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Observation 1:

• The RSA assumption is defined with respect to the RSA-ind experiment

• In the RSA-ind experiment the adversary wins by computing the e-th
root of a random group element x ∈ Z∗
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• If m is a message chosen u.a.r. then, since fe(x) = xe is a
permutation, me is also uniformly distributed in Z∗

N

• In general m is not a random message! =⇒ We can’t rely on the RSA assumption.

Observation 2:

• The plain RSA scheme is deterministic!

• It can’t be CPA-secure!

(and since CPA-security and EAV-security
concide in the public-key world, it is not
even secure agaisnt an eavesdropper)

Plain RSA should never be used!
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Since Plain RSA is not CPA-Secure, we already know that it can’t be CCA-Secure

We can explicitly show that Plain-RSA is malleable:

• Let c = me (mod N) a Plain RSA ciphertext and choose α ∈ Z
∗
N

• What does the ciphertext c′ = αe · c (mod N) decrypt to?

(c′)d = αedmed = α ·m (mod N)

• c′ is a valid encryption of α ·m. We can build a polynomial-time adversary that wins the
PubKcca

A,Π(n) experiment with non-negligible probability:

• Output two messages m0,m1 and receive the challenge ciphertext c

• Query the decryption oracle with c′ = 2e · c (mod N) to obtain m′ = 2 ·mb of

• Receive the public key pk = ⟨N, e⟩

• If m′ = 2 ·m0 (mod N) return b′ = 0, otherwise return b′ = 1
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Option 2: Use RSA as a KEM with a key derivation function

• Make sure that the message is “random enough”

• Choose some randomized encoding between messages and group elements

• To encrypt: encode the message, then encrypt the group element

• To decrypt: decrypt the ciphertext to recover the group element, then decode the group element
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Idea: prepend a random “padding” string to the message

Let η = ⌊logN⌋ (one less than the number of bits of N)

We will use a padding of length ℓ(n) < η

To encrypt a message in {0, 1}η−ℓ(n):

• Choose a padding r u.a.r. from {0, 1}ℓ(n)

• Interpret m̂ = r∥m as an element of Z∗
N

• Output c = m̂e (mod N)

Encpk(m): (where pk = ⟨N, e⟩)

To decrypt c:

Decsk(c): (where sk = ⟨N, d⟩)

• Compute m̂ = cd (mod N)

• Return the η − ℓ(n) least significant bits of m̂

Almost all m̂ are binary
encodings of an integer in Z

∗
N
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The security of padded RSA depends on the choice of ℓ(n)

• An attacker can win the PubKcpa
A,Π(n) experiment by guessing r ∈ {0, 1}ℓ(n) using a brute-force

attack

=⇒ ℓ(n) need to be long enough

For example, if ℓ(n) = O(logn) then |{0, 1}ℓ(n)| = 2ℓ(n) ≤ 2k logn = nk (for some constant k)

Polynomial

Good news: If ℓ = η − 1, i.e., the message is just a single bit, then it is possible to show that Padded
RSA is CPA-secure if the RSA assumption holds

The situation is less clear for intermediate values of ℓ(n)

• No proof of security

• No known polynomial-time attacks

In any case, Padded RSA is not CCA-secure!
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It uses paddings of specific lengths and formats

• For a public key pk = ⟨N, e⟩, let k be the length of N in bytes

• The message m is required to have an integral number D of bytes between 1 and k − 11

• The remaining k −D ≥ 11 bytes form the padding

— The first two bytes of the padding are (the binary encoding of) 0 and 2, respectively

— The last byte of the padding is 0

— Each of the remaining bytes is (the binary encoding of) a value chosen u.a.r. from {1, . . . , 255}

• The choice of the padding ensures that m̂ < N and that m can be unambiguously recovered from m̂

m̂ = 0x00∥0x02∥r∥0x00∥m

random string of (at least 8) non-zero bytes
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Is it secure? No!

The PKCS #1 v1.5 standard allows for padding that is too short!

