
Secret Sharing

Imagine some sensitive information that is kept by a single agent

• A master encryption key

• Your bitcoin wallet

• ...

• Nuclear codes

Secret Sharing

Imagine some sensitive information that is kept by a single agent

• A master encryption key

• Your bitcoin wallet

Single point of failure!

• ...

• Nuclear codes

Secret Sharing

Imagine some sensitive information that is kept by a single agent

An attacker can compromise one machine and steal
the sensitive information

• A master encryption key

• Your bitcoin wallet

Single point of failure!

• ...

• Nuclear codes

Secret Sharing

Imagine some sensitive information that is kept by a single agent

An attacker can compromise one machine and steal
the sensitive information

• A master encryption key

• Your bitcoin wallet

Single point of failure!

• ...

Idea: Share the information
across several agents

• Nuclear codes

Secret Sharing

Imagine some sensitive information that is kept by a single agent

An attacker can compromise one machine and steal
the sensitive information

• A master encryption key

• Your bitcoin wallet

Single point of failure!

“Magic box”

• ...

Idea: Share the information
across several agents

• Nuclear codes

Secret Sharing

Imagine some sensitive information that is kept by a single agent

An attacker can compromise one machine and steal
the sensitive information

• A master encryption key

• Your bitcoin wallet

Single point of failure!

“Magic box”

• ...

Idea: Share the information
across several agents

• Nuclear codes

Secret Sharing

Imagine some sensitive information that is kept by a single agent

An attacker can compromise one machine and steal
the sensitive information

• A master encryption key

• Your bitcoin wallet

Single point of failure!

“Magic box”

• ...

Idea: Share the information
across several agents

Share 1

Share 2

Share 3

Share 4

• Nuclear codes

Secret Sharing

Imagine some sensitive information that is kept by a single agent

An attacker can compromise one machine and steal
the sensitive information

• A master encryption key

• Your bitcoin wallet

Single point of failure!

“Magic box”

• ...

Idea: Share the information
across several agents

Share 1

Share 2

Share 3

Share 4

• Nuclear codes

Secret Sharing

Idea:

• The shares of all agents can be used to reconstruct the secret

Another
“Magic box”

Secret Sharing

Idea:

• The shares of all agents can be used to reconstruct the secret

Another
“Magic box”

Secret Sharing

Idea:

• The shares of any subset of agents look random and convey no information about the secret

• The shares of all agents can be used to reconstruct the secret

Another
“Magic box” ??

Secret Sharing

Idea:

• The shares of any subset of agents look random and convey no information about the secret

• The shares of all agents can be used to reconstruct the secret

What if the adversary destroys a share?

Another
“Magic box” ??

Secret Sharing

What if the adversary destroys a share?

Idea:

• If there are n agents, any subset of at least k agents must be able to recover the secret.

Secret Sharing

What if the adversary destroys a share?

Idea:

• Any subset of < k agent must not be able to gain any information about the secret

• If there are n agents, any subset of at least k agents must be able to recover the secret.

Secret Sharing

What if the adversary destroys a share?

Idea:

• Any subset of < k agent must not be able to gain any information about the secret

• If there are n agents, any subset of at least k agents must be able to recover the secret.

Example: n = 4, k = 3

Another
“Magic box”

Secret Sharing

What if the adversary destroys a share?

Idea:

• Any subset of < k agent must not be able to gain any information about the secret

• If there are n agents, any subset of at least k agents must be able to recover the secret.

Example: n = 4, k = 3

Another
“Magic box”

Secret Sharing

What if the adversary destroys a share?

Idea:

• Any subset of < k agent must not be able to gain any information about the secret

• If there are n agents, any subset of at least k agents must be able to recover the secret.

Example: n = 4, k = 3

Another
“Magic box” ??

Secret Sharing

What if the adversary destroys a share?

Idea:

• Any subset of < k agent must not be able to gain any information about the secret

• If there are n agents, any subset of at least k agents must be able to recover the secret.

Example: n = 4, k = 3

Another
“Magic box” ??

k-out-of-n threshold secret-sharing scheme

Access Structures and Qualifying Sets

Even more general:

• Let A be a set of n parties a1, . . . , an

• Let Γ ⊆ 2A a collection of subsets of A such that:

— A ∈ Γ

— Γ is an upward closed set w.r.t. set inclusion: if A ∈ Γ and A ⊂ B ⊆ A then B ∈ Γ

Access Structures and Qualifying Sets

Even more general:

• Let A be a set of n parties a1, . . . , an

• Let Γ ⊆ 2A a collection of subsets of A such that:

— A ∈ Γ

— Γ is an upward closed set w.r.t. set inclusion: if A ∈ Γ and A ⊂ B ⊆ A then B ∈ Γ

• The set Γ is a called a (monotone) access structure

• The sets A ∈ Γ are called qualifying sets

Access Structures and Qualifying Sets

Even more general:

• Let A be a set of n parties a1, . . . , an

• Let Γ ⊆ 2A a collection of subsets of A such that:

— A ∈ Γ

— Γ is an upward closed set w.r.t. set inclusion: if A ∈ Γ and A ⊂ B ⊆ A then B ∈ Γ

• The set Γ is a called a (monotone) access structure

• The sets A ∈ Γ are called qualifying sets

Idea: A set A ⊆ A of parties should be able to recover the secret if and only if A is a qualifying set

Access Structures and Qualifying Sets

Even more general:

• Let A be a set of n parties a1, . . . , an

• Let Γ ⊆ 2A a collection of subsets of A such that:

— A ∈ Γ

— Γ is an upward closed set w.r.t. set inclusion: if A ∈ Γ and A ⊂ B ⊆ A then B ∈ Γ

• The set Γ is a called a (monotone) access structure

• The sets A ∈ Γ are called qualifying sets

Idea: A set A ⊆ A of parties should be able to recover the secret if and only if A is a qualifying set

If A can recover the secret then
any B ⊃ A can recover the secret

Access Structures and Qualifying Sets

Even more general:

• Let A be a set of n parties a1, . . . , an

• Let Γ ⊆ 2A a collection of subsets of A such that:

— A ∈ Γ

— Γ is an upward closed set w.r.t. set inclusion: if A ∈ Γ and A ⊂ B ⊆ A then B ∈ Γ

• The set Γ is a called a (monotone) access structure

• The sets A ∈ Γ are called qualifying sets

Idea: A set A ⊆ A of parties should be able to recover the secret if and only if A is a qualifying set

If A can recover the secret then
any B ⊃ A can recover the secret

If all parties come together, they
must be able to recover the
secret (otherwise Γ = ∅ and there
is no point in sharing the secret)

Access Structures and Qualifying Sets

Even more general:

• Let A be a set of n parties a1, . . . , an

• Let Γ ⊆ 2A a collection of subsets of A such that:

— A ∈ Γ

— Γ is an upward closed set w.r.t. set inclusion: if A ∈ Γ and A ⊂ B ⊆ A then B ∈ Γ

• The set Γ is a called a (monotone) access structure

• The sets A ∈ Γ are called qualifying sets

Idea: A set A ⊆ A of parties should be able to recover the secret if and only if A is a qualifying set

If A can recover the secret then
any B ⊃ A can recover the secret

If all parties come together, they
must be able to recover the
secret (otherwise Γ = ∅ and there
is no point in sharing the secret)

We can further assume that: ∀a ∈ A s,t, {a} ̸∈ Γ since otherwise we can simply send the secret to a
and restrict ourselves to the access structure Γ′ = {A ∈ Γ | a ̸∈ A}

(this implies ∅ ̸∈ Γ)

Access Structures and Qualifying Sets

What’s the access structure for a k-out-of-n threshold secret sharing scheme?

Access Structures and Qualifying Sets

What’s the access structure for a k-out-of-n threshold secret sharing scheme?

Γ = {A ∈ 2A : |A| ≥ k}

Access Structures and Qualifying Sets

What’s the access structure for a k-out-of-n threshold secret sharing scheme?

Γ = {A ∈ 2A : |A| ≥ k}

Example:

• A = {Alice,Bob,Charlie,Dan}, n = |A| = 4, k = 2

• Γ = { {Alice,Bob}, {Alice,Charlie}, {Alice,Dan}, {Bob,Charlie}, {Bob,Dan}, {Charlie,Dan},
{Alice,Bob,Charlie}, {Alice,Bob,Dan}, {Alice,Charlie,Dan}, {Bob,Charlie,Dan},
{Alice,Bob,Charlie,Dan} }

Access Structures and Qualifying Sets

Definition: A secret sharing scheme for a monotone access structure Γ over a set of parties A with
respect to a space of secrets S is a pair of algorithms:

• Share(s,Γ): a (randomized) algorithm that takes a secret s ∈ S
and a monotone access structure Γ and outputs a value sa for
every a ∈ A. The value sa is called a’s share of the secret.

Share

Access Structures and Qualifying Sets

Definition: A secret sharing scheme for a monotone access structure Γ over a set of parties A with
respect to a space of secrets S is a pair of algorithms:

• Share(s,Γ): a (randomized) algorithm that takes a secret s ∈ S
and a monotone access structure Γ and outputs a value sa for
every a ∈ A. The value sa is called a’s share of the secret.

• Recombine(H): a deterministic algorithm that takes a set
H = {sa | a ∈ A} containing a share for each party in some set
A ⊆ A and outputs a secret s ∈ S if A ∈ Γ and a failure symbol
⊥ if A ̸∈ Γ.

Share

Recombine

Access Structures and Qualifying Sets

Definition: A secret sharing scheme for a monotone access structure Γ over a set of parties A with
respect to a space of secrets S is a pair of algorithms:

• Share(s,Γ): a (randomized) algorithm that takes a secret s ∈ S
and a monotone access structure Γ and outputs a value sa for
every a ∈ A. The value sa is called a’s share of the secret.

• Recombine(H): a deterministic algorithm that takes a set
H = {sa | a ∈ A} containing a share for each party in some set
A ⊆ A and outputs a secret s ∈ S if A ∈ Γ and a failure symbol
⊥ if A ̸∈ Γ.

Correctness: If H = {sa | a ∈ A} for a set
A ∈ Γ and all sa were output by Share(s,Γ),
then Recombine(H) = s.

Share

Recombine

Share Recombine

A secret sharing scheme is information theoretically secure (or just secure) if no (computationally
unbounded) adversary can learn anything about the underlying secret without having access to the
shares of a qualifying set.

Security Definition

A secret sharing scheme is information theoretically secure (or just secure) if no (computationally
unbounded) adversary can learn anything about the underlying secret without having access to the
shares of a qualifying set.

Formalized similarly to perfect secrecy (there are multiple equivalent definitions):

Pr[(Sa)a∈A = α] = Pr[(S′
a)a∈A = α],

A secret sharing scheme is secure if, for every s, s′ ∈ S, every access structure Γ, every A ⊂ A with
A ̸∈ Γ, and every vector of shares α = (αa)a∈A:

where Sa (resp. S′
a) is a random variable representing the share given to the party a ∈ A by

Share(Γ, s) (resp. Share(Γ, s′))

Security Definition

Secret sharing with 2 parties

Consider A = {a, b}. What are the possible access structures?

Secret sharing with 2 parties

Consider A = {a, b}. What are the possible access structures?

Γ = {∅, {a}, {b}, {a, b}}

Γ = {{a}, {b}, {a, b}}

Γ = {{a}, {a, b}}

Γ = {{b}, {a, b}}

Γ = {{a, b}}

Secret sharing with 2 parties

Consider A = {a, b}. What are the possible access structures?

