∈ G, and let k be a group element chosen u.a.r. Define c = k ·m.
For any ĉ ∈ G we have: Pr[c = ĉ] = 1

|G| .

Proof:

= Pr
[
k ·m = ĉ

]
= Pr

[
k ·m·m−1 = ĉ·m−1

]
= Pr

[
k = ĉ ·m−1

]

In the following Bob will be
sending a message to Alice!

Pr
[
c = ĉ

]

El Gamal Encryption

The Diffie-Hellman key-exchange protocol allows Alice and Bob to agree on a secret shared group
element k ∈ G (for some group G)

The element k is indistinguishable from a random element from G to any polynomial-time adversary

We can think of the shared element k as a “private key” that can be used by Bob to encrypt a
message m ∈ G

To encrypt m, Bob simply computes c = m · k (the product denotes the group operation)

The message is also
a group element!

Lemma: Let G be a group, let m ∈ G, and let k be a group element chosen u.a.r. Define c = k ·m.
For any ĉ ∈ G we have: Pr[c = ĉ] = 1

|G| .

Proof:

= Pr
[
k ·m = ĉ

]
= Pr

[
k ·m·m−1 = ĉ·m−1

]
= Pr

[
k = ĉ ·m−1

]
=

1

|G| □

In the following Bob will be
sending a message to Alice!

Pr
[
c = ĉ

]

Diffie-Hellman Key Exchange → El Gamal Encryption

• Pick x u.a.r. from {0, . . . , q − 1}

• Compute hB = gy
• Send (G, q, g, hA) to Bob

• Send hB to Alice
• Compute k = hx

B = (gy)x = gxy

• Compute hA = gx

Insecure ChannelInsecure Channel

• Alice chooses a group G of order q and a
generator g ∈ G.

• Pick y u.a.r. from {0, . . . , q − 1}

• Compute k = h
y
A = (gx)y = gxy

Diffie-Hellman Key Exchange → El Gamal Encryption

• Pick x u.a.r. from {0, . . . , q − 1}

• Compute hB = gy
• Send (G, q, g, hA) to Bob

• Send hB to Alice
• Compute k = hx

B = (gy)x = gxy

• Compute hA = gx

Insecure ChannelInsecure Channel

• Alice chooses a group G of order q and a
generator g ∈ G.

• Pick y u.a.r. from {0, . . . , q − 1}

• Compute k = h
y
A = (gx)y = gxy

• Compute c = k ·m

Diffie-Hellman Key Exchange → El Gamal Encryption

• Pick x u.a.r. from {0, . . . , q − 1}

• Compute hB = gy
• Send (G, q, g, hA) to Bob

• Compute k = hx
B = (gy)x = gxy

• Compute hA = gx

Insecure ChannelInsecure Channel

• Alice chooses a group G of order q and a
generator g ∈ G.

• Pick y u.a.r. from {0, . . . , q − 1}

• Compute k = h
y
A = (gx)y = gxy

• Compute c = k ·m
• Send ⟨hB , c⟩ to Alice

Diffie-Hellman Key Exchange → El Gamal Encryption

• Pick x u.a.r. from {0, . . . , q − 1}

• Compute hB = gy
• Send (G, q, g, hA) to Bob

• Compute k = hx
B = (gy)x = gxy

• Compute hA = gx

Insecure ChannelInsecure Channel

• Alice chooses a group G of order q and a
generator g ∈ G.

• Pick y u.a.r. from {0, . . . , q − 1}

• Compute k = h
y
A = (gx)y = gxy

• Compute c = k ·m
• Send ⟨hB , c⟩ to Alice

• Compute m = k−1 · c

Diffie-Hellman Key Exchange → El Gamal Encryption

• Pick x u.a.r. from {0, . . . , q − 1}

• Compute hB = gy
• Send (G, q, g, hA) to Bob

• Compute k = hx
B = (gy)x = gxy

• Compute hA = gx

Insecure ChannelInsecure Channel

• Alice chooses a group G of order q and a
generator g ∈ G.

• Pick y u.a.r. from {0, . . . , q − 1}

• Compute k = h
y
A = (gx)y = gxy

• Compute c = k ·m
• Send ⟨hB , c⟩ to Alice

• Compute m = k−1 · c

Alice’s public key pk

Diffie-Hellman Key Exchange → El Gamal Encryption

• Pick x u.a.r. from {0, . . . , q − 1}

• Compute hB = gy
• Send (G, q, g, hA) to Bob

• Compute k = hx
B = (gy)x = gxy

• Compute hA = gx

Insecure ChannelInsecure Channel

• Alice chooses a group G of order q and a
generator g ∈ G.

• Pick y u.a.r. from {0, . . . , q − 1}

• Compute k = h
y
A = (gx)y = gxy

• Compute c = k ·m
• Send ⟨hB , c⟩ to Alice

• Compute m = k−1 · c

Alice’s public key pk

Alice’s secret
key sk

Diffie-Hellman Key Exchange → El Gamal Encryption

• Pick x u.a.r. from {0, . . . , q − 1}

• Compute hB = gy
• Send (G, q, g, hA) to Bob

• Compute k = hx
B = (gy)x = gxy

• Compute hA = gx

Insecure ChannelInsecure Channel

• Alice chooses a group G of order q and a
generator g ∈ G.

• Pick y u.a.r. from {0, . . . , q − 1}

• Compute k = h
y
A = (gx)y = gxy

• Compute c = k ·m
• Send ⟨hB , c⟩ to Alice

• Compute m = k−1 · c

Alice’s public key pk

Alice’s secret
key sk

Key generation

Diffie-Hellman Key Exchange → El Gamal Encryption

• Pick x u.a.r. from {0, . . . , q − 1}

• Compute hB = gy
• Send (G, q, g, hA) to Bob

• Compute k = hx
B = (gy)x = gxy

• Compute hA = gx

Insecure ChannelInsecure Channel

• Alice chooses a group G of order q and a
generator g ∈ G.

• Pick y u.a.r. from {0, . . . , q − 1}

• Compute k = h
y
A = (gx)y = gxy

• Compute c = k ·m
• Send ⟨hB , c⟩ to Alice

• Compute m = k−1 · c

Alice’s public key pk

Alice’s secret
key sk

Encryption

Key generation

Diffie-Hellman Key Exchange → El Gamal Encryption

• Pick x u.a.r. from {0, . . . , q − 1}

• Compute hB = gy
• Send (G, q, g, hA) to Bob

• Compute k = hx
B = (gy)x = gxy

• Compute hA = gx

Insecure ChannelInsecure Channel

• Alice chooses a group G of order q and a
generator g ∈ G.

• Pick y u.a.r. from {0, . . . , q − 1}

• Compute k = h
y
A = (gx)y = gxy

• Compute c = k ·m
• Send ⟨hB , c⟩ to Alice

• Compute m = k−1 · c

Alice’s public key pk

Alice’s secret
key sk

Encryption

Decryption

Key generation

Diffie-Hellman Key Exchange → El Gamal Encryption

• Pick x u.a.r. from {0, . . . , q − 1}

• Compute hB = gy
• Send (G, q, g, hA) to Bob

• Compute k = hx
B = (gy)x = gxy

• Compute hA = gx

Insecure ChannelInsecure Channel

• Alice chooses a group G of order q and a
generator g ∈ G.

• Pick y u.a.r. from {0, . . . , q − 1}

• Compute k = h
y
A = (gx)y = gxy

• Compute c = k ·m
• Send ⟨hB , c⟩ to Alice

• Compute m = k−1 · c

Alice’s public key pk

Alice’s secret
key sk

Encryption

Decryption

Key generation

We (essentially) have a
public-key encryption scheme!

El Gamal Encryption (more formally)

Gen(1n):

• Run G(1n), where G is a group generation algorithm, to obtain
(G, q, g) where G is a group of order q and g ∈ G is a generator

• Choose a uniform x u.a.r. from {0, . . . , q − 1}
• Compute h = gx

• Output (pk, sk) where pk = (G, q, g, h) and sk = (G, q, g, x).

The message
spaceMpk is G.