As an example consider a message that is as long as possible, and consists of all 0s except for the most
significant bit b, which is unknown

m = b ∥ 0L for L = 8(k − 11)− 1

The resulting ciphertext is

c = (0x00∥0x02∥r∥0x00∥ b ∥ 0L)e (mod N)

An attacker can compute:

c′ = c · (2−L)e = ((0x00∥0x02∥r∥0x00∥ b ∥ 0L) · 2−L)e (mod N)

= (0x00∥0x02∥r∥0x00∥ b)e (mod N)
︸ ︷︷ ︸

only 75 bits

If (275)e ≤ N (for example when N has more than 75e bits) the “short message” attack applies.
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To avoid these attacks we need to ensure that the number of bits in r is Ω( logN
e

)

The variant that uses long padding strings is conjectured to be CPA-secure (if the RSA assumption
holds) but no security proof is known

This is still not CCA-secure

• In PKCS #1 v1.5 the number of random bits can be as small as a constant!

• The recipient needs to check that the leading bytes of the decoded plaintext are 0x00 0x02

• If this is not the case, the decryption returns an error

• If not done properly, this might provide access to a padding oracle!

• The whole message m can be recovered!

A word of caution:
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• r = s⊕H(t)

• Interpret m̂ as s ∥ t, where s has k(n) bits and t has ℓ(n) + k(n) bits

• m′ = t⊕G(r)

• m̂ = cd (mod N)

Can be proven CCA-Secure if (i) the RSA assumption holds, and (ii) G and H are modeled as
independent random oracles

Warning: there are 2 sources of errors. If the returned errors differ, an attacker can recover the plaintext!

Side channel attacks: Even if the error is the same, an attacker might be able to distinguish the two
cases by observing the time elapsed before an error is returned.

• If m̂ has more than ℓ(n) + 2k(n) bits: return ⊥

• If m′ is of the form m ∥ 0k: return m

• Otherwise return ⊥



“Fixing” RSA

How do we make RSA secure?

Option 1: Use randomized encoding

Option 2: Use RSA as a KEM with a key derivation function

• Make sure that the message is “random enough”

• Choose some randomized encoding between messages and group elements

• To encrypt: encode the message, then encrypt the group element

• To decrypt: decrypt the ciphertext to recover the group element, then decode the group element
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Encapspk(1
n):

• Here pk = ⟨N, e⟩

• Choose a uniform r in Z
∗
N

• Output the ciphertext c = re (mod N)
and the key H(r)

Decapssk(c):

• Here sk = ⟨N, d⟩

• Compute r = cd (mod N)

• Return the key H(r)

Gen(1n):

• (N, e, d)← GenRSA(1n)

• Return (pk, sk) where pk = ⟨N, e⟩ and sk = ⟨N, d⟩
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RSA as a KEM: Security

Theorem: If the RSA problem is hard relative to GenRSA and H is modeled as a random
oracle, then the RSA-based KEM described before is CCA-secure.

Idea:

• We are encrypting a random group element, therefore we can rely on the hardness of the RSA
problem

• Even if an attacker can compute a ciphertext c′ related to c, the decapsulation oracle returns H(r′),
where r′ = (c′)d (mod N)

• Since r′ ̸= r and H is modeled as a random oracle, H(r′) is a random binary string independent of
H(r)
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• Publicly verifiable: if a recipient verifies that a signature on a given message is legitimate, then all
other parties who receive this signed message will also verify it as legitimate.

• One key per sender: A sender only needs a single secret key to be able to sign messages intended
for any number of recipients.

• Require a different symmetric key for each recipient

• Transferable: A digital signature can be exhibited to a third party to convince them that the
original sender of the message authenticated it

• Consequently, that tag of each recipient differs (even if the message is the same)

• Not transferable. A third part cannot check that a tag is valid without knowing the symmetric key.

• Non-repudiable: Once the sender signs a message, he cannot later deny having done so. The
signature acts a proof that the sender authenticad the message

Digital Signatures:

MACs:

• Repudiable: Even if the recipient reveals the symmetric key, the sender can claim that the recipient
generated the tag himself!

Slower, Longer signatures

Faster (by 2,3 order of magnitude),
shorter tags
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A Digital Signature Scheme is a triple of algorithms (Gen, Sign,Vrfy)

• Gen is a probabilistic polynomial-time key-generation algorithm that
takes 1n as input and outputs a pair (pk, sk) where pk is a public key,
and sk is the secret key. This implicitly defines a message space.

