
Public-Key Setting

Why study private key cryptography at all?

• If two parties with to communicate, they can always generate two public/secret key pairs instead of
a secret shared key

• Public-key schemes are slower

• Public-key schemes require longer keys

• Public-key schemes have larger ciphertext expansion

• Public-key schemes require stronger assumptions

These issues can
be mitigated
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The public key encryption schemes we will see are defined for short messages

How can we encrypt long (arbitrary length) messages?

Easy solution: Split the message into small blocks, and encrypt each block separately

Drawbacks:

• Slow

• Ciphertext, expansion

If Π is CPA-secure (for short length messages), then the above scheme (Dec,Enc′,Dec′) is
CPA-secure for arbitrary length messages.

m = m1 ∥m2 ∥m3 ∥ . . .

Enc′(m) = Encpk(m1) ∥Encpk(m2) ∥Encpk(m3) ∥ . . .

Dec′sk is defined in the obvious way

Π = (Gen,Enc,Dec)

Can we do better?
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Hybrid encryption

Idea:

• Use a public-key encryption scheme to encrypt a key k for a private-key encryption scheme

• Use k to encrypt m

• The ciphertext contains both the encryption of k and the encryption of m

Note: the resulting scheme is a public-key encryption scheme

• the key k does not need to be shared by the parties beforehand

Benefits:

• Fast (public-key encryption is used only for the first block)

• Asymptotically optimal ciphertext expansion: the only blocks that are expanded are the first (due
to public-key encryption) and possibly the last (due to padding)
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n).

• Decaps is a deterministic polynomial-time decapsulation algorithm that takes as input a secret
key sk and a ciphertext c and outputs a key k or a special symbol ⊥. We denote an execution of
this algorithm by Decapssk(c).

Correctness: if (c, k)← Encapspk(1
n) then Decapssk(c) = k, except for negligible probability.

Note: a public-key encryption scheme is a possible way to build a KEM
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Π′ = (Gen′,Enc′,Dec′) to build a public-key encryption scheme Πhy = (Genhy,Enchy,Dechy).

(that’s the whole point of introducing KEMs)

• The private-key encryption scheme Π′ is called a Data Encapsulation Mechanism (DEM)

• Assume that Π′ uses keys of length ℓ(n), i.e., the keys output Encaps and Gen′ are “compatible”

Genhy(1n): (pk, sk)← Gen(1n); Return (pk, sk)

Enchypk(m):

• (c, k)← Encapspk(1
n)

• c′ ← Enc′k(m)

• Return c ∥ c′

Dechysk (c
′′):

• Parse c′′ as c∥c′

• k ← Decapssk(c)

• m← Dec′k(c
′)

• Return m

(return ⊥ if this fails)
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Notice that only EAV-security is needed for Π′ !

Theorem: If Π is a CPA-secure KEM and Π′ is an EAV-secure private-key encryption
scheme then Πhy (as previously defined) is a CPA-secure public-key encryption scheme.

Why?

• A new key k is used for each encryption!
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Theorem: If Π is a CCA-secure KEM and Π′ is an CCA-secure private-key encryption
scheme then Πhy (as previously defined) is a CCA-secure public-key encryption scheme.

We can combine a CCA-secure KEM and a CCA-secure DEM to obtain a CCA-secure public-key
encryption scheme:
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• If Π is not CCA-secure then the adversary can attack the encapsulation mechanism and gain
information about/recover the DEM key.

• If Π′ is not CCA-secure then the adversary can gain information on the encrypted message by
attacking the DEM

Consider the hybrid encryption using some CCA-secure KEM and the pseudo-OTP DEM.

The ciphertext is: ⟨c, c′⟩ = ⟨c,G(k)⊕m⟩, where G is a PRG.

The adversary can compute c′′ = c′ ⊕ 00 . . . 0︸ ︷︷ ︸
|c′|−1 times

1, query the decryption oracle with c′′ to obtain

m′′ = Decsk(⟨c, c′′⟩), and recover m = m′′ ⊕ 00 . . . 01

The DEM is malleable!
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El Gamal Encryption (more formally)

Gen(1n):

• Run G(1n), where G is a group generation algorithm, to obtain
(G, q, g) where G is a group of order q and g ∈ G is a generator

• Choose a uniform x u.a.r. from {0, . . . , q − 1}
• Compute h = gx

• Output (pk, sk) where pk = (G, q, g, h) and sk = (G, q, g, x).

The message
spaceMpk is G.