Γ = {∅, {a}, {b}, {a, b}}

Γ = {{a}, {b}, {a, b}}

Γ = {{a}, {a, b}}

Γ = {{b}, {a, b}}

Γ = {{a, b}}

No secret sharing needed

No secret sharing needed

Secret sharing with 2 parties

Consider A = {a, b}. What are the possible access structures?

Γ = {∅, {a}, {b}, {a, b}}

Γ = {{a}, {b}, {a, b}}

Γ = {{a}, {a, b}}

Γ = {{b}, {a, b}}

Γ = {{a, b}}

No secret sharing needed

No secret sharing needed

Trivial: send secret to a and nothing to b

Trivial: send secret to b and nothing to a

Secret sharing with 2 parties

Consider A = {a, b}. What are the possible access structures?

Γ = {∅, {a}, {b}, {a, b}}

Γ = {{a}, {b}, {a, b}}

Γ = {{a}, {a, b}}

Γ = {{b}, {a, b}}

Γ = {{a, b}}

No secret sharing needed

No secret sharing needed

Trivial: send secret to a and nothing to b

Trivial: send secret to b and nothing to a

This is the only interesting case
2-out-of-2 threshold
secret-sharing scheme

Secret sharing with 2 parties

Consider A = {a, b}. What are the possible access structures?

Γ = {∅, {a}, {b}, {a, b}}

Γ = {{a}, {b}, {a, b}}

Γ = {{a}, {a, b}}

Γ = {{b}, {a, b}}

Γ = {{a, b}}

No secret sharing needed

No secret sharing needed

Trivial: send secret to a and nothing to b

Trivial: send secret to b and nothing to a

This is the only interesting case

Let the space of secrets be S = {0, 1}ℓ

• Share(s,Γ): choose r u.a.r. from {0, 1}ℓ. Return sa = r and sb = r ⊕ s.

• Recombine(H): if |H| < 2 return ⊥. Otherwise H = {sa, sb}, return sa ⊕ sb.

2-out-of-2 threshold
secret-sharing scheme

Secret sharing with 2 parties

Consider A = {a, b}. What are the possible access structures?

Γ = {∅, {a}, {b}, {a, b}}

Γ = {{a}, {b}, {a, b}}

Γ = {{a}, {a, b}}

Γ = {{b}, {a, b}}

Γ = {{a, b}}

No secret sharing needed

No secret sharing needed

Trivial: send secret to a and nothing to b

Trivial: send secret to b and nothing to a

This is the only interesting case

Let the space of secrets be S = {0, 1}ℓ

• Share(s,Γ): choose r u.a.r. from {0, 1}ℓ. Return sa = r and sb = r ⊕ s.

• Recombine(H): if |H| < 2 return ⊥. Otherwise H = {sa, sb}, return sa ⊕ sb.

Correctness: sa ⊕ sb = r ⊕ (r ⊕ s) = s.

2-out-of-2 threshold
secret-sharing scheme

2-out-of-2 threshold secret sharing: security

Let s, s′ ∈ {0, 1}ℓ be two arbitrary secrets and consider Sa, Sb output by Share(s,Γ) (resp. S′
a, S

′
b

output by Share(s′,Γ)).

2-out-of-2 threshold secret sharing: security

Let s, s′ ∈ {0, 1}ℓ be two arbitrary secrets and consider Sa, Sb output by Share(s,Γ) (resp. S′
a, S

′
b

output by Share(s′,Γ)).

• If A = {a}, then for an arbitrary α = (αa):

Pr[Sa = αa] = Pr[r = αa] =
1
2ℓ

2-out-of-2 threshold secret sharing: security

Let s, s′ ∈ {0, 1}ℓ be two arbitrary secrets and consider Sa, Sb output by Share(s,Γ) (resp. S′
a, S

′
b

output by Share(s′,Γ)).

• If A = {a}, then for an arbitrary α = (αa):

Pr[Sa = αa] = Pr[r = αa] =
1
2ℓ

Pr[S′
a = αa] = Pr[r = αa] =

1
2ℓ

=

2-out-of-2 threshold secret sharing: security

Let s, s′ ∈ {0, 1}ℓ be two arbitrary secrets and consider Sa, Sb output by Share(s,Γ) (resp. S′
a, S

′
b

output by Share(s′,Γ)).

• If A = {a}, then for an arbitrary α = (αa):

Pr[Sa = αa] = Pr[r = αa] =
1
2ℓ

• If A = {b}, then for an arbitrary α = (αb):

Pr[Sb = αb] = Pr[r ⊕ s = αb]

Pr[S′
a = αa] = Pr[r = αa] =

1
2ℓ

=

2-out-of-2 threshold secret sharing: security

Let s, s′ ∈ {0, 1}ℓ be two arbitrary secrets and consider Sa, Sb output by Share(s,Γ) (resp. S′
a, S

′
b

output by Share(s′,Γ)).

• If A = {a}, then for an arbitrary α = (αa):

Pr[Sa = αa] = Pr[r = αa] =
1
2ℓ

• If A = {b}, then for an arbitrary α = (αb):

Pr[Sb = αb] = Pr[r ⊕ s = αb]

Pr[S′
a = αa] = Pr[r = αa] =

1
2ℓ

=

= Pr[r = αb ⊕ s]

2-out-of-2 threshold secret sharing: security

Let s, s′ ∈ {0, 1}ℓ be two arbitrary secrets and consider Sa, Sb output by Share(s,Γ) (resp. S′
a, S

′
b

output by Share(s′,Γ)).

• If A = {a}, then for an arbitrary α = (αa):

Pr[Sa = αa] = Pr[r = αa] =
1
2ℓ

• If A = {b}, then for an arbitrary α = (αb):

Pr[Sb = αb] = Pr[r ⊕ s = αb] = 1
2ℓ

Pr[S′
a = αa] = Pr[r = αa] =

1
2ℓ

=

= Pr[r = αb ⊕ s]

2-out-of-2 threshold secret sharing: security

Let s, s′ ∈ {0, 1}ℓ be two arbitrary secrets and consider Sa, Sb output by Share(s,Γ) (resp. S′
a, S

′
b

output by Share(s′,Γ)).

• If A = {a}, then for an arbitrary α = (αa):

Pr[Sa = αa] = Pr[r = αa] =
1
2ℓ

• If A = {b}, then for an arbitrary α = (αb):

Pr[Sb = αb] = Pr[r ⊕ s = αb] = 1
2ℓ

Pr[S′
a = αa] = Pr[r = αa] =

1
2ℓ

=

Pr[S′
b = αb] = Pr[r ⊕ s′ = αb]

= Pr[r = αb ⊕ s]

= Pr[r = αb ⊕ s′] = 1
2ℓ

=

2-out-of-2 threshold secret sharing: security

Let s, s′ ∈ {0, 1}ℓ be two arbitrary secrets and consider Sa, Sb output by Share(s,Γ) (resp. S′
a, S

′
b

output by Share(s′,Γ)).

• If A = {a}, then for an arbitrary α = (αa):

Pr[Sa = αa] = Pr[r = αa] =
1
2ℓ

• If A = {b}, then for an arbitrary α = (αb):

Pr[Sb = αb] = Pr[r ⊕ s = αb] = 1
2ℓ

Pr[S′
a = αa] = Pr[r = αa] =

1
2ℓ

=

Pr[S′
b = αb] = Pr[r ⊕ s′ = αb]

= Pr[r = αb ⊕ s]

= Pr[r = αb ⊕ s′] = 1
2ℓ

=

We have shown show that, regardless of s, Pr[Sa = α] and Pr[Sb = α] are constants

2-out-of-2 threshold secret sharing: a visual interpretation

Imagine that the secret s is the following image:

s

2-out-of-2 threshold secret sharing: a visual interpretation

Imagine that the secret s is the following image:

We generate the first share by coloring each pixel white or black u.a.r.

=

s sa

2-out-of-2 threshold secret sharing: a visual interpretation

Imagine that the secret s is the following image:

We generate the first share by coloring each pixel white or black u.a.r.

We generate the second share by XOR-ing each pixel of the secret with the corresponding pixel of the
first share

⊕ = ⊕ = ⊕ = ⊕ =

=

s sa

2-out-of-2 threshold secret sharing: a visual interpretation

Imagine that the secret s is the following image:

We generate the first share by coloring each pixel white or black u.a.r.

We generate the second share by XOR-ing each pixel of the secret with the corresponding pixel of the
first share

⊕ = ⊕ = ⊕ = ⊕ =

= ⊕

s sa sb

2-out-of-2 threshold secret sharing: a visual interpretation

Imagine that the secret s is the following image:

We generate the first share by coloring each pixel white or black u.a.r.

We generate the second share by XOR-ing each pixel of the secret with the corresponding pixel of the
first share

⊕ = ⊕ = ⊕ = ⊕ =

= ⊕

s sa sb

Physical visual 2-out-of-2 threshold secret sharing scheme: subdivide each pixel in 4 subpixels

⊕ overlay the two images

2-out-of-2 threshold secret sharing: a visual interpretation

Imagine that the secret s is the following image:

We generate the first share by coloring each pixel white or black u.a.r.

We generate the second share by XOR-ing each pixel of the secret with the corresponding pixel of the
first share

= ⊕

s sa sb

Physical visual 2-out-of-2 threshold secret sharing scheme: subdivide each pixel in 4 subpixels

⊕ = ⊕ = ⊕ = ⊕ =

⊕ overlay the two images

2-out-of-2 threshold secret sharing: a visual interpretation

Imagine that the secret s is the following image:

We generate the first share by coloring each pixel white or black u.a.r.

We generate the second share by XOR-ing each pixel of the secret with the corresponding pixel of the
first share

= ⊕

s sa sb

Physical visual 2-out-of-2 threshold secret sharing scheme: subdivide each pixel in 4 subpixels

⊕ = ⊕ = ⊕ = ⊕ =

⊕ overlay the two images

n-out-of-n threshold secret sharing

The above idea generalizes easily to n ≥ 2 parties:

Let the space of secrets be S = {0, 1}ℓ
Consider any A = {1, 2 . . . , n} with |A| = n ≥ 2 and the access structure Γ = {A}

Index the parties with integers.
Makes notation easier.

n-out-of-n threshold secret sharing

The above idea generalizes easily to n ≥ 2 parties:

Let the space of secrets be S = {0, 1}ℓ

Share(s,Γ):

Consider any A = {1, 2 . . . , n} with |A| = n ≥ 2 and the access structure Γ = {A}

• Return (s1, s2, . . . , sn) where si = ri for i < n and sn = r1 ⊕ r2 ⊕ · · ·⊕ rn−1 ⊕ s

• Let r1, · · · rn−1 be n− 1 strings chosen independent and u.a.r. from {0, 1}ℓ.

Index the parties with integers.
Makes notation easier.

n-out-of-n threshold secret sharing

The above idea generalizes easily to n ≥ 2 parties:

Let the space of secrets be S = {0, 1}ℓ

Share(s,Γ):

Recombine(H):

Consider any A = {1, 2 . . . , n} with |A| = n ≥ 2 and the access structure Γ = {A}

• Return (s1, s2, . . . , sn) where si = ri for i < n and sn = r1 ⊕ r2 ⊕ · · ·⊕ rn−1 ⊕ s

• Let r1, · · · rn−1 be n− 1 strings chosen independent and u.a.r. from {0, 1}ℓ.

Index the parties with integers.
Makes notation easier.

• If |H| < n return ⊥.