• Sign is a probabilistic polynomial-time signing algorithm that takes as
input a secret key sk and a message m (in the message space) and
outputs a signature σ.

• Vrfy is a deterministic polynomial-time verification algorithm that takes
as input a public key pk, a message m, and a signature σ, and outputs a
single bit b. If b = 1 then the signature is valid (for pk and m), otherwise
(b = 0) the signature is invalid.

If the message space is {0, 1}ℓ(n), we call (Gen, Sign,Vrfy) a signature scheme for messages of length
ℓ(n).

Gen (pk, sk)

Signskm

sk

σ

Vrfypk
m

pk

σ b

Correctness: We require that Pr[Vrfypk(m, Signsk(m)) = 1] = 1 for every message m (here the
key-pair (pk, sk) is output by Gen(1n)).
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• A key-pair (pk, sk) is generated using Gen(1n)

• The adversary outputs a pair (m,σ) such that (*) no query with the message m has been performed

• The outcome of the experiment is 1 if (*) holds and Vrfyk(m,σ) = 1. Otherwise the outcome is 0.

Let Π = (Gen, Sign,Vrfy) be a digital signature scheme. We name the following experiment
Sig-forgeA,Π(n):

• The adversary can interact with an oracle that can be queried with a message m′ and outputs a
signature σ′ obtained by running Signsk(m

′)

• The public key pk is sent to the adversary



Digital Signature Schemes: Security Definition

• A key-pair (pk, sk) is generated using Gen(1n)

• The adversary outputs a pair (m,σ) such that (*) no query with the message m has been performed

• The outcome of the experiment is 1 if (*) holds and Vrfyk(m,σ) = 1. Otherwise the outcome is 0.

Let Π = (Gen, Sign,Vrfy) be a digital signature scheme. We name the following experiment
Sig-forgeA,Π(n):

• The adversary can interact with an oracle that can be queried with a message m′ and outputs a
signature σ′ obtained by running Signsk(m

′)

• The public key pk is sent to the adversary

Definition: A digital signature scheme Π is existentially unforgeable under an adaptive
chosen-message attack (is secure) if, for every probabilistic polynomial-time adversary A,
there is a negligible function ε such that:

Pr[Sig-forgeA,Π(n) = 1] ≤ ε(n)
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Just like for MACs, the security definition does not prevent replay attacks
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Send $10.00 to Adversary + σ Alice’s
BankSend $10.00 to Adversary + σ

Send $10.00 to Adversary + σ

Send $10.00 to Adversary + σ

Send $10.00 to Adversary + σ

• Similar mitigations as for MACs can be used

The security definition does not prevent the adversary from outputting a new valid signature for a
message that was previously signed

Strongly Secure Digital Signature schemes can be defined to account for this
(similarly to the modified experiment for MACs)
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• Combine Π′ with a Hash function H = (GenH , H) where Hs : {0, 1}∗ → {0, 1}ℓ(n)

Idea:

• Instead of signing m, sign a the hash Hs(m) of m

• Analogous to Hash-and-MAC !

We can focus on designing fixed-length digital signature schemes.

Gen(1n):

• Return Sign′sk(H
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Idea: Reverse the roles of sender and receiver, and of the public and private-keys

• The sender “encrypts” m using its private key . The resulting “ciphertext” is the digital signature

• The receiver “decrypts” the digital signature with the public key of the sender and checks that
recovered “plaintext” matches the message

Gen(1n):

• (N, e, d)← GenRSA(1n)

• Return (pk, sk) where pk = ⟨N, e⟩ and sk = ⟨N, d⟩

Same as RSA Encryption

Signsk(m):

• Here sk = ⟨N, d⟩ and m ∈ Z∗
N

• σ ← md (mod N)

• Return σ

Vrfypk(m,σ):

• Here pk = ⟨N, e⟩ and σ ∈ Z∗
N

• m̃← σe (mod N)

• Return 1 if m̃ = m and 0 otherwise
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Are plain RSA signatures secure (under the RSA assumption)?