Encpk(m):

• Here pk = (G, q, g, h) and m ∈ G

• Choose a uniform y u.a.r. from {0, . . . , q − 1}
• Output the ciphertext ⟨gy, hy ·m⟩

Decsk(c):

• Here sk = (G, q, g, x) and c = ⟨c1, c2⟩
• Output the plaintext (cx1)

−1 · c2

El Gamal Encryption (more formally)

Gen(1n):

• Run G(1n), where G is a group generation algorithm, to obtain
(G, q, g) where G is a group of order q and g ∈ G is a generator

• Choose a uniform x u.a.r. from {0, . . . , q − 1}
• Compute h = gx

• Output (pk, sk) where pk = (G, q, g, h) and sk = (G, q, g, x).

The message
spaceMpk is G.

Encpk(m):

• Here pk = (G, q, g, h) and m ∈ G

• Choose a uniform y u.a.r. from {0, . . . , q − 1}
• Output the ciphertext ⟨gy, hy ·m⟩

Decsk(c):

• Here sk = (G, q, g, x) and c = ⟨c1, c2⟩
• Output the plaintext (cx1)

−1 · c2

In practice the group G (and its order q) is fixed in advance along with a generator g ∈ G.

(just like in the Diffie-Hellman key exchange).

Security of El Gamal Encryption

If the DDH problem is hard relative to G, then the El Gamal encryption scheme Π is CPA-secure.

Security of El Gamal Encryption

If the DDH problem is hard relative to G, then the El Gamal encryption scheme Π is CPA-secure.

Proof:

We show that a polynomial-time adversary that wins the PubKcpa
Π,A(n) experiment can be used to solve

the DDH problem with non-negligible advantage (in polynomial time).

Suppose towards a contradiction that there is some polynomial-time algorithm A such that
Pr[PubKcpa

Π,A(n) = 1] = 1
2 + ε(n) for non-negligible ε(n).

Security of El Gamal Encryption

If the DDH problem is hard relative to G, then the El Gamal encryption scheme Π is CPA-secure.

Proof:

We show that a polynomial-time adversary that wins the PubKcpa
Π,A(n) experiment can be used to solve

the DDH problem with non-negligible advantage (in polynomial time).

Suppose towards a contradiction that there is some polynomial-time algorithm A such that
Pr[PubKcpa

Π,A(n) = 1] = 1
2 + ε(n) for non-negligible ε(n).

Let Π̃ be a modified version of Π in which encryption is done by selecting y, z ∈ {0, 1, . . . , q − 1}
u.a.r., and returning ⟨gy, gz⟩.

Security of El Gamal Encryption

If the DDH problem is hard relative to G, then the El Gamal encryption scheme Π is CPA-secure.

Proof:

We show that a polynomial-time adversary that wins the PubKcpa
Π,A(n) experiment can be used to solve

the DDH problem with non-negligible advantage (in polynomial time).

Suppose towards a contradiction that there is some polynomial-time algorithm A such that
Pr[PubKcpa

Π,A(n) = 1] = 1
2 + ε(n) for non-negligible ε(n).

Let Π̃ be a modified version of Π in which encryption is done by selecting y, z ∈ {0, 1, . . . , q − 1}
u.a.r., and returning ⟨gy, gz⟩.

• Notice that Π̃ is not a correct public-key encryption scheme (decryption breaks).

Security of El Gamal Encryption

If the DDH problem is hard relative to G, then the El Gamal encryption scheme Π is CPA-secure.

Proof:

We show that a polynomial-time adversary that wins the PubKcpa
Π,A(n) experiment can be used to solve

the DDH problem with non-negligible advantage (in polynomial time).

Suppose towards a contradiction that there is some polynomial-time algorithm A such that
Pr[PubKcpa

Π,A(n) = 1] = 1
2 + ε(n) for non-negligible ε(n).

Let Π̃ be a modified version of Π in which encryption is done by selecting y, z ∈ {0, 1, . . . , q − 1}
u.a.r., and returning ⟨gy, gz⟩.

• Notice that Π̃ is not a correct public-key encryption scheme (decryption breaks).

• We can still talk about the experiment PubKcpa

Π̃,A
(n), since we never use Dec

Security of El Gamal Encryption

If the DDH problem is hard relative to G, then the El Gamal encryption scheme Π is CPA-secure.

Proof:

We show that a polynomial-time adversary that wins the PubKcpa
Π,A(n) experiment can be used to solve

the DDH problem with non-negligible advantage (in polynomial time).

Suppose towards a contradiction that there is some polynomial-time algorithm A such that
Pr[PubKcpa

Π,A(n) = 1] = 1
2 + ε(n) for non-negligible ε(n).

Let Π̃ be a modified version of Π in which encryption is done by selecting y, z ∈ {0, 1, . . . , q − 1}
u.a.r., and returning ⟨gy, gz⟩.

• Notice that Π̃ is not a correct public-key encryption scheme (decryption breaks).

• We can still talk about the experiment PubKcpa

Π̃,A
(n), since we never use Dec

• The ciphertext ⟨gy, gz⟩ is completely independent from m!

Security of El Gamal Encryption (cont.)
It follows that Pr[PubKcpa

Π̃,A
(n) = 1] = 1

2

Security of El Gamal Encryption (cont.)
It follows that Pr[PubKcpa

Π̃,A
(n) = 1] = 1

2 Consider the following algorithm D for the DDH problem:

• Receive as input G, q, g, gx, gy, h

Security of El Gamal Encryption (cont.)
It follows that Pr[PubKcpa

Π̃,A
(n) = 1] = 1

2 Consider the following algorithm D for the DDH problem:

• Receive as input G, q, g, gx, gy, h

• Send the “public key” pk = ⟨G, q, g, gx⟩ to A and receive two messages m0,m1

Security of El Gamal Encryption (cont.)
It follows that Pr[PubKcpa

Π̃,A
(n) = 1] = 1

2 Consider the following algorithm D for the DDH problem:

• Receive as input G, q, g, gx, gy, h

• Send the “public key” pk = ⟨G, q, g, gx⟩ to A and receive two messages m0,m1

• Pick a uniform b ∈ {0, 1}

Security of El Gamal Encryption (cont.)
It follows that Pr[PubKcpa

Π̃,A
(n) = 1] = 1

2 Consider the following algorithm D for the DDH problem:

• Receive as input G, q, g, gx, gy, h

• Send the “public key” pk = ⟨G, q, g, gx⟩ to A and receive two messages m0,m1

• Pick a uniform b ∈ {0, 1}
• Give the ciphertext ⟨gy, h ·mb⟩ to A and obtain a guess b′

Security of El Gamal Encryption (cont.)
It follows that Pr[PubKcpa

Π̃,A
(n) = 1] = 1

2 Consider the following algorithm D for the DDH problem:

• Receive as input G, q, g, gx, gy, h

• Send the “public key” pk = ⟨G, q, g, gx⟩ to A and receive two messages m0,m1

• Pick a uniform b ∈ {0, 1}
• Give the ciphertext ⟨gy, h ·mb⟩ to A and obtain a guess b′

• If b = b′ output 1, otherwise output 0

Security of El Gamal Encryption (cont.)
It follows that Pr[PubKcpa

Π̃,A
(n) = 1] = 1

2 Consider the following algorithm D for the DDH problem:

• Receive as input G, q, g, gx, gy, h

• Send the “public key” pk = ⟨G, q, g, gx⟩ to A and receive two messages m0,m1

• Pick a uniform b ∈ {0, 1}
• Give the ciphertext ⟨gy, h ·mb⟩ to A and obtain a guess b′

• If b = b′ output 1, otherwise output 0

If h is a random group element:

• By the previous lemma, h ·mb is distributed identically as picking a random z ∈ {0, 1, . . . , q − 1}
and computing gz

Security of El Gamal Encryption (cont.)
It follows that Pr[PubKcpa

Π̃,A
(n) = 1] = 1

2 Consider the following algorithm D for the DDH problem:

• Receive as input G, q, g, gx, gy, h

• Send the “public key” pk = ⟨G, q, g, gx⟩ to A and receive two messages m0,m1

• Pick a uniform b ∈ {0, 1}
• Give the ciphertext ⟨gy, h ·mb⟩ to A and obtain a guess b′

• If b = b′ output 1, otherwise output 0

If h is a random group element:

• Algorithm D is carrying out the PubKcpa

Π̃,A
(n) experiment!