• Otherwise H = {s1, s2, . . . , sn}, return s1 ⊕ s2 ⊕ · · ·⊕ sn.

n-out-of-n threshold secret sharing

The above idea generalizes easily to n ≥ 2 parties:

Let the space of secrets be S = {0, 1}ℓ

Share(s,Γ):

Recombine(H):

Correctness: s1 ⊕ s2 ⊕ · · ·⊕ sn−1 ⊕ sn

Consider any A = {1, 2 . . . , n} with |A| = n ≥ 2 and the access structure Γ = {A}

• Return (s1, s2, . . . , sn) where si = ri for i < n and sn = r1 ⊕ r2 ⊕ · · ·⊕ rn−1 ⊕ s

• Let r1, · · · rn−1 be n− 1 strings chosen independent and u.a.r. from {0, 1}ℓ.

Index the parties with integers.
Makes notation easier.

• If |H| < n return ⊥.

• Otherwise H = {s1, s2, . . . , sn}, return s1 ⊕ s2 ⊕ · · ·⊕ sn.

n-out-of-n threshold secret sharing

The above idea generalizes easily to n ≥ 2 parties:

Let the space of secrets be S = {0, 1}ℓ

Share(s,Γ):

Recombine(H):

Correctness: s1 ⊕ s2 ⊕ · · ·⊕ sn−1 ⊕ sn

Consider any A = {1, 2 . . . , n} with |A| = n ≥ 2 and the access structure Γ = {A}

• Return (s1, s2, . . . , sn) where si = ri for i < n and sn = r1 ⊕ r2 ⊕ · · ·⊕ rn−1 ⊕ s

• Let r1, · · · rn−1 be n− 1 strings chosen independent and u.a.r. from {0, 1}ℓ.

Index the parties with integers.
Makes notation easier.

• If |H| < n return ⊥.

• Otherwise H = {s1, s2, . . . , sn}, return s1 ⊕ s2 ⊕ · · ·⊕ sn.

= r1 ⊕ r2 ⊕ · · ·⊕ rn−1 ⊕ (r1 ⊕ r2 ⊕ . . . rn−1 ⊕ s)

n-out-of-n threshold secret sharing

The above idea generalizes easily to n ≥ 2 parties:

Let the space of secrets be S = {0, 1}ℓ

Share(s,Γ):

Recombine(H):

Correctness: s1 ⊕ s2 ⊕ · · ·⊕ sn−1 ⊕ sn

Consider any A = {1, 2 . . . , n} with |A| = n ≥ 2 and the access structure Γ = {A}

• Return (s1, s2, . . . , sn) where si = ri for i < n and sn = r1 ⊕ r2 ⊕ · · ·⊕ rn−1 ⊕ s

• Let r1, · · · rn−1 be n− 1 strings chosen independent and u.a.r. from {0, 1}ℓ.

Index the parties with integers.
Makes notation easier.

• If |H| < n return ⊥.

• Otherwise H = {s1, s2, . . . , sn}, return s1 ⊕ s2 ⊕ · · ·⊕ sn.

= r1 ⊕ r2 ⊕ · · ·⊕ rn−1 ⊕ (r1 ⊕ r2 ⊕ . . . rn−1 ⊕ s) = s.

Secret sharing with arbitrary access structures

Let Γ be an access structure (for an arbitrary number of parties n)

A qualifying set B ∈ Γ is minimal if there is no qualifying set B′ ∈ Γ such that B′ ⊂ B.

Let m(Γ) = {B1, B2, . . . } denote the set of all minimal qualifying sets in Γ

Secret sharing with arbitrary access structures

Let Γ be an access structure (for an arbitrary number of parties n)

A qualifying set B ∈ Γ is minimal if there is no qualifying set B′ ∈ Γ such that B′ ⊂ B.

Let m(Γ) = {B1, B2, . . . } denote the set of all minimal qualifying sets in Γ

• Γ = { {X,Z}, {Y,W,Z}, {X,Y, Z}, {X,W,Z}, {X,Y,W,Z} }

Example:

• m(Γ) = { {X,Z}, {Y,W,Z} }

• A = {X,Y,W,Z}

Secret sharing with arbitrary access structures

Let Γ be an access structure (for an arbitrary number of parties n)

A qualifying set B ∈ Γ is minimal if there is no qualifying set B′ ∈ Γ such that B′ ⊂ B.

Let m(Γ) = {B1, B2, . . . } denote the set of all minimal qualifying sets in Γ

• Γ = { {X,Z}, {Y,W,Z}, {X,Y, Z}, {X,W,Z}, {X,Y,W,Z} }

Example:

• m(Γ) = { {X,Z}, {Y,W,Z} }
If we think of a each party a ∈ A as a Boolean variable, we can define the following Boolean formula
in disjunctive normal form:

• A = {X,Y,W,Z}

_

Bi∈m(Γ)

 ^

b∈Bi

b

!
Each set Bi is a clause (conjunction of variables)

The formula is a disjunction of clauses

Secret sharing with arbitrary access structures

Let Γ be an access structure (for an arbitrary number of parties n)

A qualifying set B ∈ Γ is minimal if there is no qualifying set B′ ∈ Γ such that B′ ⊂ B.

Let m(Γ) = {B1, B2, . . . } denote the set of all minimal qualifying sets in Γ

• Γ = { {X,Z}, {Y,W,Z}, {X,Y, Z}, {X,W,Z}, {X,Y,W,Z} }

Example:

• m(Γ) = { {X,Z}, {Y,W,Z} }
If we think of a each party a ∈ A as a Boolean variable, we can define the following Boolean formula
in disjunctive normal form:

• A = {X,Y,W,Z}

_

Bi∈m(Γ)

 ^

b∈Bi

b

!

(X ∧ Z) ∨ (Y ∧W ∧ Z)

Each set Bi is a clause (conjunction of variables)

The formula is a disjunction of clauses

Secret sharing with arbitrary access structures

Let Γ be an access structure (for an arbitrary number of parties n)

A qualifying set B ∈ Γ is minimal if there is no qualifying set B′ ∈ Γ such that B′ ⊂ B.

Let m(Γ) = {B1, B2, . . . } denote the set of all minimal qualifying sets in Γ

• Γ = { {X,Z}, {Y,W,Z}, {X,Y, Z}, {X,W,Z}, {X,Y,W,Z} }

Example:

• m(Γ) = { {X,Z}, {Y,W,Z} }
If we think of a each party a ∈ A as a Boolean variable, we can define the following Boolean formula
in disjunctive normal form:

• A = {X,Y,W,Z}

_

Bi∈m(Γ)

 ^

b∈Bi

b

!

A set A of parties induces a truth assignment in which a is true iff a ∈ A

(X ∧ Z) ∨ (Y ∧W ∧ Z)

The truth assignment satisfies the formula if and only if A is a qualifying set

Each set Bi is a clause (conjunction of variables)

The formula is a disjunction of clauses

Ito–Nishizeki–Saito Secret Sharing

We can read the DNF formula as a set of instructions to build the shares sa, a ∈ A
• Each clause Bi corresponds to an “inner” |Bi|-out-of-|Bi| threshold secret sharing scheme

Each agent b ∈ Bi gets a share s
(i)
b

Share:

Ito–Nishizeki–Saito Secret Sharing

We can read the DNF formula as a set of instructions to build the shares sa, a ∈ A

For B2 = {Y,W,Z} we pick random strings for s
(2)
Y and s

(2)
W and set s

(2)
Z = s⊕ s

(2)
Y ⊕ s

(2)
W

• Each clause Bi corresponds to an “inner” |Bi|-out-of-|Bi| threshold secret sharing scheme

Each agent b ∈ Bi gets a share s
(i)
b

E.g., for B1 = {X,Z} we pick a random string for s
(1)
X and set s

(1)
Z = s⊕ s

(1)
X

Share:

Ito–Nishizeki–Saito Secret Sharing

We can read the DNF formula as a set of instructions to build the shares sa, a ∈ A

For B2 = {Y,W,Z} we pick random strings for s
(2)
Y and s

(2)
W and set s

(2)
Z = s⊕ s

(2)
Y ⊕ s

(2)
W

• Each clause Bi corresponds to an “inner” |Bi|-out-of-|Bi| threshold secret sharing scheme

• The “or” operations denote concatenation of the inner shares of each player

Each agent b ∈ Bi gets a share s
(i)
b

E.g., for B1 = {X,Z} we pick a random string for s
(1)
X and set s

(1)
Z = s⊕ s

(1)
X

Share:

Ito–Nishizeki–Saito Secret Sharing

We can read the DNF formula as a set of instructions to build the shares sa, a ∈ A

For B2 = {Y,W,Z} we pick random strings for s
(2)
Y and s

(2)
W and set s

(2)
Z = s⊕ s

(2)
Y ⊕ s

(2)
W

• Each clause Bi corresponds to an “inner” |Bi|-out-of-|Bi| threshold secret sharing scheme

• The “or” operations denote concatenation of the inner shares of each player

Each agent b ∈ Bi gets a share s
(i)
b

E.g., for B1 = {X,Z} we pick a random string for s
(1)
X and set s

(1)
Z = s⊕ s

(1)
X

E.g., we combine the shares of the two clauses (X ∧ Z) ∨ (Y ∧W ∧ Z) to obtain sX = s
(1)
X ,

sY = s
(2)
Y , sW = s

(2)
W , and sZ = s

(1)
Z ∥s(2)Z

Share:

Ito–Nishizeki–Saito Secret Sharing

We can read the DNF formula as a set of instructions to build the shares sa, a ∈ A

For B2 = {Y,W,Z} we pick random strings for s
(2)
Y and s

(2)
W and set s

(2)
Z = s⊕ s

(2)
Y ⊕ s

(2)
W

• Each clause Bi corresponds to an “inner” |Bi|-out-of-|Bi| threshold secret sharing scheme

• The “or” operations denote concatenation of the inner shares of each player

Recombine & Correctness:

If A is a qualifying set, then there is some clause consisting only of variables in A.

The parties involved in the clause can recover s using the Recombine step of the corresponding
k-out-of-k threshold secret sharing scheme

Each agent b ∈ Bi gets a share s
(i)
b

E.g., for B1 = {X,Z} we pick a random string for s
(1)
X and set s

(1)
Z = s⊕ s

(1)
X

E.g., we combine the shares of the two clauses (X ∧ Z) ∨ (Y ∧W ∧ Z) to obtain sX = s
(1)
X ,

sY = s
(2)
Y , sW = s

(2)
W , and sZ = s

(1)
Z ∥s(2)Z

Share:

Shamir Secret Sharing

The previous secret sharing scheme can produce shares that are much
larger than the secret s

One notable example where this happens is the k-out-of-n case

• If k = n
2 there are

n

n/2

�
= Ω(2n/

√
n) minimal qualifying sets

• The shares are exponentially longer than the secret!

Shamir Secret Sharing

The previous secret sharing scheme can produce shares that are much
larger than the secret s

One notable example where this happens is the k-out-of-n case

• If k = n
2 there are

n

n/2

�
= Ω(2n/

√
n) minimal qualifying sets

• The shares are exponentially longer than the secret!

Shamir proposed a secret k-out-of-n threshold secret-sharing scheme in
which all the shares have (approximately) the same length as the secret

The scheme uses Lagrange interpolating polynomials

Lagrange interpolating polynomials

Consider a set {(x1, y1), . . . , (xk, yk)} of k points in R2 with distinct xis.