• The RSA assumption only implies hardness of computing a signature (the e-th root md) of
a uniform message m

• It says nothing about specific messages m that are chosen by the adversary

Some messages are easy to sign:

• 1d = 1 (mod N), therefore σ = 1 is a valid signature for m = 1

• In general, if m = xe < N then md = xed = x therefore σ = x is a valid signature for m

Easy to forge a valid signature of some arbitrary message (not chosen by the adversary):

• Pick σ ∈ Z
∗
N and compute m = σe (mod N)

• σ is a valid signature for m. Indeed: md = σed = σ (mod N)

Each of the above approaches suffices to win the Sig-forgeA,Π(n) experiment!

No!
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Attacks on Plain RSA Signatures: Combining Signatures

Signatures are easy to combine:

• Suppose that the adversary knows two valid signatures σ1, σ2 for two distinct messages
m1,m2, respectively

• The adversary can compute σ = σ1 · σ2 (mod N)

• σ is a valid signature for m = m1 ·m2 (mod N)

(σ1 · σ2)
e = σe

1 · σ
e
2 = med

1 ·m
ed
2 = m1 ·m2 = m (mod N)

• Pick a malicious message m and factor it into m1 ·m2 (recall that factoring is easy on average)

• Convince an honest party to sign the two “innocuous”-looking messages m1 and m2 separately

How can an attacker use this?

• Forge a signature σ for m

• Use (m,σ) to convince a third party (e.g., a judge) that the honest party signed m (e.g., a contract)
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RSA full-domain hash (RSA-FDH)

Idea: instead of “signing” m, we sign some function H(m) : {0, 1}∗ → Z
∗
N

Gen(1n):

• (N, e, d)← GenRSA(1n)

• Return (pk, sk) where pk = ⟨N, e⟩ and sk = ⟨N, d⟩

Signsk(m):

• Here sk = ⟨N, d⟩ and m ∈ Z∗
N

• Return σ

Vrfypk(m,σ):

• Here pk = ⟨N, e⟩ and σ ∈ Z∗
N

• m̃← σe (mod N)

It is important that the range of the function is
Z

∗

N (or at least large enough).

We cannot simply use an off-the-shelf hash
function (whose output length can be too short
compared to the number of bits of N).

• σ ← H(m)d (mod N)

• Return 1 if m̃ = H(m) and 0 otherwise

RSA-FDH natively handles long messages
without using the Hash-and-Sign paradigm
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RSA full-domain hash (RSA-FDH)

Idea: instead of “signing” m, we sign some function H(m) : {0, 1}∗ → Z
∗
N

How do we choose H?

• It should be infeasible for an attacker to start with σ and compute some m̃ = σe (mod N)
and then find a message m such that H(m) = m̃

H should be “hard to invert”

This prevents an attacker from computing valid signatures of some arbitrary message

• It should be hard to find three messages m, m1, m2 such that H(m) = H(m1) ·H(m2)

This prevents an attacker from combining signatures

• There are known ways to choose H so that the resulting scheme can be proven secure

If the RSA problem is hard relative to GenRSA and H is modeled as a random oracle, then RSA
full-domain hash is secure.

Security?

The RSA PKCS #1 v2.1 standard includes a randomized variant of RSA-FDH



Signcryption



Signcryption

Sometimes it is desirable to achieve both secrecy and integrity in the public-key setting

Essentially, we want the public-key equivalent of authenticated encryption



Signcryption

Sometimes it is desirable to achieve both secrecy and integrity in the public-key setting

Essentially, we want the public-key equivalent of authenticated encryption

We assume that Alice is sending a message m to Bob

• Alice has a key-pair used for signing (vk, sk) (verification key, signing key)

• Bob has a key-pair used for encryption (ek, dk) (a public encryption key, and a secret decryption key)



Signcryption

Sometimes it is desirable to achieve both secrecy and integrity in the public-key setting

Essentially, we want the public-key equivalent of authenticated encryption

We assume that Alice is sending a message m to Bob

• Alice has a key-pair used for signing (vk, sk) (verification key, signing key)

• Bob has a key-pair used for encryption (ek, dk) (a public encryption key, and a secret decryption key)

Two natural approaches:

• Naive encrypt-then-authenticate: Alice computes c← Encek(m) and sends (c, Signsk(c))



Signcryption

Sometimes it is desirable to achieve both secrecy and integrity in the public-key setting