• By the previous lemma, h ·mb is distributed identically as picking a random z ∈ {0, 1, . . . , q − 1}
and computing gz

Security of El Gamal Encryption (cont.)
It follows that Pr[PubKcpa

Π̃,A
(n) = 1] = 1

2 Consider the following algorithm D for the DDH problem:

• Receive as input G, q, g, gx, gy, h

• Send the “public key” pk = ⟨G, q, g, gx⟩ to A and receive two messages m0,m1

• Pick a uniform b ∈ {0, 1}
• Give the ciphertext ⟨gy, h ·mb⟩ to A and obtain a guess b′

• If b = b′ output 1, otherwise output 0

If h is a random group element:

• Algorithm D is carrying out the PubKcpa

Π̃,A
(n) experiment!

• Pr[D(G, q, g, gx, gy, gz) = 1] = Pr[PubKcpa

Π̃,A
(n) = 1] = 1

2

• By the previous lemma, h ·mb is distributed identically as picking a random z ∈ {0, 1, . . . , q − 1}
and computing gz

Security of El Gamal Encryption (cont.)
It follows that Pr[PubKcpa

Π̃,A
(n) = 1] = 1

2 Consider the following algorithm D for the DDH problem:

• Receive as input G, q, g, gx, gy, h

• Send the “public key” pk = ⟨G, q, g, gx⟩ to A and receive two messages m0,m1

• Pick a uniform b ∈ {0, 1}
• Give the ciphertext ⟨gy, h ·mb⟩ to A and obtain a guess b′

• If b = b′ output 1, otherwise output 0

If h = gxy:

• Algorithm D is carrying out the PubKcpa
Π,A(n) experiment!

Security of El Gamal Encryption (cont.)
It follows that Pr[PubKcpa

Π̃,A
(n) = 1] = 1

2 Consider the following algorithm D for the DDH problem:

• Receive as input G, q, g, gx, gy, h

• Send the “public key” pk = ⟨G, q, g, gx⟩ to A and receive two messages m0,m1

• Pick a uniform b ∈ {0, 1}
• Give the ciphertext ⟨gy, h ·mb⟩ to A and obtain a guess b′

• If b = b′ output 1, otherwise output 0

If h = gxy:

• Algorithm D is carrying out the PubKcpa
Π,A(n) experiment!

• Pr[D(G, q, g, gx, gy, gxy) = 1] = Pr[PubKcpa
Π,A(n) = 1]

Security of El Gamal Encryption (cont.)
It follows that Pr[PubKcpa

Π̃,A
(n) = 1] = 1

2 Consider the following algorithm D for the DDH problem:

• Receive as input G, q, g, gx, gy, h

• Send the “public key” pk = ⟨G, q, g, gx⟩ to A and receive two messages m0,m1

• Pick a uniform b ∈ {0, 1}
• Give the ciphertext ⟨gy, h ·mb⟩ to A and obtain a guess b′

• If b = b′ output 1, otherwise output 0

If h = gxy:

• Algorithm D is carrying out the PubKcpa
Π,A(n) experiment!

• Pr[D(G, q, g, gx, gy, gxy) = 1] = Pr[PubKcpa
Π,A(n) = 1] = 1

2 +ε(n)

Security of El Gamal Encryption (cont.)
It follows that Pr[PubKcpa

Π̃,A
(n) = 1] = 1

2 Consider the following algorithm D for the DDH problem:

• Receive as input G, q, g, gx, gy, h

• Send the “public key” pk = ⟨G, q, g, gx⟩ to A and receive two messages m0,m1

• Pick a uniform b ∈ {0, 1}
• Give the ciphertext ⟨gy, h ·mb⟩ to A and obtain a guess b′

• If b = b′ output 1, otherwise output 0

If h = gxy:

• Algorithm D is carrying out the PubKcpa
Π,A(n) experiment!

• Pr[D(G, q, g, gx, gy, gxy) = 1] = Pr[PubKcpa
Π,A(n) = 1] = 1

2 +ε(n)

∣∣ Pr[D(G, q, g, gx, gy, gz) = 1]− Pr[D(G, q, g, gx, gy, gxy) = 1]
∣∣

Security of El Gamal Encryption (cont.)
It follows that Pr[PubKcpa

Π̃,A
(n) = 1] = 1

2 Consider the following algorithm D for the DDH problem:

• Receive as input G, q, g, gx, gy, h

• Send the “public key” pk = ⟨G, q, g, gx⟩ to A and receive two messages m0,m1

• Pick a uniform b ∈ {0, 1}
• Give the ciphertext ⟨gy, h ·mb⟩ to A and obtain a guess b′

• If b = b′ output 1, otherwise output 0

If h = gxy:

• Algorithm D is carrying out the PubKcpa
Π,A(n) experiment!

• Pr[D(G, q, g, gx, gy, gxy) = 1] = Pr[PubKcpa
Π,A(n) = 1] = 1

2 +ε(n)

∣∣ Pr[D(G, q, g, gx, gy, gz) = 1]− Pr[D(G, q, g, gx, gy, gxy) = 1]
∣∣ =

∣∣ 1
2 − (12 + ε(n))

∣∣

Security of El Gamal Encryption (cont.)
It follows that Pr[PubKcpa

Π̃,A
(n) = 1] = 1

2 Consider the following algorithm D for the DDH problem:

• Receive as input G, q, g, gx, gy, h

• Send the “public key” pk = ⟨G, q, g, gx⟩ to A and receive two messages m0,m1

• Pick a uniform b ∈ {0, 1}
• Give the ciphertext ⟨gy, h ·mb⟩ to A and obtain a guess b′

• If b = b′ output 1, otherwise output 0

If h = gxy:

• Algorithm D is carrying out the PubKcpa
Π,A(n) experiment!

• Pr[D(G, q, g, gx, gy, gxy) = 1] = Pr[PubKcpa
Π,A(n) = 1] = 1

2 +ε(n)

∣∣ Pr[D(G, q, g, gx, gy, gz) = 1]− Pr[D(G, q, g, gx, gy, gxy) = 1]
∣∣ =

∣∣ 1
2 − (12 + ε(n))

∣∣ = ε(n)

Security of El Gamal Encryption (cont.)
It follows that Pr[PubKcpa

Π̃,A
(n) = 1] = 1

2 Consider the following algorithm D for the DDH problem:

• Receive as input G, q, g, gx, gy, h

• Send the “public key” pk = ⟨G, q, g, gx⟩ to A and receive two messages m0,m1

• Pick a uniform b ∈ {0, 1}
• Give the ciphertext ⟨gy, h ·mb⟩ to A and obtain a guess b′

• If b = b′ output 1, otherwise output 0

If h = gxy:

• Algorithm D is carrying out the PubKcpa
Π,A(n) experiment!

• Pr[D(G, q, g, gx, gy, gxy) = 1] = Pr[PubKcpa
Π,A(n) = 1] = 1

2 +ε(n)

∣∣ Pr[D(G, q, g, gx, gy, gz) = 1]− Pr[D(G, q, g, gx, gy, gxy) = 1]
∣∣ =

∣∣ 1
2 − (12 + ε(n))

∣∣ = ε(n)

not negligible!

□

Some Remarks

We just built a (fixed-length) public-key encryption scheme. However there are some drawbacks:

• The message space depends on the public-key (i.e., on the choice of the group G)

Some Remarks

We just built a (fixed-length) public-key encryption scheme. However there are some drawbacks:

• The message space depends on the public-key (i.e., on the choice of the group G)

• Even if we think of G as fixed, we can only encrypt group elements

Some Remarks

We just built a (fixed-length) public-key encryption scheme. However there are some drawbacks:

• The message space depends on the public-key (i.e., on the choice of the group G)

• Even if we think of G as fixed, we can only encrypt group elements

• We would like to encrypt arbitrary (fixed-length) binary strings

Some Remarks

We just built a (fixed-length) public-key encryption scheme. However there are some drawbacks:

• The message space depends on the public-key (i.e., on the choice of the group G)

• Even if we think of G as fixed, we can only encrypt group elements

• We would like to encrypt arbitrary (fixed-length) binary strings

One way around this issue, is that of agreeing on an encoding of strings into group elements

• Depending on the group this might not be easy to do (recall that we need the encoding to be
computable and invertible in polynomial-time)

Some Remarks

We just built a (fixed-length) public-key encryption scheme. However there are some drawbacks:

• The message space depends on the public-key (i.e., on the choice of the group G)

• Even if we think of G as fixed, we can only encrypt group elements

• We would like to encrypt arbitrary (fixed-length) binary strings

One way around this issue, is that of agreeing on an encoding of strings into group elements

• Depending on the group this might not be easy to do (recall that we need the encoding to be
computable and invertible in polynomial-time)

As an alternative, we can use our public-key encryption scheme as a KEM for Hybrid Encryption

El Gamal as a KEM:

• Encaps: pick a random group element k̃ ∈ G and encrypt it as ⟨gy, hy · k̃⟩. Return (k, ⟨gy, hy · k̃⟩)
• Decaps: given ⟨c1, c2⟩ compute k̃ = (cx1)

−1 · c2. Return k̃.