We want to build a polynomial f that “passes through” all the points (i.e., f(xi) = yi for i = 1, . . . , k)

Lagrange interpolating polynomials

Consider a set {(x1, y1), . . . , (xk, yk)} of k points in R2 with distinct xis.

We want to build a polynomial f that “passes through” all the points (i.e., f(xi) = yi for i = 1, . . . , k)

Consider the polynomial:

ℓ1(x) = (x− x2)(x1 − x2)
−1 · (x− x3)(x1 − x3)

−1 · . . . · (x− xk)(x1 − xk)
−1

What happens when ℓ1 is evaluated at the points x1, x2, . . . , xk?

Lagrange interpolating polynomials

Consider a set {(x1, y1), . . . , (xk, yk)} of k points in R2 with distinct xis.

We want to build a polynomial f that “passes through” all the points (i.e., f(xi) = yi for i = 1, . . . , k)

Consider the polynomial:

ℓ1(x) = (x− x2)(x1 − x2)
−1 · (x− x3)(x1 − x3)

−1 · . . . · (x− xk)(x1 − xk)
−1

What happens when ℓ1 is evaluated at the points x1, x2, . . . , xk?

• If x = x1 then each (x− xi)(x1 − xi)
−1 evaluates to 1 =⇒ ℓ1(x1) = 1

Lagrange interpolating polynomials

Consider a set {(x1, y1), . . . , (xk, yk)} of k points in R2 with distinct xis.

We want to build a polynomial f that “passes through” all the points (i.e., f(xi) = yi for i = 1, . . . , k)

Consider the polynomial:

ℓ1(x) = (x− x2)(x1 − x2)
−1 · (x− x3)(x1 − x3)

−1 · . . . · (x− xk)(x1 − xk)
−1

What happens when ℓ1 is evaluated at the points x1, x2, . . . , xk?

• If x = x1 then each (x− xi)(x1 − xi)
−1 evaluates to 1 =⇒ ℓ1(x1) = 1

• If x = xi for i ̸= 1 then the product includes (x− xi) = 0 =⇒ ℓ1(xi) = 0

Lagrange interpolating polynomials

Consider a set {(x1, y1), . . . , (xk, yk)} of k points in R2 with distinct xis.

We want to build a polynomial f that “passes through” all the points (i.e., f(xi) = yi for i = 1, . . . , k)

Consider the polynomial:

ℓ1(x) = (x− x2)(x1 − x2)
−1 · (x− x3)(x1 − x3)

−1 · . . . · (x− xk)(x1 − xk)
−1

What happens when ℓ1 is evaluated at the points x1, x2, . . . , xk?

• If x = x1 then each (x− xi)(x1 − xi)
−1 evaluates to 1 =⇒ ℓ1(x1) = 1

• If x = xi for i ̸= 1 then the product includes (x− xi) = 0 =⇒ ℓ1(xi) = 0

We can generalize this to all j: ℓj(x) =
Y

i=1,...,k
i̸=j

(x− xi)(xj − xi)
−1

Lagrange interpolating polynomials

Consider a set {(x1, y1), . . . , (xk, yk)} of k points in R2 with distinct xis.

We want to build a polynomial f that “passes through” all the points (i.e., f(xi) = yi for i = 1, . . . , k)

Consider the polynomial:

ℓ1(x) = (x− x2)(x1 − x2)
−1 · (x− x3)(x1 − x3)

−1 · . . . · (x− xk)(x1 − xk)
−1

What happens when ℓ1 is evaluated at the points x1, x2, . . . , xk?

• If x = x1 then each (x− xi)(x1 − xi)
−1 evaluates to 1 =⇒ ℓ1(x1) = 1

• If x = xi for i ̸= 1 then the product includes (x− xi) = 0 =⇒ ℓ1(xi) = 0

We can generalize this to all j: ℓj(x) =
Y

i=1,...,k
i̸=j

(x− xi)(xj − xi)
−1

ℓj(xi) =

(
1 if i = j

0 if i ̸= j

Lagrange interpolating polynomials

The collection of polynomials ℓ1(x), . . . , ℓk(x) is called a Lagrange basis

Lagrange interpolating polynomials

The collection of polynomials ℓ1(x), . . . , ℓk(x) is called a Lagrange basis

Consider the polynomial:

f(x) = y1ℓ1(x) + y2ℓ2(x) + · · ·+ ykℓk(x)

What’s the value of f(xi)?

Lagrange interpolating polynomials

The collection of polynomials ℓ1(x), . . . , ℓk(x) is called a Lagrange basis

Consider the polynomial:

f(x) = y1ℓ1(x) + y2ℓ2(x) + · · ·+ ykℓk(x)

What’s the value of f(xi)?

• If j ̸= i then yjℓj(xi) = 0

• For i = j we have yiℓi(xi) = yi · 1 = yi

Lagrange interpolating polynomials

The collection of polynomials ℓ1(x), . . . , ℓk(x) is called a Lagrange basis

Consider the polynomial:

f(x) = y1ℓ1(x) + y2ℓ2(x) + · · ·+ ykℓk(x)

What’s the value of f(xi)?

• If j ̸= i then yjℓj(xi) = 0

• For i = j we have yiℓi(xi) = yi · 1 = yi





f(xi) = yi

Lagrange interpolating polynomials

The collection of polynomials ℓ1(x), . . . , ℓk(x) is called a Lagrange basis

Consider the polynomial:

f(x) = y1ℓ1(x) + y2ℓ2(x) + · · ·+ ykℓk(x)

What’s the value of f(xi)?

• If j ̸= i then yjℓj(xi) = 0

• For i = j we have yiℓi(xi) = yi · 1 = yi

f(x) is called the Lagrange interpolating polynomial





f(xi) = yi

Lagrange interpolating polynomials

The collection of polynomials ℓ1(x), . . . , ℓk(x) is called a Lagrange basis

Consider the polynomial:

f(x) = y1ℓ1(x) + y2ℓ2(x) + · · ·+ ykℓk(x)

What’s the value of f(xi)?

• If j ̸= i then yjℓj(xi) = 0

• For i = j we have yiℓi(xi) = yi · 1 = yi

f(x) is called the Lagrange interpolating polynomial

• f(x) is a sum of polynomials of degree k − 1, therefore f(x) has degree k − 1

• Each ℓj is the product of k − 1 terms (x− xi) (and some constants), therefore ℓj has degree k − 1





f(xi) = yi

Lagrange interpolating polynomials

y1 · ℓ1(x)

y2 · ℓ2(x)

y4 · ℓ4(x)

y3 · ℓ3(x)

f(x)

Lagrange interpolating polynomials

Theorem: there is a unique polynomial f(x) of degree at most k − 1 with real coefficients such
that f(xi) = yi for all i = 1, . . . , k.

Lagrange interpolating polynomials

Theorem: there is a unique polynomial f(x) of degree at most k − 1 with real coefficients such
that f(xi) = yi for all i = 1, . . . , k.

Proof:

• We have already shown that a polynomial f(x) of degree k − 1 exists, we just need to argue that it
is unique

• Let g(x) be any polynomial of degree at most k − 1 such that g(xi) = yi for all i

Lagrange interpolating polynomials

Theorem: there is a unique polynomial f(x) of degree at most k − 1 with real coefficients such
that f(xi) = yi for all i = 1, . . . , k.

Proof:

• We have already shown that a polynomial f(x) of degree k − 1 exists, we just need to argue that it
is unique

• Let g(x) be any polynomial of degree at most k − 1 such that g(xi) = yi for all i

• The polynomial h(x) = g(x)− f(x) has degree at most k − 1 and satisfies h(xi) = 0 for all i

Lagrange interpolating polynomials

Theorem: there is a unique polynomial f(x) of degree at most k − 1 with real coefficients such
that f(xi) = yi for all i = 1, . . . , k.

Proof:

• We have already shown that a polynomial f(x) of degree k − 1 exists, we just need to argue that it
is unique

• Let g(x) be any polynomial of degree at most k − 1 such that g(xi) = yi for all i

• The polynomial h(x) = g(x)− f(x) has degree at most k − 1 and satisfies h(xi) = 0 for all i

• h(x) has k roots and degree k − 1

Lagrange interpolating polynomials

Theorem: there is a unique polynomial f(x) of degree at most k − 1 with real coefficients such
that f(xi) = yi for all i = 1, . . . , k.

Proof:

• We have already shown that a polynomial f(x) of degree k − 1 exists, we just need to argue that it
is unique

• Let g(x) be any polynomial of degree at most k − 1 such that g(xi) = yi for all i

• The polynomial h(x) = g(x)− f(x) has degree at most k − 1 and satisfies h(xi) = 0 for all i

• h(x) has k roots and degree k − 1

Fundamental theorem of algebra: every non-zero, single-variable, degree d polynomial
with complex coefficients has, counted with multiplicity, exactly d complex roots.

Lagrange interpolating polynomials

Theorem: there is a unique polynomial f(x) of degree at most k − 1 with real coefficients such
that f(xi) = yi for all i = 1, . . . , k.

Proof:

• We have already shown that a polynomial f(x) of degree k − 1 exists, we just need to argue that it
is unique

• Let g(x) be any polynomial of degree at most k − 1 such that g(xi) = yi for all i

• The polynomial h(x) = g(x)− f(x) has degree at most k − 1 and satisfies h(xi) = 0 for all i

• h(x) has k roots and degree k − 1

Fundamental theorem of algebra: every non-zero, single-variable, degree d polynomial
with complex coefficients has, counted with multiplicity, exactly d complex roots.

=⇒ h(x) = 0

Lagrange interpolating polynomials

Theorem: there is a unique polynomial f(x) of degree at most k − 1 with real coefficients such
that f(xi) = yi for all i = 1, . . . , k.

Proof:

• We have already shown that a polynomial f(x) of degree k − 1 exists, we just need to argue that it
is unique

• Let g(x) be any polynomial of degree at most k − 1 such that g(xi) = yi for all i

• The polynomial h(x) = g(x)− f(x) has degree at most k − 1 and satisfies h(xi) = 0 for all i

• h(x) has k roots and degree k − 1

Fundamental theorem of algebra: every non-zero, single-variable, degree d polynomial
with complex coefficients has, counted with multiplicity, exactly d complex roots.

=⇒ h(x) = 0 =⇒ g(x) = f(x)

□

Lagrange interpolating polynomials with coefficient over Zp

We will need to choose an interpolating polynomial uniformly at random to obtain a secure
secret-sharing scheme

• Unclear how to do that over the reals

• Unclear how to represent a real number on a computer

Lagrange interpolating polynomials with coefficient over Zp

We will need to choose an interpolating polynomial uniformly at random to obtain a secure
secret-sharing scheme

• Unclear how to do that over the reals

• Unclear how to represent a real number on a computer

Idea: we restrict ourselves to polynomials with coefficients over Zp, for some prime p

Lagrange interpolating polynomials with coefficient over Zp

We will need to choose an interpolating polynomial uniformly at random to obtain a secure
secret-sharing scheme

• Unclear how to do that over the reals

• Unclear how to represent a real number on a computer

Idea: we restrict ourselves to polynomials with coefficients over Zp, for some prime p

A field is a set of elements together with two binary operations (F,⊕,⊗) such that:

• (F,⊕) is an Abelian group, we call its identity element 0

• (F \ {0},⊗) is an Abelian group

• The ⊗ operation distributes over the ⊕ operation: i.e., a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)

Lagrange interpolating polynomials with coefficient over Zp

We will need to choose an interpolating polynomial uniformly at random to obtain a secure
secret-sharing scheme

• Unclear how to do that over the reals

• Unclear how to represent a real number on a computer

Idea: we restrict ourselves to polynomials with coefficients over Zp, for some prime p

A field is a set of elements together with two binary operations (F,⊕,⊗) such that:

• (F,⊕) is an Abelian group, we call its identity element 0

• (F \ {0},⊗) is an Abelian group

• The ⊗ operation distributes over the ⊕ operation: i.e., a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)

• The fundamental theorem of algebra can be extended to univariate polynomials over a finite field

• (Zp,+, ·) is a finite filed

Good news:

Theorem: Let {(x1, y1), . . . , (xk, yk)} be a set of k points in Zp × Zp with
distinct xis. There is a unique polynomial f(x) of degree at most k − 1 with
coefficients in Zp such that f(xi) = yi (mod p) for all i = 1, . . . , k.