Essentially, we want the public-key equivalent of authenticated encryption

We assume that Alice is sending a message m to Bob

• Alice has a key-pair used for signing (vk, sk) (verification key, signing key)

• Bob has a key-pair used for encryption (ek, dk) (a public encryption key, and a secret decryption key)

Two natural approaches:

• Naive encrypt-then-authenticate: Alice computes c← Encek(m) and sends (c, Signsk(c))

• Naive authenticate-then-encrypt: Alice computes σ ← Signsk(m) and sends c← Encek(m∥σ)



Signcryption

Sometimes it is desirable to achieve both secrecy and integrity in the public-key setting

Essentially, we want the public-key equivalent of authenticated encryption

We assume that Alice is sending a message m to Bob

• Alice has a key-pair used for signing (vk, sk) (verification key, signing key)

• Bob has a key-pair used for encryption (ek, dk) (a public encryption key, and a secret decryption key)

Two natural approaches:

• Naive encrypt-then-authenticate: Alice computes c← Encek(m) and sends (c, Signsk(c))

• Naive authenticate-then-encrypt: Alice computes σ ← Signsk(m) and sends c← Encek(m∥σ)

Both approaches have problems if used in this naive way



Problems with the natural approaches

Naive encrypt-then-authenticate: Alice computes c← Encek(m) and sends (c, Signsk(c))

• An attacker that intercepts (c, Signsk(c)) can strip Alice’s signature and replace it with its own



Problems with the natural approaches

Naive encrypt-then-authenticate: Alice computes c← Encek(m) and sends (c, Signsk(c))

• An attacker that intercepts (c, Signsk(c)) can strip Alice’s signature and replace it with its own

• The attacker sends (c, Signsk′(c)) to Bob, where sk′ is the attacker’s secret signature key

• Bob does not detect the tampering, he thinks that the message came from the attacker and might
reply leaking information about m



Problems with the natural approaches

Naive encrypt-then-authenticate: Alice computes c← Encek(m) and sends (c, Signsk(c))

• An attacker that intercepts (c, Signsk(c)) can strip Alice’s signature and replace it with its own

• The attacker sends (c, Signsk′(c)) to Bob, where sk′ is the attacker’s secret signature key

• Bob does not detect the tampering, he thinks that the message came from the attacker and might
reply leaking information about m

• Moreover, the scheme no longer provides non-repudiation. To convince a third party that Alice
signed m, Bob needs to reveal his decryption key dk



Problems with the natural approaches

Naive encrypt-then-authenticate: Alice computes c← Encek(m) and sends (c, Signsk(c))

• An attacker that intercepts (c, Signsk(c)) can strip Alice’s signature and replace it with its own

• The attacker sends (c, Signsk′(c)) to Bob, where sk′ is the attacker’s secret signature key

• Bob does not detect the tampering, he thinks that the message came from the attacker and might
reply leaking information about m

• Moreover, the scheme no longer provides non-repudiation. To convince a third party that Alice
signed m, Bob needs to reveal his decryption key dk

Naive authenticate-then-encrypt: Alice computes σ ← Signsk(m) and sends c← Encek(m∥σ)

• Bob can decrypt c to obtain m∥σ, then re-encrypt it with the public encryption key ek′ of another
recipient

• Bob sends Encek′(m∥σ) to the other recipient



Problems with the natural approaches

Naive encrypt-then-authenticate: Alice computes c← Encek(m) and sends (c, Signsk(c))

• An attacker that intercepts (c, Signsk(c)) can strip Alice’s signature and replace it with its own

• The attacker sends (c, Signsk′(c)) to Bob, where sk′ is the attacker’s secret signature key

• Bob does not detect the tampering, he thinks that the message came from the attacker and might
reply leaking information about m

• Moreover, the scheme no longer provides non-repudiation. To convince a third party that Alice
signed m, Bob needs to reveal his decryption key dk

Naive authenticate-then-encrypt: Alice computes σ ← Signsk(m) and sends c← Encek(m∥σ)

• Bob can decrypt c to obtain m∥σ, then re-encrypt it with the public encryption key ek′ of another
recipient

• Bob sends Encek′(m∥σ) to the other recipient

• The other recipient thinks that Alice sent the (signed!) message m to him.