El Gamal Key Encapsulation Mechanism

• Gen: as before

El Gamal as a KEM:

• Encaps: pick a random group element k̃ ∈ G and encrypt it as ⟨gy, hy · k̃⟩. Return (k, ⟨gy, hy · k̃⟩)

Note: to get a binary-string key k from k̃, we need to use a key-derivation function H : G→ {0, 1}ℓ(n).

• Decaps: given ⟨c1, c2⟩ compute k̃ = (cx1)
−1 · c2. Return k̃.

El Gamal Key Encapsulation Mechanism

• Gen: as before

El Gamal as a KEM:

• Encaps: pick a random group element k̃ ∈ G and encrypt it as ⟨gy, hy · k̃⟩. Return (k, ⟨gy, hy · k̃⟩)

Drawback: we are sharing only a single secret group element k̃ but the ciphertext consists of two
group elements, i.e., it is ⟨gy, hy · k̃⟩.

Note: to get a binary-string key k from k̃, we need to use a key-derivation function H : G→ {0, 1}ℓ(n).

• Decaps: given ⟨c1, c2⟩ compute k̃ = (cx1)
−1 · c2. Return k̃.

El Gamal Key Encapsulation Mechanism

• Gen: as before

El Gamal as a KEM:

• Encaps: pick a random group element k̃ ∈ G and encrypt it as ⟨gy, hy · k̃⟩. Return (k, ⟨gy, hy · k̃⟩)

Drawback: we are sharing only a single secret group element k̃ but the ciphertext consists of two
group elements, i.e., it is ⟨gy, hy · k̃⟩.

Note: to get a binary-string key k from k̃, we need to use a key-derivation function H : G→ {0, 1}ℓ(n).

• Decaps: given ⟨c1, c2⟩ compute k̃ = (cx1)
−1 · c2. Return k̃.

El Gamal Key Encapsulation Mechanism

• Gen: as before

Idea: From the security proof Diffie-Hellman we know that cx1 = gxy is already indistinguishable from
a random group element (to a polynomial-time adversary).

El Gamal as a KEM:

• Encaps: pick a random group element k̃ ∈ G and encrypt it as ⟨gy, hy · k̃⟩. Return (k, ⟨gy, hy · k̃⟩)

Drawback: we are sharing only a single secret group element k̃ but the ciphertext consists of two
group elements, i.e., it is ⟨gy, hy · k̃⟩.

Note: to get a binary-string key k from k̃, we need to use a key-derivation function H : G→ {0, 1}ℓ(n).

• Decaps: given ⟨c1, c2⟩ compute k̃ = (cx1)
−1 · c2. Return k̃.

El Gamal Key Encapsulation Mechanism

• Gen: as before

Idea: From the security proof Diffie-Hellman we know that cx1 = gxy is already indistinguishable from
a random group element (to a polynomial-time adversary).

Use cx1 as the key!

DDH-Based Key Encapsulation Mechanism

Gen(1n):

• Run G(1n), where G is a group generation algorithm, to obtain (G, q, g) where G is a group
of order q and g ∈ G is a generator

• Choose a uniform x u.a.r. from {0, . . . , q − 1}
• Compute h = gx

• Output (pk, sk) where pk = (G, q, g, h,H) and sk = (G, q, g, x,H).

• Pick some key derivation function H : G→ {0, 1}ℓ(n)

DDH-Based Key Encapsulation Mechanism

Gen(1n):

• Run G(1n), where G is a group generation algorithm, to obtain (G, q, g) where G is a group
of order q and g ∈ G is a generator

• Choose a uniform x u.a.r. from {0, . . . , q − 1}
• Compute h = gx

• Output (pk, sk) where pk = (G, q, g, h,H) and sk = (G, q, g, x,H).

• Pick some key derivation function H : G→ {0, 1}ℓ(n)

Encapspk(1
n):

• Here pk = (G, q, g, h,H)

• Choose a uniform y u.a.r. from {0, . . . , q − 1}
• Output the pair (c, k) with c = gy and

k = H(hy) = H(gxy)

DDH-Based Key Encapsulation Mechanism

Gen(1n):

• Run G(1n), where G is a group generation algorithm, to obtain (G, q, g) where G is a group
of order q and g ∈ G is a generator

• Choose a uniform x u.a.r. from {0, . . . , q − 1}
• Compute h = gx

• Output (pk, sk) where pk = (G, q, g, h,H) and sk = (G, q, g, x,H).

• Pick some key derivation function H : G→ {0, 1}ℓ(n)

Encapspk(1
n):

• Here pk = (G, q, g, h,H)

• Choose a uniform y u.a.r. from {0, . . . , q − 1}
• Output the pair (c, k) with c = gy and

k = H(hy) = H(gxy)

Decapssk(c):

• Here sk = (G, q, g, x,H)

• Output the key H(cx) = H(gxy)

The Key Derivation Function

How do we choose H : G→ {0, 1}ℓ(n)?

The Key Derivation Function

How do we choose H : G→ {0, 1}ℓ(n)?
• Pick H as a hash function

The Key Derivation Function

How do we choose H : G→ {0, 1}ℓ(n)?
• Pick H as a hash function

• Secure in the random oracle model

The Key Derivation Function

How do we choose H : G→ {0, 1}ℓ(n)?
• Pick H as a hash function

• Secure in the random oracle model

• Can also be proven secure under the CDH assumption

The Key Derivation Function

How do we choose H : G→ {0, 1}ℓ(n)?
• Pick H as a hash function

• Pick H as a “regular” function: the number of elements of G that map to the same key
k ∈ {0, 1}ℓ(n) must be roughly the same.

• Secure in the random oracle model

• Can also be proven secure under the CDH assumption

The Key Derivation Function

How do we choose H : G→ {0, 1}ℓ(n)?
• Pick H as a hash function

• Pick H as a “regular” function: the number of elements of G that map to the same key
k ∈ {0, 1}ℓ(n) must be roughly the same.

• Secure in the random oracle model

• Can also be proven secure under the CDH assumption

Formally, we need:
∑

k∈{0,1}ℓ(n)

∣∣ Pr[H(g) = k]− 2−ℓ(n)
∣∣ ≤ ε(n),

where ε(n) is a negligible function and the probability is taken over the uniform choice of g ∈ G.

The Key Derivation Function

How do we choose H : G→ {0, 1}ℓ(n)?
• Pick H as a hash function

• Pick H as a “regular” function: the number of elements of G that map to the same key
k ∈ {0, 1}ℓ(n) must be roughly the same.

• Secure in the random oracle model

• Can also be proven secure under the CDH assumption

Formally, we need:
∑

k∈{0,1}ℓ(n)

∣∣ Pr[H(g) = k]− 2−ℓ(n)
∣∣ ≤ ε(n),

If the DDH problem is hard relative to G, and H is chosen as above, then the DDH-based KEM
is CPA-secure.

where ε(n) is a negligible function and the probability is taken over the uniform choice of g ∈ G.

(Plain) RSA Encryption

Reminder: e-th roots

Let N = pq where p and q are distinct odd primes

The order of Z∗
N is ϕ(N) = (p− 1) · (q − 1)

• Trivial to compute if we know p and q

• “Hard” to compute if we know N but not p and q (can be shown to be equivalent to factoring N)

Reminder: e-th roots

Let N = pq where p and q are distinct odd primes

The order of Z∗
N is ϕ(N) = (p− 1) · (q − 1)

• Trivial to compute if we know p and q

• “Hard” to compute if we know N but not p and q (can be shown to be equivalent to factoring N)

Pick e ∈ Z
∗
N such that gcd(e, ϕ(N)) = 1.