The construction and the proof of uniqueness are identical to the previous ones

(where −x and x−1 denote the additive and multiplicative inverses of x in Zp).

Lagrange interpolating polynomials with coefficient over Zp

Theorem: Let {(x1, y1), . . . , (xk, yk)} be a set of k points in Zp × Zp with
distinct xis. There is a unique polynomial f(x) of degree at most k − 1 with
coefficients in Zp such that f(xi) = yi (mod p) for all i = 1, . . . , k.

The construction and the proof of uniqueness are identical to the previous ones

(where −x and x−1 denote the additive and multiplicative inverses of x in Zp).

Lagrange interpolating polynomials with coefficient over Zp

f(x) = x2 + 4x+ 7

Over the reals

Example:

Source: Mike Rosulek, The Joy of Cryptography

Theorem: Let {(x1, y1), . . . , (xk, yk)} be a set of k points in Zp × Zp with
distinct xis. There is a unique polynomial f(x) of degree at most k − 1 with
coefficients in Zp such that f(xi) = yi (mod p) for all i = 1, . . . , k.

The construction and the proof of uniqueness are identical to the previous ones

(where −x and x−1 denote the additive and multiplicative inverses of x in Zp).

Lagrange interpolating polynomials with coefficient over Zp

f(x) = x2 + 4x+ 7

Over the reals Over Z11

Example:

Source: Mike Rosulek, The Joy of Cryptography

Back to Shamir Secret Sharing

Share(s):

The space of secrets S is Zp for some prime number p

If the secret s is a binary number with t bits, we can pick a prime p > max{s, n} with Θ(t+ log n) bits.

The Shamir k-out-of-n threshold secret sharing scheme is as follows:

(we omit the access structure, which is determined by k and n)

• Choose k − 1 coefficients β1, . . . ,βk−1 independently and u.a.r. from Zp

• Define the polynomial: f(x) = s+
Pk−1

i=1 βix
i

• For i = 1, . . . , n:

The set of parties is A = {1, 2, . . . , n}

• Assign to party i the share si = (i, f(i)) , where f is evaluated in Zp

(f is a random polynomial such that f(0) = s)

Back to Shamir Secret Sharing

Share(s):

The space of secrets S is Zp for some prime number p

If the secret s is a binary number with t bits, we can pick a prime p > max{s, n} with Θ(t+ log n) bits.

The Shamir k-out-of-n threshold secret sharing scheme is as follows:

(we omit the access structure, which is determined by k and n)

• Choose k − 1 coefficients β1, . . . ,βk−1 independently and u.a.r. from Zp

• Define the polynomial: f(x) = s+
Pk−1

i=1 βix
i

• For i = 1, . . . , n:

The set of parties is A = {1, 2, . . . , n}

• Assign to party i the share si = (i, f(i)) , where f is evaluated in Zp

Recombine({si | i ∈ A}) (A is a qualifying set)

(f is a random polynomial such that f(0) = s)

• Compute the (unique) interpolating polynomial f (with coefficient in Zp) of degree k − 1 such
that f(i) = si

• Return f(0)

Shamir Secret Sharing: Example

Consider a set of n = 5 parties that want to share a secret s = 8 using Sharmir’s 3-out-of-5 threshold
secret sharing scheme

We will work in the field Z11

Shamir Secret Sharing: Example

Consider a set of n = 5 parties that want to share a secret s = 8 using Sharmir’s 3-out-of-5 threshold
secret sharing scheme

Sharing:

• We pick two random coefficients, e.g., β1 = 4, β2 = 7

We will work in the field Z11

• The polynomial f(x) = s+ β1x+ β2x
2 is 8 + 4x+ 7x2

Shamir Secret Sharing: Example

Consider a set of n = 5 parties that want to share a secret s = 8 using Sharmir’s 3-out-of-5 threshold
secret sharing scheme

Sharing:

• We pick two random coefficients, e.g., β1 = 4, β2 = 7

We will work in the field Z11

• The polynomial f(x) = s+ β1x+ β2x
2 is 8 + 4x+ 7x2

• The five shares are: s1 = (1, f(1)) = (1, 8) s2 = (2, f(2)) = (2, 0) s3 = (3, f(3)) = (3, 6)

s4 = (4, f(4)) = (4, 4) s5 = (5, f(5)) = (5, 8)

Shamir Secret Sharing: Example

Consider a set of n = 5 parties that want to share a secret s = 8 using Sharmir’s 3-out-of-5 threshold
secret sharing scheme

Sharing:

• We pick two random coefficients, e.g., β1 = 4, β2 = 7

We will work in the field Z11

• The polynomial f(x) = s+ β1x+ β2x
2 is 8 + 4x+ 7x2

• The five shares are: s1 = (1, f(1)) = (1, 8) s2 = (2, f(2)) = (2, 0) s3 = (3, f(3)) = (3, 6)

s4 = (4, f(4)) = (4, 4) s5 = (5, f(5)) = (5, 8)

Reconstructing the secret from the shares s1, s2, and s4:

• f(x) = 8 · ℓ1(x) + 0 · ℓ2(x) + 4 · ℓ3(x)

Shamir Secret Sharing: Example

Consider a set of n = 5 parties that want to share a secret s = 8 using Sharmir’s 3-out-of-5 threshold
secret sharing scheme

Sharing:

• We pick two random coefficients, e.g., β1 = 4, β2 = 7

We will work in the field Z11

• The polynomial f(x) = s+ β1x+ β2x
2 is 8 + 4x+ 7x2

• The five shares are: s1 = (1, f(1)) = (1, 8) s2 = (2, f(2)) = (2, 0) s3 = (3, f(3)) = (3, 6)

s4 = (4, f(4)) = (4, 4) s5 = (5, f(5)) = (5, 8)

Reconstructing the secret from the shares s1, s2, and s4:

• f(x) = 8 · ℓ1(x) + 0 · ℓ2(x) + 4 · ℓ3(x)

Shamir Secret Sharing: Example

Consider a set of n = 5 parties that want to share a secret s = 8 using Sharmir’s 3-out-of-5 threshold
secret sharing scheme

Sharing:

• We pick two random coefficients, e.g., β1 = 4, β2 = 7

We will work in the field Z11

• The polynomial f(x) = s+ β1x+ β2x
2 is 8 + 4x+ 7x2

• The five shares are: s1 = (1, f(1)) = (1, 8) s2 = (2, f(2)) = (2, 0) s3 = (3, f(3)) = (3, 6)

s4 = (4, f(4)) = (4, 4) s5 = (5, f(5)) = (5, 8)

Reconstructing the secret from the shares s1, s2, and s4:

• ℓ1(x) = (x− 2)(1− 2)−1 · (x− 4)(1− 4)−1 = (x−2)10 · (x−4)7 = 4x2 + 9x+ 10

• ℓ3(x) = (x− 1)(4− 1)−1 · (x− 2)(4− 2)−1 = (x− 1)4 · (x− 2)6 = 2x2 + 5x+ 4

• f(x) = 8 · ℓ1(x) + 0 · ℓ2(x) + 4 · ℓ3(x)

Shamir Secret Sharing: Example

Consider a set of n = 5 parties that want to share a secret s = 8 using Sharmir’s 3-out-of-5 threshold
secret sharing scheme

Sharing:

• We pick two random coefficients, e.g., β1 = 4, β2 = 7

We will work in the field Z11

• The polynomial f(x) = s+ β1x+ β2x
2 is 8 + 4x+ 7x2

• The five shares are: s1 = (1, f(1)) = (1, 8) s2 = (2, f(2)) = (2, 0) s3 = (3, f(3)) = (3, 6)

s4 = (4, f(4)) = (4, 4) s5 = (5, f(5)) = (5, 8)

Reconstructing the secret from the shares s1, s2, and s4:

• ℓ1(x) = (x− 2)(1− 2)−1 · (x− 4)(1− 4)−1 = (x−2)10 · (x−4)7 = 4x2 + 9x+ 10

• ℓ3(x) = (x− 1)(4− 1)−1 · (x− 2)(4− 2)−1 = (x− 1)4 · (x− 2)6 = 2x2 + 5x+ 4

• f(x) = 8 · ℓ1(x) + 0 · ℓ2(x) + 4 · ℓ3(x) = 8 · (4x2 + 9x+ 10) + 4 · (2x2 + 5x+ 4)

Shamir Secret Sharing: Example

Consider a set of n = 5 parties that want to share a secret s = 8 using Sharmir’s 3-out-of-5 threshold
secret sharing scheme

Sharing:

• We pick two random coefficients, e.g., β1 = 4, β2 = 7

We will work in the field Z11

• The polynomial f(x) = s+ β1x+ β2x
2 is 8 + 4x+ 7x2

• The five shares are: s1 = (1, f(1)) = (1, 8) s2 = (2, f(2)) = (2, 0) s3 = (3, f(3)) = (3, 6)

s4 = (4, f(4)) = (4, 4) s5 = (5, f(5)) = (5, 8)

Reconstructing the secret from the shares s1, s2, and s4:

• ℓ1(x) = (x− 2)(1− 2)−1 · (x− 4)(1− 4)−1 = (x−2)10 · (x−4)7 = 4x2 + 9x+ 10

• ℓ3(x) = (x− 1)(4− 1)−1 · (x− 2)(4− 2)−1 = (x− 1)4 · (x− 2)6 = 2x2 + 5x+ 4

• f(x) = 8 · ℓ1(x) + 0 · ℓ2(x) + 4 · ℓ3(x) = 8 · (4x2 + 9x+ 10) + 4 · (2x2 + 5x+ 4) = 7x2 + 4x+ 8

Shamir Secret Sharing: Example

Consider a set of n = 5 parties that want to share a secret s = 8 using Sharmir’s 3-out-of-5 threshold
secret sharing scheme

Sharing:

• We pick two random coefficients, e.g., β1 = 4, β2 = 7

We will work in the field Z11

• The polynomial f(x) = s+ β1x+ β2x
2 is 8 + 4x+ 7x2

• The five shares are: s1 = (1, f(1)) = (1, 8) s2 = (2, f(2)) = (2, 0) s3 = (3, f(3)) = (3, 6)

s4 = (4, f(4)) = (4, 4) s5 = (5, f(5)) = (5, 8)

Reconstructing the secret from the shares s1, s2, and s4:

• ℓ1(x) = (x− 2)(1− 2)−1 · (x− 4)(1− 4)−1 = (x−2)10 · (x−4)7 = 4x2 + 9x+ 10

• ℓ3(x) = (x− 1)(4− 1)−1 · (x− 2)(4− 2)−1 = (x− 1)4 · (x− 2)6 = 2x2 + 5x+ 4

• f(x) = 8 · ℓ1(x) + 0 · ℓ2(x) + 4 · ℓ3(x) = 8 · (4x2 + 9x+ 10) + 4 · (2x2 + 5x+ 4) = 7x2 + 4x+ 8

f(0)

Shamir Secret Sharing: Example

Consider a set of n = 5 parties that want to share a secret s = 8 using Sharmir’s 3-out-of-5 threshold
secret sharing scheme

Sharing:

• We pick two random coefficients, e.g., β1 = 4, β2 = 7

We will work in the field Z11

• The polynomial f(x) = s+ β1x+ β2x
2 is 8 + 4x+ 7x2

• The five shares are: s1 = (1, f(1)) = (1, 8) s2 = (2, f(2)) = (2, 0) s3 = (3, f(3)) = (3, 6)

s4 = (4, f(4)) = (4, 4) s5 = (5, f(5)) = (5, 8)

Reconstructing the secret from the shares s1, s2, and s4:

• ℓ1(x) = (x− 2)(1− 2)−1 · (x− 4)(1− 4)−1 = (x−2)10 · (x−4)7 = 4x2 + 9x+ 10

• ℓ3(x) = (x− 1)(4− 1)−1 · (x− 2)(4− 2)−1 = (x− 1)4 · (x− 2)6 = 2x2 + 5x+ 4

• f(x) = 8 · ℓ1(x) + 0 · ℓ2(x) + 4 · ℓ3(x) = 8 · (4x2 + 9x+ 10) + 4 · (2x2 + 5x+ 4) = 7x2 + 4x+ 8

f(0)

Shamir Secret Sharing: Security

Let η(α, s) be the number of polynomials g (with coefficients in Zp) of degree k − 1 such that
g(i) = αi (mod p) for i ∈ A, and g(0) = s (mod p).