E.g., m = “I owe you 100$”.



Problems with the natural approaches

Naive encrypt-then-authenticate: Alice computes c← Encek(m) and sends (c, Signsk(c))

• An attacker that intercepts (c, Signsk(c)) can strip Alice’s signature and replace it with its own

• The attacker sends (c, Signsk′(c)) to Bob, where sk′ is the attacker’s secret signature key

• Bob does not detect the tampering, he thinks that the message came from the attacker and might
reply leaking information about m
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signed m, Bob needs to reveal his decryption key dk

Naive authenticate-then-encrypt: Alice computes σ ← Signsk(m) and sends c← Encek(m∥σ)

• Bob can decrypt c to obtain m∥σ, then re-encrypt it with the public encryption key ek′ of another
recipient

• Bob sends Encek′(m∥σ) to the other recipient

• The other recipient thinks that Alice sent the (signed!) message m to him.

E.g., m = “I owe you 100$”.

• This scheme provides non-repudiation: Bob can reveal m and σ
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Encrypt-then-authenticate:

• Alice computes c← Encek(“Alice” ∥m)
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Authenticate-then-encrypt:

• Alice computes σ ← Signsk(m ∥ “Bob”)
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• The recipient checks that the purported sender matches the decrypted sender’s identity

• The recipient checks that the signature incorporates its own identity

Both authenticate-then-encrypt and encrypt-then-authenticate are secure if a CCA-secure
encryption scheme and a strongly secure signature scheme are used.

Also provides non-repudiation
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Alice wants to communicate with Bob but has never met him before, and they do not share any secret
information

Alice = web browser Bob = bank-website.com

How can Alice be sure to be talking to the “right” Bob and not to an impersonator?

• This problem can’t be solved without introducing a trusted third-party

• Trusted third parties are called certification authorities (CAs)

Let’s call the trusted third party Charlie:

• Charlie has generated a key-pair (pkC , skC) for a secure digital signature scheme

• Bob has generated a key-pair (pkB , skB) for either a public-key encryption
scheme or a digital signature scheme

• Charlie can sign (the digital equivalent of) the following
message: “the public key of Bob is pkB”. . .

certC→B ← SignskC
(“the public key of Bob is pkB”)

. . . and send the resulting signature, called a digital certificate, to Bob

The public key
of Bob is pkB
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Public-Key Infrastructure & Digital Certificates

A communication session between Alice and Bob
starts as follows:

• Alice contacts Bob

• Bob replies with the message (pkB , certC→B)

• Alice checks that cert is valid

VrfypkC
(“the public key of bob is pkB”)

• If the verification succeeds, Alice accepts Bob’s certificate and the session continues. Alice can now
use pkB for encryption (of messages sent to Bob) / authentication (of Bob’s messages)

How does Alice learn pkC?

• Alice needs to obtain Charlie’s public key “out of band”

E.g., in person, where Alice is given pkC by Charlie

• In practice pkC is bundled together with some piece of software

E.g., Web browsers have a default trusted list of CAs and are shipped with their public keys
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Say Daisy also has a key pair (pkD, skD) and Charlie wants to allow Daisy to issue certificates on his
behalf

• Charlie can sign (the digital equivalent of) the message “The
public key of Daisy is pkD and she is allowed to issue other
certificates”

The public key of Daisy is
pkD and she is allowed to
issue other certificates

certC→D ← SignskC
(“the public key of Daisy is pkD and she is allowed to issue other certificates”)

Daisy can then issue a certificate to Bob The public key
of Bob is pkB

certD→B ← SignskC
(“the public key of Bob is pkB”)

Charlie is the Root CA and is trusted by Alice
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When Alice contacts Bob, Bob now needs to provide both his public key
and certificate (pkB , certD→B) and the intermediate CA (Daisys’s) public
key and certificate (pkD, certC→D)

Certificate Chains

• Alice uses pkC to check that certC→D is a valid signature from Charlie
and learns that:

— Daisy is authorized to issue certificates on behalf of Charlie

— The public key of Daisy is pkD

• Alice uses pkD to check that certD→B is a valid signature from Daisy

— Alice learns that pkB is the public key of Bob

The same idea generalizes to any number of intermediate CAs



Root CA

Certificate Chains
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Invalidating Certificates
Certificates should generally not be valid indefinitely.