• fe(x) = xe is a permutation of Z∗
N

• Let d be the inverse of e modulo ϕ(N). Then fd(x) = xd is the inverse of fe.

• (xe)d = (xd)e = x

Reminder: e-th roots

Let N = pq where p and q are distinct odd primes

The order of Z∗
N is ϕ(N) = (p− 1) · (q − 1)

• Trivial to compute if we know p and q

• “Hard” to compute if we know N but not p and q (can be shown to be equivalent to factoring N)

Pick e ∈ Z
∗
N such that gcd(e, ϕ(N)) = 1.

• fe(x) = xe is a permutation of Z∗
N

• Let d be the inverse of e modulo ϕ(N). Then fd(x) = xd is the inverse of fe.

• (xe)d = (xd)e = x

Since (xe)d = x we can think of xd as the e-th root of x

• We define x1/e = xd

Let GenRSA be a polynomial-time algorithm that, on input 1n , outputs a triple (N, e, d) where:

• N = pq, and p and q are n-bit primes

• ed = 1 (mod ϕ(N))

The algorithm is allowed to fail with negligible probability.

Reminder: the RSA problem

Let GenRSA be a polynomial-time algorithm that, on input 1n , outputs a triple (N, e, d) where:

• N = pq, and p and q are n-bit primes

• ed = 1 (mod ϕ(N))

The algorithm is allowed to fail with negligible probability.

For an algorithm A, define RSA-invA,GenRSA(n) as:

• Run GenRSA(1n) to obtain (N, e, d).

• A outputs x ∈ Z
∗
N

• The outcome of the experiment is 1 if xe = y. Otherwise the outcome is 0.

• Send N , e and y to A
• Choose y ∈ Z

∗
N u.a.r.

Reminder: the RSA problem

Definition: The RSA problem is hard relative to GenRSA if for all probabilistic polynomial-time
algorithms A there exists a negligible function ε such that

Pr[RSA-invA,GenRSA(n) = 1] ≤ ε(n).

The RSA assumption: there exists a GenRSA algorithm relative to which the RSA problem is
hard.

Reminder: the RSA assumption

RSA-Based Public Key Encryption

We can define a public-key encryption scheme (for short messages) based on the RSA assumption

Gen(1n):

• (N, e, d)← GenRSA(1n)

• Return (pk, sk) where pk = ⟨N, e⟩ and sk = ⟨N, d⟩

The message space
Mpk is Z∗

N .

RSA-Based Public Key Encryption

We can define a public-key encryption scheme (for short messages) based on the RSA assumption

Gen(1n):

• (N, e, d)← GenRSA(1n)

• Return (pk, sk) where pk = ⟨N, e⟩ and sk = ⟨N, d⟩

Encpk(m):

The message space
Mpk is Z∗

N .

• Here pk = ⟨N, e⟩ and m ∈ Z∗
N

• c← me (the operation is in the group Z∗
N , under multiplication modulo N)

• Return c

RSA-Based Public Key Encryption

We can define a public-key encryption scheme (for short messages) based on the RSA assumption

Gen(1n):

• (N, e, d)← GenRSA(1n)

• Return (pk, sk) where pk = ⟨N, e⟩ and sk = ⟨N, d⟩

Encpk(m):

The message space
Mpk is Z∗

N .

• Here pk = ⟨N, e⟩ and m ∈ Z∗
N

• c← me (the operation is in the group Z∗
N , under multiplication modulo N)

• Return c

Decsk(c):

• Here sk = ⟨N, d⟩ and c ∈ Z∗
N

• m← cd (the operation is in the group Z∗
N , under multiplication modulo N)

• Return m

RSA-Based Public Key Encryption

We can define a public-key encryption scheme (for short messages) based on the RSA assumption

Gen(1n):

• (N, e, d)← GenRSA(1n)

• Return (pk, sk) where pk = ⟨N, e⟩ and sk = ⟨N, d⟩

Encpk(m):

The message space
Mpk is Z∗

N .

• Here pk = ⟨N, e⟩ and m ∈ Z∗
N

• c← me (the operation is in the group Z∗
N , under multiplication modulo N)

• Return c

Decsk(c):

• Here sk = ⟨N, d⟩ and c ∈ Z∗
N

• m← cd (the operation is in the group Z∗
N , under multiplication modulo N)

• Return m

Plain
RSA

RSA-Based Public Key Encryption: Example

Say that we run GenRSA(15) and it returns (N, e, d) = (391, 3, 235)

• The public key pk is (391, 3)

• The secret key sk is (391, 235)

• We are going to work in the group Z
∗
391

To encrypt m = 158 ∈ Z
∗
391:

RSA-Based Public Key Encryption: Example

Say that we run GenRSA(15) and it returns (N, e, d) = (391, 3, 235)

• The public key pk is (391, 3)

• The secret key sk is (391, 235)

• We are going to work in the group Z
∗
391

To encrypt m = 158 ∈ Z
∗
391:

• Compute c = 1583 mod 391

RSA-Based Public Key Encryption: Example

Say that we run GenRSA(15) and it returns (N, e, d) = (391, 3, 235)

• The public key pk is (391, 3)

• The secret key sk is (391, 235)

• We are going to work in the group Z
∗
391

To encrypt m = 158 ∈ Z
∗
391:

• Compute c = 1583 mod 391 = (1582 mod 391) · 158 mod 391 = 331 · 158 mod 391 = 295

RSA-Based Public Key Encryption: Example

Say that we run GenRSA(15) and it returns (N, e, d) = (391, 3, 235)

• The public key pk is (391, 3)

• The secret key sk is (391, 235)

• We are going to work in the group Z
∗
391

To encrypt m = 158 ∈ Z
∗
391:

• Compute c = 1583 mod 391 = (1582 mod 391) · 158 mod 391 = 331 · 158 mod 391 = 295

To decrypt c = 295:

• Compute m = 295235 mod 391

RSA-Based Public Key Encryption: Example

295235 mod 391 = (295117 mod 391)2 ·295 mod 391

We reduce the result modulo 295 after every product

RSA-Based Public Key Encryption: Example

295235 mod 391 = (295117 mod 391)2 ·295 mod 391

We reduce the result modulo 295 after every product

295117 mod 391 = (29558 mod 391)2 · 295 mod 391

RSA-Based Public Key Encryption: Example

295235 mod 391 = (295117 mod 391)2 ·295 mod 391

We reduce the result modulo 295 after every product

295117 mod 391 = (29558 mod 391)2 · 295 mod 391

29558 mod 391 = (29529 mod 391)2 mod 391

RSA-Based Public Key Encryption: Example

295235 mod 391 = (295117 mod 391)2 ·295 mod 391

We reduce the result modulo 295 after every product

295117 mod 391 = (29558 mod 391)2 · 295 mod 391

29558 mod 391 = (29529 mod 391)2 mod 391

29529 mod 391 = (29514 mod 391)2 ·295 mod 391

29514 mod 391 = (2957 mod 391)2 mod 391

2957 mod 391 = (2953 mod 391)2 · 295 mod 391

2953 mod 391 = (295 mod 391)2 · 295 mod 391

RSA-Based Public Key Encryption: Example

295235 mod 391 = (295117 mod 391)2 ·295 mod 391

We reduce the result modulo 295 after every product

295117 mod 391 = (29558 mod 391)2 · 295 mod 391

29558 mod 391 = (29529 mod 391)2 mod 391

29529 mod 391 = (29514 mod 391)2 ·295 mod 391

29514 mod 391 = (2957 mod 391)2 mod 391

2957 mod 391 = (2953 mod 391)2 · 295 mod 391

2953 mod 391 = (295 mod 391)2 · 295 mod 391 = 97

RSA-Based Public Key Encryption: Example

295235 mod 391 = (295117 mod 391)2 ·295 mod 391

We reduce the result modulo 295 after every product

295117 mod 391 = (29558 mod 391)2 · 295 mod 391

29558 mod 391 = (29529 mod 391)2 mod 391

29529 mod 391 = (29514 mod 391)2 ·295 mod 391

29514 mod 391 = (2957 mod 391)2 mod 391

2957 mod 391 = (2953 mod 391)2 · 295 mod 391

2953 mod 391 = (295 mod 391)2 · 295 mod 391 = 97

= 972 · 295 mod 391 = 337

= 3372 mod 391 = 179

= 1792 · 295 mod 391 = 61

= 612 mod 391 = 202

= 2022 · 295 mod 391 = 245

= 2452 · 295 mod 391 = 158

RSA-Based Public Key Encryption: Example

295235 mod 391 = (295117 mod 391)2 ·295 mod 391

We reduce the result modulo 295 after every product

295117 mod 391 = (29558 mod 391)2 · 295 mod 391

29558 mod 391 = (29529 mod 391)2 mod 391

29529 mod 391 = (29514 mod 391)2 ·295 mod 391

29514 mod 391 = (2957 mod 391)2 mod 391

2957 mod 391 = (2953 mod 391)2 · 295 mod 391

2953 mod 391 = (295 mod 391)2 · 295 mod 391 = 97

= 972 · 295 mod 391 = 337

= 3372 mod 391 = 179

= 1792 · 295 mod 391 = 61

= 612 mod 391 = 202

= 2022 · 295 mod 391 = 245

= 2452 · 295 mod 391 = 158




≈ log2 d
≤ log2 N
levels of
recursion

RSA-Based Public Key Encryption: Example

295235 mod 391 = (295117 mod 391)2 ·295 mod 391

We reduce the result modulo 295 after every product

295117 mod 391 = (29558 mod 391)2 · 295 mod 391

29558 mod 391 = (29529 mod 391)2 mod 391

29529 mod 391 = (29514 mod 391)2 ·295 mod 391

29514 mod 391 = (2957 mod 391)2 mod 391

2957 mod 391 = (2953 mod 391)2 · 295 mod 391

2953 mod 391 = (295 mod 391)2 · 295 mod 391 = 97

= 972 · 295 mod 391 = 337

= 3372 mod 391 = 179

= 1792 · 295 mod 391 = 61

= 612 mod 391 = 202

= 2022 · 295 mod 391 = 245

= 2452 · 295 mod 391 = 158

m = 295235 mod 391 = 158





≈ log2 d
≤ log2 N
levels of
recursion

Security of Plain RSA

Is plain RSA secure (under the RSA assumption)?

Observation 1:

• The RSA assumption is defined with respect to the RSA-inv experiment

Security of Plain RSA

Is plain RSA secure (under the RSA assumption)?

Observation 1:

• The RSA assumption is defined with respect to the RSA-inv experiment

• In the RSA-inv experiment the adversary wins by computing the e-th
root of a random group element x ∈ Z∗

N

Security of Plain RSA

Is plain RSA secure (under the RSA assumption)?

Observation 1:

• The RSA assumption is defined with respect to the RSA-inv experiment

• In the RSA-inv experiment the adversary wins by computing the e-th
root of a random group element x ∈ Z∗

N

• If m is a message chosen u.a.r. then, since fe(x) = xe is a
permutation, me is also uniformly distributed in Z∗

N

Security of Plain RSA

Is plain RSA secure (under the RSA assumption)?

Observation 1:

• The RSA assumption is defined with respect to the RSA-inv experiment

• In the RSA-inv experiment the adversary wins by computing the e-th
root of a random group element x ∈ Z∗

N

• If m is a message chosen u.a.r. then, since fe(x) = xe is a
permutation, me is also uniformly distributed in Z∗

N

• In general m is not a random message!

Security of Plain RSA

Is plain RSA secure (under the RSA assumption)?

Observation 1:

• The RSA assumption is defined with respect to the RSA-inv experiment

• In the RSA-inv experiment the adversary wins by computing the e-th
root of a random group element x ∈ Z∗

N

• If m is a message chosen u.a.r. then, since fe(x) = xe is a
permutation, me is also uniformly distributed in Z∗

N

• In general m is not a random message! =⇒ We can’t rely on the RSA assumption.

Security of Plain RSA

Is plain RSA secure (under the RSA assumption)?

Observation 1:

• The RSA assumption is defined with respect to the RSA-inv experiment

• In the RSA-inv experiment the adversary wins by computing the e-th
root of a random group element x ∈ Z∗

N

• If m is a message chosen u.a.r. then, since fe(x) = xe is a
permutation, me is also uniformly distributed in Z∗

N

• In general m is not a random message! =⇒ We can’t rely on the RSA assumption.

Observation 2:

• The plain RSA scheme is deterministic!

Security of Plain RSA

Is plain RSA secure (under the RSA assumption)?

Observation 1:

• The RSA assumption is defined with respect to the RSA-inv experiment

• In the RSA-inv experiment the adversary wins by computing the e-th
root of a random group element x ∈ Z∗

N

• If m is a message chosen u.a.r. then, since fe(x) = xe is a
permutation, me is also uniformly distributed in Z∗

N

• In general m is not a random message! =⇒ We can’t rely on the RSA assumption.

Observation 2:

• The plain RSA scheme is deterministic!

• It can’t be CPA-secure!

Security of Plain RSA

Is plain RSA secure (under the RSA assumption)?

Observation 1:

• The RSA assumption is defined with respect to the RSA-inv experiment

• In the RSA-inv experiment the adversary wins by computing the e-th
root of a random group element x ∈ Z∗

N

• If m is a message chosen u.a.r. then, since fe(x) = xe is a
permutation, me is also uniformly distributed in Z∗

N

• In general m is not a random message! =⇒ We can’t rely on the RSA assumption.

Observation 2:

• The plain RSA scheme is deterministic!

• It can’t be CPA-secure!

(and since CPA-security and EAV-security
concide in the public-key world, it is not
even secure against an eavesdropper)

Security of Plain RSA

Is plain RSA secure (under the RSA assumption)?

Observation 1:

• The RSA assumption is defined with respect to the RSA-inv experiment

• In the RSA-inv experiment the adversary wins by computing the e-th
root of a random group element x ∈ Z∗

N

• If m is a message chosen u.a.r. then, since fe(x) = xe is a
permutation, me is also uniformly distributed in Z∗

N

• In general m is not a random message! =⇒ We can’t rely on the RSA assumption.

Observation 2:

• The plain RSA scheme is deterministic!

• It can’t be CPA-secure!

(and since CPA-security and EAV-security
concide in the public-key world, it is not
even secure against an eavesdropper)

Plain RSA should never be used!

Attacks on Plain RSA: Better than bruteforce

Suppose that plain-RSA is used to encrypt a random group element m ∈ Z
∗
N with N ≈ 2η

• Clearly we can recover m by trying all the ≈ 2η possible choices with a bruteforce attack

Attacks on Plain RSA: Better than bruteforce

Suppose that plain-RSA is used to encrypt a random group element m ∈ Z
∗
N with N ≈ 2η

• One could hope that the best-known attack is not significantly better than the bruteforce attack

• Clearly we can recover m by trying all the ≈ 2η possible choices with a bruteforce attack

Attacks on Plain RSA: Better than bruteforce

Suppose that plain-RSA is used to encrypt a random group element m ∈ Z
∗
N with N ≈ 2η

• One could hope that the best-known attack is not significantly better than the bruteforce attack

• Clearly we can recover m by trying all the ≈ 2η possible choices with a bruteforce attack

• There is an attack that takes time ≈
√
N , i.e., ≈ 2

η
2

Attacks on Plain RSA: Better than bruteforce

Suppose that plain-RSA is used to encrypt a random group element m ∈ Z
∗
N with N ≈ 2η

• One could hope that the best-known attack is not significantly better than the bruteforce attack

• Clearly we can recover m by trying all the ≈ 2η possible choices with a bruteforce attack

• There is an attack that takes time ≈
√
N , i.e., ≈ 2

η
2

Let Pα(η) denote the probability that a η-bit message m can be written as m = m1 ·m2 with
m1,m2 ≤ 2αη.

limη→∞ inf Pα(η) ≥ ln(2α)

Attacks on Plain RSA: Better than bruteforce

Suppose that plain-RSA is used to encrypt a random group element m ∈ Z
∗
N with N ≈ 2η

• One could hope that the best-known attack is not significantly better than the bruteforce attack

• Clearly we can recover m by trying all the ≈ 2η possible choices with a bruteforce attack

• There is an attack that takes time ≈
√
N , i.e., ≈ 2

η
2

Let Pα(η) denote the probability that a η-bit message m can be written as m = m1 ·m2 with
m1,m2 ≤ 2αη.