Encpk(m):

• Here pk = (G, q, g, h) and m ∈ G

• Choose a uniform y u.a.r. from {0, . . . , q − 1}
• Output the ciphertext ⟨gy, hy ·m⟩

Decsk(c):

• Here sk = (G, q, g, x) and c = ⟨c1, c2⟩
• Output the plaintext (cx1)

−1 · c2
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• Run G(1n), where G is a group generation algorithm, to obtain
(G, q, g) where G is a group of order q and g ∈ G is a generator
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• Compute h = gx
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spaceMpk is G.
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• Here pk = (G, q, g, h) and m ∈ G

• Choose a uniform y u.a.r. from {0, . . . , q − 1}
• Output the ciphertext ⟨gy, hy ·m⟩

Decsk(c):

• Here sk = (G, q, g, x) and c = ⟨c1, c2⟩
• Output the plaintext (cx1)

−1 · c2

In practice the group G (and its order q) is fixed in advance along with a generator g ∈ G.

(just like in the Diffie-Hellman key exchange).
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• The ciphertext ⟨gy, gz⟩ is completely independent from m!
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Security of El Gamal Encryption (cont.)
It follows that Pr[PubKcpa

Π̃,A
(n) = 1] = 1

2 Consider the following algorithm D for the DDH problem:

• Receive as input G, q, g, gx, gy, h

• Send the “public key” pk = ⟨G, q, g, gx⟩ to A and receive two messages m0,m1

• Pick a uniform b ∈ {0, 1}
• Give the ciphertext ⟨gy, h ·mb⟩ to A and obtain a guess b′

• If b = b′ output 1, otherwise output 0

If h = gxy:

• Algorithm D is carrying out the PubKcpa
Π,A(n) experiment!

• Pr[D(G, q, g, gx, gy, gxy) = 1] = Pr[PubKcpa
Π,A(n) = 1] = 1

2 +ε(n)

∣∣ Pr[D(G, q, g, gx, gy, gz) = 1]− Pr[D(G, q, g, gx, gy, gxy) = 1]
∣∣ =

∣∣ 1
2 − ( 12 + ε(n))

∣∣ = ε(n)

not negligible!

□
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We just built a (fixed-length) public-key encryption scheme. However there are some drawbacks:

• The message space depends on the public-key (i.e., on the choice of the group G)

• Even if we think of G as fixed, we can only encrypt group elements

• We would like to encrypt arbitrary (fixed-length) binary strings

One way around this issue, is that of agreeing on an encoding of strings into group elements

• Depending on the group this might not be easy to do (recall that we need the encoding to be
computable and invertible in polynomial-time)

As an alternative, we can use our public-key encryption scheme as a KEM for Hybrid Encryption
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• Encaps: pick a random group element k̃ ∈ G and encrypt it as ⟨gy, hy · k̃⟩. Return (k, ⟨gy, hy · k̃⟩)

Drawback: we are sharing only a single secret group element k̃ but the ciphertext consists of two
group elements, i.e., it is ⟨gy, hy · k̃⟩.

Note: to get a binary-string key k from k̃, we need to use a key-derivation function H : G→ {0, 1}ℓ(n).

• Decaps: given ⟨c1, c2⟩ compute k̃ = (cx1)
−1 · c2. Return k̃.

El Gamal Key Encapsulation Mechanism

• Gen: as before

Idea: From the security proof Diffie-Hellman we know that cx1 = gxy is already indistinguishable from
a random group element (to a polynomial-time adversary).

Use cx1 as the key!
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Gen(1n):

• Run G(1n), where G is a group generation algorithm, to obtain (G, q, g) where G is a group
of order q and g ∈ G is a generator

• Choose a uniform x u.a.r. from {0, . . . , q − 1}
• Compute h = gx

• Output (pk, sk) where pk = (G, q, g, h,H) and sk = (G, q, g, x,H).

• Pick some key derivation function H : G→ {0, 1}ℓ(n)

Encapspk(1
n):

• Here pk = (G, q, g, h,H)

• Choose a uniform y u.a.r. from {0, . . . , q − 1}
• Output the pair (c, k) with c = gy and

k = H(hy) = H(gxy)

Decapssk(c):

• Here sk = (G, q, g, x,H)

• Output the key H(cx) = H(gxy)
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How do we choose H : G→ {0, 1}ℓ(n)?
• Pick H as a hash function

• Pick H as a “regular” function: the number of elements of G that map to the same key
k ∈ {0, 1}ℓ(n) must be roughly the same.

• Secure in the random oracle model

• Can also be proven secure under the CDH assumption

Formally, we need:
∑

k∈{0,1}ℓ(n)

∣∣ Pr[H(g) = k]− 2−ℓ(n)
∣∣ ≤ ε(n),

If the DDH problem is hard relative to G, and H is chosen as above, then the DDH-based KEM
is CPA-secure.

where ε(n) is a negligible function and the probability is taken over the uniform choice of g ∈ G.
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Let N = pq where p and q are distinct odd primes

The order of Z∗
N is ϕ(N) = (p− 1) · (q − 1)

• Trivial to compute if we know p and q

• “Hard” to compute if we know N but not p and q (can be shown to be equivalent to factoring N)

Pick e ∈ Z
∗
N such that gcd(e, ϕ(N)) = 1.