E.g., if (when) a private key gets stolen, the corresponding certificate should be considered invalid

• Expiration

• Revocation

— The CA signs the message (“The public key of Bob is pkb, date), where date is a point of time in
the future after which the certificate will no longer be valid

— When Alice checks Bob’s certificate, she also checks its expiration date against the current date

— Disadvantage: if the private key is stolen, the certificate will remain valid until the expiration date

— The CA periodically (e.g., daily) creates a revocation list of all the serial numbers of the
certificates it issued but need to be invalided, signs it, and publishes the signed list

— When Alice checks Bob’s certificate, she also checks that the serial number is not in the
revocation list

— The CA signs the message (“The public key of Bob is pkb, serial no), where serial no is a unique
serial number

— Disadvantage: Alice needs to keep an updated copy of the revocation list
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Transport Layer Security (TLS)

Used to establish secure communication session over the internet

Standardized in 1999 and updated multiple times. The current version is TLS 1.3

The following is just a high-level description!

Two phases:

• Handshake protocol: performs authenticated key exchange to establish two shared symmetric
private keys kS and kC

• Record-layer protocol: uses the shared keys to encrypt and authenticate the communication

— Messages from client to server and vice-versa are encrypted using an authenticated encryption
scheme

— The client encrypts with key kC (and decrypts with key kS)

— The server encrypts with key kS (and decrypts with key kC)

— Sequence numbers are used to prevent replay attacks

The server owns a certificate (or a certificate chain) cert issued by some CA and the corresponding
key-pair (pkS , skS) for a digital signature scheme
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TLS: Handshake protocol
• The client initiates the handshake by sending the initial message (G, q, g, gx) of the Diffie-Hellman
key-exchange protocol and a nonce NC chosen u.a.r. from {0, 1}n

The underlying group is selected by the client from a set of standardized options, and can be either
a prime-order subgroup of Z∗

p for some prime p or an elliptic-curve group

• The server completes the Diffie-Hellman key-exchange by sending gy to the client. The server also
sends a nonce NS chosen u.a.r. from {0, 1}n

The client and the server now share a secret group element K = gxy. They apply a key-derivation
function to K to obtain four keys k′S , k

′
C , kS , and kC for an authenticated encryption scheme.

The client also sends to the server a list of all supported cryptographic algorithms

The server uses pkS to compute a digital signature σ of all the handshake messages exchanged so
far. The server encrypts pkS , cert, and σ with the symmetric key k′S and sends the resulting
ciphertext c to the client.

(G, q, g, gx), NC

gy, NS , c
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TLS: Handshake protocol (cont.)

• The client decrypts the ciphertext to recover pkS , cert, and σ. Then, it checks whether some
trusted CA issued cert and that cert is a valid certificate for pkS (and is not expired or revoked).

The client uses pkS to verify the signature σ on the handshake messages. If any of these checks
fails, the client aborts the protocol

Finally, the client uses a MAC with key k′C to compute a tag t on the handshake messages
exchanged so far, and sends t to the server

The server checks t. If verification fails, the server aborts the protocol. Otherwise the actual
communication starts using the record-layer protocol with keys kS and kC
(the keys k′S and k′C are destroyed: they are needed during the handshake phase)

t



TLS: Handshake protocol: Security (informal)

(G, q, g, gx), NC

gy, NS , c
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TLS: Handshake protocol: Security (informal)

Why do we use Diffie-Hellman?

• The client verifies the server certificate

Consider the following alternative protocol:

• The client picks a random secret key K

• The client encrypts K with pkS ands sends the ciphertext c to the server

• The server decrypts c with skS , and replies using an authenticated encryption scheme Π with key K

• Communication continues using Π

Does it work? Yes, this was allowed in TLS 1.2. But...

No forward secrecy!

• If skS is leaked or stolen at a later point in time, the secrecy of the past communication between
client and server is compromised

• Using the Diffie-Hellman key-exchange, the symmetric keys k′S , k
′
C , kS , kC are ephemeral and can

be erased at the end of the handshake/session.