Dan Boneh, Antoine Joux & Phong Q. Nguyen.
Why Textbook ElGamal and RSA Encryption Are Insecure

limη→∞ inf Pα(η) ≥ ln(2α)

For any constant α > 1
2 , Pα(η) is a positive constant!

Attacks on Plain RSA: Better than bruteforce

Suppose that plain-RSA is used to encrypt a random group element m ∈ Z
∗
N with N ≈ 2η

• One could hope that the best-known attack is not significantly better than the bruteforce attack

• Clearly we can recover m by trying all the ≈ 2η possible choices with a bruteforce attack

• There is an attack that takes time ≈
√
N , i.e., ≈ 2

η
2

Let Pα(η) denote the probability that a η-bit message m can be written as m = m1 ·m2 with
m1,m2 ≤ 2αη.

Dan Boneh, Antoine Joux & Phong Q. Nguyen.
Why Textbook ElGamal and RSA Encryption Are Insecure

limη→∞ inf Pα(η) ≥ ln(2α)

For any constant α > 1
2 , Pα(η) is a positive constant!

Attacks on Plain RSA: Better than bruteforce

= (m1 ·m2)
ec = me = me

1 ·me
2

Attacks on Plain RSA: Better than bruteforce

= (m1 ·m2)
ec = me = me

1 ·me
2 =⇒ me

1 = c · (me
2)

−1

Attacks on Plain RSA: Better than bruteforce

= (m1 ·m2)
ec = me = me

1 ·me
2 =⇒ Call this (unknown)

element x
me

1 = c · (me
2)

−1

Attacks on Plain RSA: Better than bruteforce

• For m̃2 = 1, 2, . . . , 2αη:

• Compute x̃ = c · (m̃e
2)

−1

• Append (m̃2, x̃) to L

• L← empty list

= (m1 ·m2)
ec = me = me

1 ·me
2 =⇒

(guess m2)

Call this (unknown)
element x

(compute what the value of x would be if the guess was correct)

Input: c

≈ 2αn

Time

me
1 = c · (me

2)
−1

Attacks on Plain RSA: Better than bruteforce

• For m̃2 = 1, 2, . . . , 2αη:

• Compute x̃ = c · (m̃e
2)

−1

• Append (m̃2, x̃) to L

• L← empty list

• Sort the pairs in L w.r.t. their second component

= (m1 ·m2)
ec = me = me

1 ·me
2 =⇒

(guess m2)

Call this (unknown)
element x

(compute what the value of x would be if the guess was correct)

Input: c

≈ 2αn

Time

me
1 = c · (me

2)
−1

Attacks on Plain RSA: Better than bruteforce

• For m̃2 = 1, 2, . . . , 2αη:

• Compute x̃ = c · (m̃e
2)

−1

• Append (m̃2, x̃) to L

• L← empty list

• Sort the pairs in L w.r.t. their second component

• For m̃1 = 1, 2, . . . , 2αη:

= (m1 ·m2)
ec = me = me

1 ·me
2 =⇒

(guess m2)

Call this (unknown)
element x

(compute what the value of x would be if the guess was correct)

(guess m1)

• Compute x̃ = m̃e
1 (compute what the value of x would be if the guess was correct)

• If there is m̃2 s.t. (m̃2, x̃) ∈ L: (use binary search)

• Return m = m̃1 · m̃2

Input: c

• Return “failure”

≈ 2αn

Time

≈ αn · 2αn

≈ αn

≈ αn · 2αn

me
1 = c · (me

2)
−1

Attacks on Plain RSA: Better than bruteforce

• For m̃2 = 1, 2, . . . , 2αη:

• Compute x̃ = c · (m̃e
2)

−1

• Append (m̃2, x̃) to L

• L← empty list

• Sort the pairs in L w.r.t. their second component

• For m̃1 = 1, 2, . . . , 2αη:

= (m1 ·m2)
ec = me = me

1 ·me
2 =⇒

(guess m2)

Call this (unknown)
element x

(compute what the value of x would be if the guess was correct)

(guess m1)

• Compute x̃ = m̃e
1 (compute what the value of x would be if the guess was correct)

• If there is m̃2 s.t. (m̃2, x̃) ∈ L: (use binary search)

• Return m = m̃1 · m̃2

Input: c

• Return “failure” Success probability: Pα(η)

≈ 2αn

Time

≈ αn · 2αn

≈ αn

≈ αn · 2αn

Time: ≈ αn · 2αn

me
1 = c · (me

2)
−1

Attacks on Plain RSA: short messages and small exponent

Suppose that m ≤ e
√
N (here operations are performed over the reals)

• This happens when e is small (recall that e = 3 is a common choice). . .

• . . . and m is short

Attacks on Plain RSA: short messages and small exponent

Suppose that m ≤ e
√
N (here operations are performed over the reals)

• This happens when e is small (recall that e = 3 is a common choice). . .

• . . . and m is short

• For example when N has 2048 bits, e = 3, and m has ≤ 85 bytes

Attacks on Plain RSA: short messages and small exponent

Suppose that m ≤ e
√
N (here operations are performed over the reals)

• This happens when e is small (recall that e = 3 is a common choice). . .

• . . . and m is short

• For example when N has 2048 bits, e = 3, and m has ≤ 85 bytes

Then me ≤ N and hence c = me mod N = me No modular reduction!

Attacks on Plain RSA: short messages and small exponent

Suppose that m ≤ e
√
N (here operations are performed over the reals)

• This happens when e is small (recall that e = 3 is a common choice). . .

• . . . and m is short

• For example when N has 2048 bits, e = 3, and m has ≤ 85 bytes

Then me ≤ N and hence c = me mod N = me

• m can be recovered from c by computing e
√
c over the reals!

No modular reduction!

Attacks on Plain RSA: short messages and small exponent

Suppose that m ≤ e
√
N (here operations are performed over the reals)

• This happens when e is small (recall that e = 3 is a common choice). . .

• . . . and m is short

• For example when N has 2048 bits, e = 3, and m has ≤ 85 bytes

Then me ≤ N and hence c = me mod N = me

• m can be recovered from c by computing e
√
c over the reals!

• This requires polynomial-time!

No modular reduction!

Attacks on Plain RSA: partially-known messages

Theorem: Let p(x) be a polynomial of degree e. All x such that
p(x) = 0 mod N and |x| ≤ N1/e can be found in time poly(logN, e).

Attacks on Plain RSA: partially-known messages

Theorem: Let p(x) be a polynomial of degree e. All x such that
p(x) = 0 mod N and |x| ≤ N1/e can be found in time poly(logN, e).

Suppose that the sender encrypts a message m = m1∥m2, where m1 is known to the attacker and m2

has k bits

m = m1 · 2k +m2

Attacks on Plain RSA: partially-known messages

Theorem: Let p(x) be a polynomial of degree e. All x such that
p(x) = 0 mod N and |x| ≤ N1/e can be found in time poly(logN, e).

Suppose that the sender encrypts a message m = m1∥m2, where m1 is known to the attacker and m2

has k bits

m = m1 · 2k +m2

After encryption:

c = me = (m1 · 2k +m2)
e

Attacks on Plain RSA: partially-known messages

Theorem: Let p(x) be a polynomial of degree e. All x such that
p(x) = 0 mod N and |x| ≤ N1/e can be found in time poly(logN, e).

Suppose that the sender encrypts a message m = m1∥m2, where m1 is known to the attacker and m2

has k bits

m = m1 · 2k +m2

After encryption:

c = me = (m1 · 2k +m2)
e

Therefore the message m2 satisfies:

(m1 · 2k +m2)
e − c = 0

Attacks on Plain RSA: partially-known messages

Theorem: Let p(x) be a polynomial of degree e. All x such that
p(x) = 0 mod N and |x| ≤ N1/e can be found in time poly(logN, e).

Suppose that the sender encrypts a message m = m1∥m2, where m1 is known to the attacker and m2

has k bits

m = m1 · 2k +m2

After encryption:

c = me = (m1 · 2k +m2)
e

Therefore the message m2 satisfies:

(m1 · 2k +m2)
e − c = 0

This is a polynomial of
degree e (w.r.t. m2),

and we are only
interested in solutions
such that m2 < 2k

Attacks on Plain RSA: partially-known messages

Theorem: Let p(x) be a polynomial of degree e. All x such that
p(x) = 0 mod N and |x| ≤ N1/e can be found in time poly(logN, e).