Let A ⊂ A be a non-qualifying set, and consider any vector α = (αi)i∈A.

Shamir Secret Sharing: Security

Let η(α, s) be the number of polynomials g (with coefficients in Zp) of degree k − 1 such that
g(i) = αi (mod p) for i ∈ A, and g(0) = s (mod p).

The polynomial f is chosen u.a.r. among all the pk−1 polynomials (with coefficients in Zp) of
degree k − 1 such that f(0) = s (mod p)

Let A ⊂ A be a non-qualifying set, and consider any vector α = (αi)i∈A.

Shamir Secret Sharing: Security

Pr[(Si)i∈A = α] = η(α,s)
pk−1

Let η(α, s) be the number of polynomials g (with coefficients in Zp) of degree k − 1 such that
g(i) = αi (mod p) for i ∈ A, and g(0) = s (mod p).

η(α,s′)
pk−1 = Pr[(S′

i)i∈A = α]
?
=

The polynomial f is chosen u.a.r. among all the pk−1 polynomials (with coefficients in Zp) of
degree k − 1 such that f(0) = s (mod p)

Let A ⊂ A be a non-qualifying set, and consider any vector α = (αi)i∈A.

Shamir Secret Sharing: Security

Pr[(Si)i∈A = α] = η(α,s)
pk−1

Let η(α, s) be the number of polynomials g (with coefficients in Zp) of degree k − 1 such that
g(i) = αi (mod p) for i ∈ A, and g(0) = s (mod p).

η(α,s′)
pk−1 = Pr[(S′

i)i∈A = α]
?
=

The polynomial f is chosen u.a.r. among all the pk−1 polynomials (with coefficients in Zp) of
degree k − 1 such that f(0) = s (mod p)

We will show that these quantities do not depend on the secrets s and s′

Let A ⊂ A be a non-qualifying set, and consider any vector α = (αi)i∈A.

Shamir Secret Sharing: Security

Pr[(Si)i∈A = α] = η(α,s)
pk−1

Let η(α, s) be the number of polynomials g (with coefficients in Zp) of degree k − 1 such that
g(i) = αi (mod p) for i ∈ A, and g(0) = s (mod p).

η(α,s′)
pk−1 = Pr[(S′

i)i∈A = α]
?
=

The polynomial f is chosen u.a.r. among all the pk−1 polynomials (with coefficients in Zp) of
degree k − 1 such that f(0) = s (mod p)

We will show that these quantities do not depend on the secrets s and s′

Theorem: Let {(x1, y1), . . . , (xh, yh)} be a set of h ≤ k points in Zp × Zp with distinct xis, where
p ≥ k. The number of polynomials g of degree k − 1 with coefficients in Zp that such that
yi = g(xi) (mod p) for all i = 1, . . . , h is exactly pk−h.

Let A ⊂ A be a non-qualifying set, and consider any vector α = (αi)i∈A.

Shamir Secret Sharing: Security

Theorem: Let {(x1, y1), . . . , (xh, yh)} be a set of h ≤ k points in Zp × Zp with distinct xis, where
p ≥ k. The number of polynomials g of degree k − 1 with coefficients in Zp that such that
yi = g(xi) (mod p) for all i = 1, . . . , h is exactly pk−h.

Shamir Secret Sharing: Security

Proof: Let j = k − h (i.e., h = k − j).

Theorem: Let {(x1, y1), . . . , (xh, yh)} be a set of h ≤ k points in Zp × Zp with distinct xis, where
p ≥ k. The number of polynomials g of degree k − 1 with coefficients in Zp that such that
yi = g(xi) (mod p) for all i = 1, . . . , h is exactly pk−h.

We show by induction on j = 0, 1, . . . , k that the number of such polynomials is pj .

Shamir Secret Sharing: Security

Proof: Let j = k − h (i.e., h = k − j).

Base case: j = 0, i.e., h = k:

• There exists a unique interpolating polynomial with coefficient in Zp and pj = p0 = 1.

Theorem: Let {(x1, y1), . . . , (xh, yh)} be a set of h ≤ k points in Zp × Zp with distinct xis, where
p ≥ k. The number of polynomials g of degree k − 1 with coefficients in Zp that such that
yi = g(xi) (mod p) for all i = 1, . . . , h is exactly pk−h.

We show by induction on j = 0, 1, . . . , k that the number of such polynomials is pj .

Shamir Secret Sharing: Security

Proof: Let j = k − h (i.e., h = k − j).

Base case: j = 0, i.e., h = k:

• There exists a unique interpolating polynomial with coefficient in Zp and pj = p0 = 1.

Inductive step:

• Consider j ≥ 1 and assume that the claim holds for j − 1.

Theorem: Let {(x1, y1), . . . , (xh, yh)} be a set of h ≤ k points in Zp × Zp with distinct xis, where
p ≥ k. The number of polynomials g of degree k − 1 with coefficients in Zp that such that
yi = g(xi) (mod p) for all i = 1, . . . , h is exactly pk−h.

We show by induction on j = 0, 1, . . . , k that the number of such polynomials is pj .

Shamir Secret Sharing: Security

Proof: Let j = k − h (i.e., h = k − j).

Base case: j = 0, i.e., h = k:

• There exists a unique interpolating polynomial with coefficient in Zp and pj = p0 = 1.

Inductive step:

• Consider j ≥ 1 and assume that the claim holds for j − 1.

• Since h = k − j < k ≤ p, there must be some x∗ ∈ Zp that is different from all x1, . . . , xh

• Let N(y∗) be the number of polynomials g of degree k − 1 such that g(xi) = yi ∀i = 1, . . . , h and
g(x∗) = y∗

Theorem: Let {(x1, y1), . . . , (xh, yh)} be a set of h ≤ k points in Zp × Zp with distinct xis, where
p ≥ k. The number of polynomials g of degree k − 1 with coefficients in Zp that such that
yi = g(xi) (mod p) for all i = 1, . . . , h is exactly pk−h.

We show by induction on j = 0, 1, . . . , k that the number of such polynomials is pj .

Shamir Secret Sharing: Security

Proof: Let j = k − h (i.e., h = k − j).

Base case: j = 0, i.e., h = k:

• There exists a unique interpolating polynomial with coefficient in Zp and pj = p0 = 1.

Inductive step:

• Consider j ≥ 1 and assume that the claim holds for j − 1.

• Since h = k − j < k ≤ p, there must be some x∗ ∈ Zp that is different from all x1, . . . , xh

• Let N(y∗) be the number of polynomials g of degree k − 1 such that g(xi) = yi ∀i = 1, . . . , h and
g(x∗) = y∗ X

y∗∈Zp

N(y∗)

Theorem: Let {(x1, y1), . . . , (xh, yh)} be a set of h ≤ k points in Zp × Zp with distinct xis, where
p ≥ k. The number of polynomials g of degree k − 1 with coefficients in Zp that such that
yi = g(xi) (mod p) for all i = 1, . . . , h is exactly pk−h.

We show by induction on j = 0, 1, . . . , k that the number of such polynomials is pj .

Shamir Secret Sharing: Security

Proof: Let j = k − h (i.e., h = k − j).

Base case: j = 0, i.e., h = k:

• There exists a unique interpolating polynomial with coefficient in Zp and pj = p0 = 1.

Inductive step:

• Consider j ≥ 1 and assume that the claim holds for j − 1.

• Since h = k − j < k ≤ p, there must be some x∗ ∈ Zp that is different from all x1, . . . , xh

• Let N(y∗) be the number of polynomials g of degree k − 1 such that g(xi) = yi ∀i = 1, . . . , h and
g(x∗) = y∗ X

y∗∈Zp

N(y∗) =
X

y∗∈Zp

pj−1

Theorem: Let {(x1, y1), . . . , (xh, yh)} be a set of h ≤ k points in Zp × Zp with distinct xis, where
p ≥ k. The number of polynomials g of degree k − 1 with coefficients in Zp that such that
yi = g(xi) (mod p) for all i = 1, . . . , h is exactly pk−h.

We show by induction on j = 0, 1, . . . , k that the number of such polynomials is pj .

Shamir Secret Sharing: Security

Proof: Let j = k − h (i.e., h = k − j).

Base case: j = 0, i.e., h = k:

• There exists a unique interpolating polynomial with coefficient in Zp and pj = p0 = 1.

Inductive step:

• Consider j ≥ 1 and assume that the claim holds for j − 1.

• Since h = k − j < k ≤ p, there must be some x∗ ∈ Zp that is different from all x1, . . . , xh

• Let N(y∗) be the number of polynomials g of degree k − 1 such that g(xi) = yi ∀i = 1, . . . , h and
g(x∗) = y∗ X

y∗∈Zp

N(y∗) =
X

y∗∈Zp

pj−1

= |Zp| · pj−1

Theorem: Let {(x1, y1), . . . , (xh, yh)} be a set of h ≤ k points in Zp × Zp with distinct xis, where
p ≥ k. The number of polynomials g of degree k − 1 with coefficients in Zp that such that
yi = g(xi) (mod p) for all i = 1, . . . , h is exactly pk−h.

We show by induction on j = 0, 1, . . . , k that the number of such polynomials is pj .

Shamir Secret Sharing: Security

Proof: Let j = k − h (i.e., h = k − j).

□

Base case: j = 0, i.e., h = k:

• There exists a unique interpolating polynomial with coefficient in Zp and pj = p0 = 1.

Inductive step:

• Consider j ≥ 1 and assume that the claim holds for j − 1.

• Since h = k − j < k ≤ p, there must be some x∗ ∈ Zp that is different from all x1, . . . , xh

• Let N(y∗) be the number of polynomials g of degree k − 1 such that g(xi) = yi ∀i = 1, . . . , h and
g(x∗) = y∗ X

y∗∈Zp

N(y∗) =
X

y∗∈Zp

pj−1

= |Zp| · pj−1 = pj

Theorem: Let {(x1, y1), . . . , (xh, yh)} be a set of h ≤ k points in Zp × Zp with distinct xis, where
p ≥ k. The number of polynomials g of degree k − 1 with coefficients in Zp that such that
yi = g(xi) (mod p) for all i = 1, . . . , h is exactly pk−h.