• fe(x) = xe is a permutation of Z∗
N

• Let d be the inverse of e modulo ϕ(N). Then fd(x) = xd is the inverse of fe.

• (xe)d = (xd)e = x

Since (xe)d = x we can think of xd as the e-th root of x

• We define x1/e = xd



Let GenRSA be a polynomial-time algorithm that, on input 1n , outputs a triple (N, e, d) where:

• N = pq, and p and q are n-bit primes

• ed = 1 (mod ϕ(N))

The algorithm is allowed to fail with negligible probability.

Reminder: the RSA problem



Let GenRSA be a polynomial-time algorithm that, on input 1n , outputs a triple (N, e, d) where:

• N = pq, and p and q are n-bit primes

• ed = 1 (mod ϕ(N))

The algorithm is allowed to fail with negligible probability.

For an algorithm A, define RSA-invA,GenRSA(n) as:

• Run GenRSA(1n) to obtain (N, e, d).

• A outputs x ∈ Z
∗
N

• The outcome of the experiment is 1 if xe = y. Otherwise the outcome is 0.

• Send N , e and y to A
• Choose y ∈ Z

∗
N u.a.r.

Reminder: the RSA problem



Definition: The RSA problem is hard relative to GenRSA if for all probabilistic polynomial-time
algorithms A there exists a negligible function ε such that

Pr[RSA-invA,GenRSA(n) = 1] ≤ ε(n).

The RSA assumption: there exists a GenRSA algorithm relative to which the RSA problem is
hard.

Reminder: the RSA assumption
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We can define a public-key encryption scheme (for short messages) based on the RSA assumption

Gen(1n):

• (N, e, d)← GenRSA(1n)
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• Here pk = ⟨N, e⟩ and m ∈ Z∗
N

• c← me (the operation is in the group Z∗
N , under multiplication modulo N)

• Return c

Decsk(c):

• Here sk = ⟨N, d⟩ and c ∈ Z∗
N

• m← cd (the operation is in the group Z∗
N , under multiplication modulo N)

• Return m

Plain
RSA
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RSA-Based Public Key Encryption: Example

Say that we run GenRSA(15) and it returns (N, e, d) = (391, 3, 235)

• The public key pk is (391, 3)

• The secret key sk is (391, 235)

• We are going to work in the group Z
∗
391

To encrypt m = 158 ∈ Z
∗
391:

• Compute c = 1583 mod 391 = (1582 mod 391) · 158 mod 391 = 331 · 158 mod 391 = 295

To decrypt c = 295:

• Compute m = 295235 mod 391
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295235 mod 391 = (295117 mod 391)2 ·295 mod 391

We reduce the result modulo 295 after every product

295117 mod 391 = (29558 mod 391)2 · 295 mod 391

29558 mod 391 = (29529 mod 391)2 mod 391

29529 mod 391 = (29514 mod 391)2 ·295 mod 391

29514 mod 391 = (2957 mod 391)2 mod 391

2957 mod 391 = (2953 mod 391)2 · 295 mod 391

2953 mod 391 = (295 mod 391)2 · 295 mod 391 = 97

= 972 · 295 mod 391 = 337

= 3372 mod 391 = 179

= 1792 · 295 mod 391 = 61

= 612 mod 391 = 202

= 2022 · 295 mod 391 = 245

= 2452 · 295 mod 391 = 158

m = 295235 mod 391 = 158


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• In the RSA-inv experiment the adversary wins by computing the e-th
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• If m is a message chosen u.a.r. then, since fe(x) = xe is a
permutation, me is also uniformly distributed in Z∗

N

• In general m is not a random message! =⇒ We can’t rely on the RSA assumption.

Observation 2:

• The plain RSA scheme is deterministic!

• It can’t be CPA-secure!

(and since CPA-security and EAV-security
concide in the public-key world, it is not
even secure against an eavesdropper)

Plain RSA should never be used!
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• This happens when e is small (recall that e = 3 is a common choice). . .

• . . . and m is short

• For example when N has 2048 bits, e = 3, and m has ≤ 85 bytes

Then me ≤ N and hence c = me mod N = me

• m can be recovered from c by computing e
√
c over the reals!

• This requires polynomial-time!

No modular reduction!
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Attacks on Plain RSA: partially-known messages

Theorem: Let p(x) be a polynomial of degree e. All x such that
p(x) = 0 mod N and |x| ≤ N1/e can be found in time poly(logN, e).

Suppose that the sender encrypts a message m = m1∥m2, where m1 is known to the attacker and m2

has k bits

m = m1 · 2k +m2

After encryption:

c = me = (m1 · 2k +m2)
e

Therefore the message m2 satisfies:

(m1 · 2k +m2)
e − c = 0

This is a polynomial of
degree e (w.r.t. m2),

and we are only
interested in solutions
such that m2 < 2k

If 2k ≤ N1/e and e is small, the above theorem allows us to list all candidates for m2 in polynomial-time
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√
c∗ (over the reals!)
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