Suppose that the sender encrypts a message m = m1∥m2, where m1 is known to the attacker and m2

has k bits

m = m1 · 2k +m2

After encryption:

c = me = (m1 · 2k +m2)
e

Therefore the message m2 satisfies:

(m1 · 2k +m2)
e − c = 0

This is a polynomial of
degree e (w.r.t. m2),

and we are only
interested in solutions
such that m2 < 2k

If 2k ≤ N1/e and e is small, the above theorem allows us to list all candidates for m2 in polynomial-time

Attacks on Plain RSA: encrypting a message multiple times
Consider a sender that encrypts the same message m for multiple recipients

Attacks on Plain RSA: encrypting a message multiple times
Consider a sender that encrypts the same message m for multiple recipients

Suppose that e recipients all use the same exponent and have public keys:

pk1 = (N1, e) pk2 = (N2, e) . . . pke = (Ne, e)

Attacks on Plain RSA: encrypting a message multiple times
Consider a sender that encrypts the same message m for multiple recipients

Suppose that e recipients all use the same exponent and have public keys:

pk1 = (N1, e) pk2 = (N2, e) . . . pke = (Ne, e)

An eavesdropper sees:

c1 = me mod N1 c2 = me mod N2
. . . ce = me mod Ne

Attacks on Plain RSA: encrypting a message multiple times
Consider a sender that encrypts the same message m for multiple recipients

Suppose that e recipients all use the same exponent and have public keys:

pk1 = (N1, e) pk2 = (N2, e) . . . pke = (Ne, e)

An eavesdropper sees:

c1 = me mod N1 c2 = me mod N2
. . . ce = me mod Ne

If gcd(Ni, Nj) ̸= 1 for some i, j with i ̸= j, then we can factor Ni and Nj . Therefore we assume that
all Nis are pairwise coprime.

Attacks on Plain RSA: encrypting a message multiple times
Consider a sender that encrypts the same message m for multiple recipients

Suppose that e recipients all use the same exponent and have public keys:

pk1 = (N1, e) pk2 = (N2, e) . . . pke = (Ne, e)

An eavesdropper sees:

c1 = me mod N1 c2 = me mod N2
. . . ce = me mod Ne

If gcd(Ni, Nj) ̸= 1 for some i, j with i ̸= j, then we can factor Ni and Nj . Therefore we assume that
all Nis are pairwise coprime.

Consider the system





c ≡ c1 (mod N1)
...

c ≡ ce (mod Ne)

Attacks on Plain RSA: encrypting a message multiple times
Consider a sender that encrypts the same message m for multiple recipients

Suppose that e recipients all use the same exponent and have public keys:

pk1 = (N1, e) pk2 = (N2, e) . . . pke = (Ne, e)

An eavesdropper sees:

c1 = me mod N1 c2 = me mod N2
. . . ce = me mod Ne

If gcd(Ni, Nj) ̸= 1 for some i, j with i ̸= j, then we can factor Ni and Nj . Therefore we assume that
all Nis are pairwise coprime.

Consider the system





c ≡ c1 (mod N1)
...

c ≡ ce (mod Ne)

Notice that c = me satisfies all equations.

Attacks on Plain RSA: encrypting a message multiple times
Consider a sender that encrypts the same message m for multiple recipients

Suppose that e recipients all use the same exponent and have public keys:

pk1 = (N1, e) pk2 = (N2, e) . . . pke = (Ne, e)

An eavesdropper sees:

c1 = me mod N1 c2 = me mod N2
. . . ce = me mod Ne

If gcd(Ni, Nj) ̸= 1 for some i, j with i ̸= j, then we can factor Ni and Nj . Therefore we assume that
all Nis are pairwise coprime.

Consider the system





c ≡ c1 (mod N1)
...

c ≡ ce (mod Ne)

Notice that c = me satisfies all equations.

Moreover, 0 ≤ me <
∏e

i=1 Ni

Attacks on Plain RSA: encrypting a message multiple times
Consider a sender that encrypts the same message m for multiple recipients

Suppose that e recipients all use the same exponent and have public keys:

pk1 = (N1, e) pk2 = (N2, e) . . . pke = (Ne, e)

An eavesdropper sees:

c1 = me mod N1 c2 = me mod N2
. . . ce = me mod Ne

If gcd(Ni, Nj) ̸= 1 for some i, j with i ̸= j, then we can factor Ni and Nj . Therefore we assume that
all Nis are pairwise coprime.

Chinese Remainder Theorem: If the ni are pairwise coprime then the system





x ≡ a1 (mod n1)
...

x ≡ ak (mod nk)

has a unique solution x∗ s.t. 0 ≤ x∗<
k∏

i=1

ni. Moreover, all solutions are congruent modulo
k∏

i=1

ni.

Attacks on Plain RSA: encrypting a message multiple times
Consider a sender that encrypts the same message m for multiple recipients

Suppose that e recipients all use the same exponent and have public keys:

pk1 = (N1, e) pk2 = (N2, e) . . . pke = (Ne, e)

An eavesdropper sees:

c1 = me mod N1 c2 = me mod N2
. . . ce = me mod Ne

If gcd(Ni, Nj) ̸= 1 for some i, j with i ̸= j, then we can factor Ni and Nj . Therefore we assume that
all Nis are pairwise coprime.

Consider the system





c ≡ c1 (mod N1)
...

c ≡ ce (mod Ne)

Notice that c = me satisfies all equations.

Moreover, 0 ≤ me <
∏e

i=1 Ni

The solution whose existence is guaranteed by the Chinese remainder theorem is exactly c∗ = me

Attacks on Plain RSA: encrypting a message multiple times
Consider a sender that encrypts the same message m for multiple recipients

Suppose that e recipients all use the same exponent and have public keys:

pk1 = (N1, e) pk2 = (N2, e) . . . pke = (Ne, e)

An eavesdropper sees:

c1 = me mod N1 c2 = me mod N2
. . . ce = me mod Ne

If gcd(Ni, Nj) ̸= 1 for some i, j with i ̸= j, then we can factor Ni and Nj . Therefore we assume that
all Nis are pairwise coprime.

Consider the system





c ≡ c1 (mod N1)
...

c ≡ ce (mod Ne)

Notice that c = me satisfies all equations.

Moreover, 0 ≤ me <
∏e

i=1 Ni

The solution whose existence is guaranteed by the Chinese remainder theorem is exactly c∗ = me

No modular reduction!

Attacks on Plain RSA: encrypting a message multiple times
Consider a sender that encrypts the same message m for multiple recipients

Suppose that e recipients all use the same exponent and have public keys:

pk1 = (N1, e) pk2 = (N2, e) . . . pke = (Ne, e)

An eavesdropper sees:

c1 = me mod N1 c2 = me mod N2
. . . ce = me mod Ne

If gcd(Ni, Nj) ̸= 1 for some i, j with i ̸= j, then we can factor Ni and Nj . Therefore we assume that
all Nis are pairwise coprime.

Consider the system





c ≡ c1 (mod N1)
...

c ≡ ce (mod Ne)

Notice that c = me satisfies all equations.

Moreover, 0 ≤ me <
∏e

i=1 Ni

The solution whose existence is guaranteed by the Chinese remainder theorem is exactly c∗ = me

This is solution can be found in polynomial-time!

No modular reduction!

Attacks on Plain RSA: encrypting a message multiple times
Consider a sender that encrypts the same message m for multiple recipients

Suppose that e recipients all use the same exponent and have public keys:

pk1 = (N1, e) pk2 = (N2, e) . . . pke = (Ne, e)

An eavesdropper sees:

c1 = me mod N1 c2 = me mod N2
. . . ce = me mod Ne

If gcd(Ni, Nj) ̸= 1 for some i, j with i ̸= j, then we can factor Ni and Nj . Therefore we assume that
all Nis are pairwise coprime.

Consider the system





c ≡ c1 (mod N1)
...

c ≡ ce (mod Ne)

Notice that c = me satisfies all equations.

Moreover, 0 ≤ me <
∏e

i=1 Ni

The solution whose existence is guaranteed by the Chinese remainder theorem is exactly c∗ = me

This is solution can be found in polynomial-time!

To recover m we just need to compute e
√
c∗ (over the reals!)

No modular reduction!