We show by induction on j = 0, 1, . . . , k that the number of such polynomials is pj .

Two-Party Computation

Alice and Bob want to jointly compute a function f(x1, x2, . . . , xm, y1, y2, . . . , yn)

• Alice knows the inputs x1, . . . , xm

• Bob knows the inputs y1, . . . , yn

Two-Party Computation

Alice and Bob want to jointly compute a function f(x1, x2, . . . , xm, y1, y2, . . . , yn)

• Alice knows the inputs x1, . . . , xm

• Bob knows the inputs y1, . . . , yn

Each party wants the other party to learn nothing about their inputs*

*Except from what they can deduce from knowing the value f(x1, . . . , xm, y1, . . . , yn) (this is inevitable)

Two-Party Computation

Alice and Bob want to jointly compute a function f(x1, x2, . . . , xm, y1, y2, . . . , yn)

• Alice knows the inputs x1, . . . , xm

• Bob knows the inputs y1, . . . , yn

Each party wants the other party to learn nothing about their inputs*

*Except from what they can deduce from knowing the value f(x1, . . . , xm, y1, . . . , yn) (this is inevitable)

Example: In the “movie selection” scenario, Alice and Bob wanted to compute f(x1, y1) = x1 ∧ y1

Two-Party Computation

Alice and Bob want to jointly compute a function f(x1, x2, . . . , xm, y1, y2, . . . , yn)

• Alice knows the inputs x1, . . . , xm

• Bob knows the inputs y1, . . . , yn

Each party wants the other party to learn nothing about their inputs*

*Except from what they can deduce from knowing the value f(x1, . . . , xm, y1, . . . , yn) (this is inevitable)

We actually consider a stronger variant: Alice wants to learn f(x1, x2, . . . , xm, y1, y2, . . . , yn)
while Bob learns nothing

• If we can solve this variant, then we can solve the above case (Alice sends the final output to Bob)

• This allows us to solve the more general case in which Alice learns fA(x1, x2, . . . , xm, y1, y2, . . . , yn)
and Bob learns fB(x1, x2, . . . , xm, y1, y2, . . . , yn)

Example: In the “movie selection” scenario, Alice and Bob wanted to compute f(x1, y1) = x1 ∧ y1

Honest but curious model: Alice and Bob obey the protocol, but they try to gather as much
information as they can (each of them wants to break the privacy of the other party)

We will design a Two-Party computation protocol that solves this problem for functions f that can
be computed in polynomial-time in the honest but curious model.

Two-Party Computation: The Honest but Curious Model

Honest but curious model: Alice and Bob obey the protocol, but they try to gather as much
information as they can (each of them wants to break the privacy of the other party)

We will design a Two-Party computation protocol that solves this problem for functions f that can
be computed in polynomial-time in the honest but curious model.

This is the analogous of a passive eavesdropper in classic cryptography

Two-Party Computation: The Honest but Curious Model

Honest but curious model: Alice and Bob obey the protocol, but they try to gather as much
information as they can (each of them wants to break the privacy of the other party)

We will design a Two-Party computation protocol that solves this problem for functions f that can
be computed in polynomial-time in the honest but curious model.

This is the analogous of a passive eavesdropper in classic cryptography

Two-Party Computation: The Honest but Curious Model

The protocol will be based on evaluating a (polynomial-size) Boolean circuit that computes f

x1

y1

y2

For simplicity, think of Boolean circuits with a single output (the protocol extends to multiple outputs in a
straightforward way)

f(x1, y1, y2)

x1

y1

y2

Alice replaces each logic gate with an explicit description of its truth table

f(x1, y1, y2)

Yao’s Garbled Circuits: Building the Circuit

x1

y1

y2

in1 in2 out

0 0 0
0 1 0
1 0 0
1 1 1

Alice replaces each logic gate with an explicit description of its truth table

f(x1, y1, y2)

Yao’s Garbled Circuits: Building the Circuit

x1

y1

y2

in1 in2 out

0 0 0
0 1 0
1 0 0
1 1 1

in1 in2 out

0 0 0
0 1 1
1 0 1
1 1 1

Alice replaces each logic gate with an explicit description of its truth table

f(x1, y1, y2)

Yao’s Garbled Circuits: Building the Circuit

x1

y1

y2

in1 in2 out

0 0 0
0 1 0
1 0 0
1 1 1

in1 in2 out

0 0 0
0 1 1
1 0 1
1 1 1

in out

0 1
1 0

Alice replaces each logic gate with an explicit description of its truth table

f(x1, y1, y2)

Yao’s Garbled Circuits: Building the Circuit

x1

y1

y2

in1 in2 out

0 0 0
0 1 0
1 0 0
1 1 1

in1 in2 out

0 0 0
0 1 1
1 0 1
1 1 1

in1 in2 out

0 0 0
0 1 0
1 0 0
1 1 1

in out

0 1
1 0

in1 in2 out

0 0 0
0 1 1
1 0 1
1 1 1

Alice replaces each logic gate with an explicit description of its truth table

f(x1, y1, y2)

Yao’s Garbled Circuits: Building the Circuit

x1

y1

y2

in1 in2 out

0 0 0
0 1 0
1 0 0
1 1 1

in1 in2 out

0 0 0
0 1 1
1 0 1
1 1 1

in1 in2 out

0 0 0
0 1 0
1 0 0
1 1 1

in out

0 1
1 0

in1 in2 out

0 0 0
0 1 1
1 0 1
1 1 1

Alice replaces each logic gate with an explicit description of its truth table

f(x1, y1, y2)

Yao’s Garbled Circuits: Building the Circuit

She “folds” the not gates into an adjacent gate

x1

y1

y2

in1 in2 out

0 0 0
0 1 0
1 0 0
1 1 1

in1 in2 out

0 0 0
0 1 1
1 0 1
1 1 1

in1 in2 out

0 0 0
0 1 0
1 0 0
1 1 1

Alice replaces each logic gate with an explicit description of its truth table

f(x1, y1, y2)

Yao’s Garbled Circuits: Building the Circuit

She “folds” the not gates into an adjacent gate

in1 in2 out

0 0 1
0 1 0
1 0 1
1 1 1

x1

y1

y2

in1 in2 out

0 0 0
0 1 0
1 0 0
1 1 1

in1 in2 out

0 0 0
0 1 1
1 0 1
1 1 1

in1 in2 out

0 0 0
0 1 0
1 0 0
1 1 1

Alice replaces each logic gate with an explicit description of its truth table

Each wire carries either a logic 0 or a logic 1

She assigns two random symmetric keys k0i and k1i to the generic i-th wire to represent 0 and 1, resp.

k00 k10

k01 k11

k02 k12

k03 k13

k04 k14

k05 k15

k06 k16

f(x1, y1, y2)

Yao’s Garbled Circuits: Building the Circuit

She “folds” the not gates into an adjacent gate

in1 in2 out

0 0 1
0 1 0
1 0 1
1 1 1

x1

y1

y2

in1 in2 out

0 0 0
0 1 0
1 0 0
1 1 1

in1 in2 out

0 0 0
0 1 1
1 0 1
1 1 1

in1 in2 out

0 0 0
0 1 0
1 0 0
1 1 1

Alice replaces each logic gate with an explicit description of its truth table

Each wire carries either a logic 0 or a logic 1

She assigns two random symmetric keys k0i and k1i to the generic i-th wire to represent 0 and 1, resp.

k00 k10

k01 k11

k02 k12

k03 k13

k04 k14

k05 k15

k06 k16

f(x1, y1, y2)

The keys k0i and k1i are
called “wire labels”

Yao’s Garbled Circuits: Building the Circuit

She “folds” the not gates into an adjacent gate

in1 in2 out

0 0 1
0 1 0
1 0 1
1 1 1

x1

y1

y2

in1 in2 out

0 0 0
0 1 0
1 0 0
1 1 1

in1 in2 out

0 0 0
0 1 1
1 0 1
1 1 1

in1 in2 out

0 0 0
0 1 0
1 0 0
1 1 1

Alice replaces each logic gate with an explicit description of its truth table

Each wire carries either a logic 0 or a logic 1

She assigns two random symmetric keys k0i and k1i to the generic i-th wire to represent 0 and 1, resp.

k00 k10

k01 k11

k02 k12

k03 k13

k04 k14

k05 k15

k06 k16

f(x1, y1, y2)

She rewrites the truth tables in terms of the input and output wire labels

The keys k0i and k1i are
called “wire labels”

Yao’s Garbled Circuits: Building the Circuit

She “folds” the not gates into an adjacent gate

in1 in2 out

0 0 1
0 1 0
1 0 1
1 1 1

x1

y1

y2

in1 in2 out

0 0 0
0 1 1
1 0 1
1 1 1

in1 in2 out

0 0 0
0 1 0
1 0 0
1 1 1

Alice replaces each logic gate with an explicit description of its truth table

Each wire carries either a logic 0 or a logic 1

She assigns two random symmetric keys k0i and k1i to the generic i-th wire to represent 0 and 1, resp.

k00 k10

k01 k11

k02 k12

k03 k13

k04 k14

k05 k15

k06 k16

f(x1, y1, y2)

She rewrites the truth tables in terms of the input and output wire labels

The keys k0i and k1i are
called “wire labels”

Yao’s Garbled Circuits: Building the Circuit

in1 in2 out

k0
0 k0

1 k0
3

k0
0 k1

1 k0
3

k1
0 k0

1 k0
3

k1
0 k1

1 k1
3

She “folds” the not gates into an adjacent gate

in1 in2 out

0 0 1
0 1 0
1 0 1
1 1 1

x1

y1

y2

in1 in2 out

0 0 0
0 1 0
1 0 0
1 1 1

Alice replaces each logic gate with an explicit description of its truth table

Each wire carries either a logic 0 or a logic 1

She assigns two random symmetric keys k0i and k1i to the generic i-th wire to represent 0 and 1, resp.

k00 k10

k01 k11

k02 k12

k03 k13

k04 k14

k05 k15

k06 k16

f(x1, y1, y2)

She rewrites the truth tables in terms of the input and output wire labels

The keys k0i and k1i are
called “wire labels”

Yao’s Garbled Circuits: Building the Circuit

in1 in2 out

k0
0 k0

1 k0
3

k0
0 k1

1 k0
3

k1
0 k0

1 k0
3

k1
0 k1

1 k1
3

in1 in2 out

k0
1 k0

2 k0
4

k0
1 k1

2 k1
4

k1
1 k0

2 k1
4

k1
1 k1

2 k1
4

She “folds” the not gates into an adjacent gate

in1 in2 out

0 0 1
0 1 0
1 0 1
1 1 1

x1

y1

y2

Alice replaces each logic gate with an explicit description of its truth table

Each wire carries either a logic 0 or a logic 1

She assigns two random symmetric keys k0i and k1i to the generic i-th wire to represent 0 and 1, resp.

k00 k10

k01 k11

k02 k12

k03 k13

k04 k14

k05 k15

k06 k16

f(x1, y1, y2)

She rewrites the truth tables in terms of the input and output wire labels

The keys k0i and k1i are
called “wire labels”

Yao’s Garbled Circuits: Building the Circuit

in1 in2 out

k0
0 k0

1 k0
3

k0
0 k1

1 k0
3

k1
0 k0

1 k0
3

k1
0 k1

1 k1
3

in1 in2 out

k0
1 k0

2 k0
4

k0
1 k1

2 k1
4

k1
1 k0

2 k1
4

k1
1 k1

2 k1
4

in1 in2 out

k0
3 k0

4 k0
5

k0
3 k1

4 k0
5

k1
3 k0

4 k0
5

k1
3 k1

4 k1
5 in1 in2 out

k0
5 k0

2 k1
6

k0
5 k1

2 k0
6

k1
5 k0

2 k1
6

k1
5 k1

2 k1
6

She “folds” the not gates into an adjacent gate

Yao’s Garbled Circuits: Building the Circuit

Alice now encrypts the outputs in each truth table using a secure authenticated encryption scheme

x1

y1

y2

k00 k10

k01 k11

k02 k12

in1 in2 out

k0
0 k0

1 k0
3

k0
0 k1

1 k0
3

k1
0 k0

1 k0
3

k1
0 k1

1 k1
3

in1 in2 out

k0
1 k0

2 k0
4

k0
1 k1

2 k1
4

k1
1 k0

2 k1
4

k1
1 k1

2 k1
4

in1 in2 out

k0
3 k0

4 k0
5

k0
3 k1

4 k0
5

k1
3 k0

4 k0
5

k1
3 k1

4 k1
5

The key used to encrypt an output consists of the two corresponding input wire labels

in1 in2 out

k0
5 k0

2 k1
6

k0
5 k1

2 k0
6

k1
5 k0

2 k1
6

k1
5 k1

2 k1
6

k06 k16

Yao’s Garbled Circuits: Building the Circuit

Alice now encrypts the outputs in each truth table using a secure authenticated encryption scheme

x1

y1

y2

k00 k10

k01 k11

k02 k12

in1 in2 out

k0
1 k0

2 k0
4

k0
1 k1

2 k1
4

k1
1 k0

2 k1
4

k1
1 k1

2 k1
4

in1 in2 out

k0
3 k0

4 k0
5

k0
3 k1

4 k0
5

k1
3 k0

4 k0
5

k1
3 k1

4 k1
5

The key used to encrypt an output consists of the two corresponding input wire labels

in1 in2 out

k0
0 k0

1 Enck0
0,k

0
1
(k0

3)

k0
0 k1

1 Enck0
0,k

1
1
(k0

3)

k1
0 k0

1 Enck1
0,k

0
1
(k0

3)

k1
0 k1

1 Enck1
0,k

1
1
(k1

3)

in1 in2 out

k0
5 k0

2 k1
6

k0
5 k1

2 k0
6

k1
5 k0

2 k1
6

k1
5 k1

2 k1
6

k06 k16

Yao’s Garbled Circuits: Building the Circuit

Alice now encrypts the outputs in each truth table using a secure authenticated encryption scheme

x1

y1

y2

k00 k10

k01 k11

k02 k12

The key used to encrypt an output consists of the two corresponding input wire labels

in1 in2 out

k0
0 k0

1 Enck0
0,k

0
1
(k0

3)

k0
0 k1

1 Enck0
0,k

1
1
(k0

3)

k1
0 k0

1 Enck1
0,k

0
1
(k0

3)

k1
0 k1

1 Enck1
0,k

1
1
(k1

3)

in1 in2 out

k0
1 k0

2 Enck0
1,k

0
2
(k0

4)

k0
1 k1

2 Enck0
1,k

1
2
(k1

4)

k1
1 k0

2 Enck1
1,k

0
2
(k1

4)

k1
1 k1

2 Enck1
1,k

1
2
(k1

4)

in1 in2 out

k0
3 k0

4 Enck0
3,k

0
4
(k0

5)

k0
3 k1

4 Enck0
3,k

1
4
(k0

5)

k1
3 k0

4 Enck1
3,k

0
4
(k0

5)

k1
3 k1

4 Enck1
3,k

1
4
(k1

5) in1 in2 out

k0
5 k0

2 Enck0
5,k

0
2
(k1

6)

k0
5 k1

2 Enck0
5,k

1
2
(k0

6)

k1
5 k0

2 Enck1
5,k

0
2
(k1

6)

k1
5 k1

2 Enck1
5,k

1
2
(k1

6)

k06 k16

Yao’s Garbled Circuits: Building the Circuit

Alice now encrypts the outputs in each truth table using a secure authenticated encryption scheme

x1

y1

y2

k00 k10

k01 k11

k02 k12

The key used to encrypt an output consists of the two corresponding input wire labels

in1 in2 out

k0
0 k0

1 Enck0
0,k

0
1
(k0

3)

k0
0 k1

1 Enck0
0,k

1
1
(k0

3)

k1
0 k0

1 Enck1
0,k

0
1
(k0

3)

k1
0 k1

1 Enck1
0,k

1
1
(k1

3)

in1 in2 out

k0
1 k0

2 Enck0
1,k

0
2
(k0

4)

k0
1 k1

2 Enck0
1,k

1
2
(k1

4)

k1
1 k0

2 Enck1
1,k

0
2
(k1

4)

k1
1 k1

2 Enck1
1,k

1
2
(k1

4)

in1 in2 out

k0
3 k0

4 Enck0
3,k

0
4
(k0

5)

k0
3 k1

4 Enck0
3,k

1
4
(k0

5)

k1
3 k0

4 Enck1
3,k

0
4
(k0

5)

k1
3 k1

4 Enck1
3,k

1
4
(k1

5) in1 in2 out

k0
5 k0

2 Enck0
5,k

0
2
(k1

6)

k0
5 k1

2 Enck0
5,k

1
2
(k0

6)

k1
5 k0

2 Enck1
5,k

0
2
(k1

6)

k1
5 k1

2 Enck1
5,k

1
2
(k1

6)

k06 k16

She now drops the inputs from the truth tables. . .

Yao’s Garbled Circuits: Building the Circuit

Alice now encrypts the outputs in each truth table using a secure authenticated encryption scheme

x1

y1

y2

k00 k10

k01 k11

k02 k12

The key used to encrypt an output consists of the two corresponding input wire labels

She now drops the inputs from the truth tables. . .

Enck0
0,k

0
1
(k0

3)

Enck0
0,k

1
1
(k0

3)

Enck1
0,k

0
1
(k0

3)

Enck1
0,k

1
1
(k1

3)

Enck0
1,k

0
2
(k0

4)

Enck0
1,k

1
2
(k1

4)

Enck1
1,k

0
2
(k1

4)

Enck1
1,k

1
2
(k1

4)

Enck0
3,k

0
4
(k0

5)

Enck0
3,k

1
4
(k0

5)

Enck1
3,k

0
4
(k0

5)

Enck1
3,k

1
4
(k1

5)
Enck0

5,k
0
2
(k1

6)

Enck0
5,k

1
2
(k0

6)

Enck1
5,k

0
2
(k1

6)

Enck1
5,k

1
2
(k1

6)

k06 k16

Yao’s Garbled Circuits: Building the Circuit

Alice now encrypts the outputs in each truth table using a secure authenticated encryption scheme

x1

y1

y2

k00 k10

k01 k11

k02 k12

The key used to encrypt an output consists of the two corresponding input wire labels

She now drops the inputs from the truth tables. . . and randomly permutes the outputs of each table

Enck0
0,k

0
1
(k0

3)

Enck0
0,k

1
1
(k0

3)

Enck1
0,k

0
1
(k0

3)

Enck1
0,k

1
1
(k1

3)

Enck0
1,k

0
2
(k0

4)

Enck0
1,k

1
2
(k1

4)

Enck1
1,k

0
2
(k1

4)

Enck1
1,k

1
2
(k1

4)

Enck0
3,k

0
4
(k0

5)

Enck0
3,k

1
4
(k0

5)

Enck1
3,k

0
4
(k0

5)

Enck1
3,k

1
4
(k1

5)
Enck0

5,k
0
2
(k1

6)

Enck0
5,k

1
2
(k0

6)

Enck1
5,k

0
2
(k1

6)

Enck1
5,k

1
2
(k1

6)

k06 k16

Yao’s Garbled Circuits: Building the Circuit

Alice now encrypts the outputs in each truth table using a secure authenticated encryption scheme

x1

y1

y2

k00 k10

k01 k11

k02 k12

The key used to encrypt an output consists of the two corresponding input wire labels

She now drops the inputs from the truth tables. . . and randomly permutes the outputs of each table

k06 k16

Enck0
0,k

1
1
(k0

3)

Enck1
0,k

1
1
(k1

3)

Enck0
0,k

0
1
(k0

3)

Enck1
0,k

0
1
(k0

3)

Enck1
1,k

1
2
(k1

4)

Enck0
1,k

1
2
(k1

4)

Enck0
1,k

0
2
(k0

4)

Enck1
1,k

0
2
(k1

4)

Enck0
3,k

1
4
(k0

5)

Enck1
3,k

0
4
(k0

5)

Enck1
3,k

1
4
(k1

5)

Enck0
3,k

0
4
(k0

5)
Enck1

5,k
1
2
(k1

6)

Enck1
5,k

0
2
(k1

6)

Enck0
5,k

1
2
(k0

6)

Enck0
5,k

0
2
(k1

6)

Yao’s Garbled Circuits: Building the Circuit

Alice now encrypts the outputs in each truth table using a secure authenticated encryption scheme

x1

y1

y2

k00 k10

k01 k11

k02 k12

The key used to encrypt an output consists of the two corresponding input wire labels

She now drops the inputs from the truth tables. . . and randomly permutes the outputs of each table

k06 k16

Enck0
0,k

1
1
(k0

3)

Enck1
0,k

1
1
(k1

3)

Enck0
0,k

0
1
(k0

3)

Enck1
0,k

0
1
(k0

3)

Enck1
1,k

1
2
(k1

4)

Enck0
1,k

1
2
(k1

4)

Enck0
1,k

0
2
(k0

4)

Enck1
1,k

0
2
(k1

4)

Enck0
3,k

1
4
(k0

5)

Enck1
3,k

0
4
(k0

5)

Enck1
3,k

1
4
(k1

5)

Enck0
3,k

0
4
(k0

5)
Enck1

5,k
1
2
(k1

6)

Enck1
5,k

0
2
(k1

6)

Enck0
5,k

1
2
(k0

6)

Enck0
5,k

0
2
(k1

6)

Finally, Alice sends to Bob all the (now garbled) logic gates, the connections between them, and the
wire-labels corresponding to her inputs

Yao’s Garbled Circuits: Building the Circuit

Alice now encrypts the outputs in each truth table using a secure authenticated encryption scheme

x1

y1

y2

k00 k10

k01 k11

k02 k12

The key used to encrypt an output consists of the two corresponding input wire labels

She now drops the inputs from the truth tables. . . and randomly permutes the outputs of each table

k06 k16

Enck0
0,k

1
1
(k0

3)

Enck1
0,k

1
1
(k1

3)

Enck0
0,k

0
1
(k0

3)

Enck1
0,k

0
1
(k0

3)

Enck1
1,k

1
2
(k1

4)

Enck0
1,k

1
2
(k1

4)

Enck0
1,k

0
2
(k0

4)

Enck1
1,k

0
2
(k1

4)

Enck0
3,k

1
4
(k0

5)

Enck1
3,k

0
4
(k0

5)

Enck1
3,k

1
4
(k1

5)

Enck0
3,k

0
4
(k0

5)
Enck1

5,k
1
2
(k1

6)

Enck1
5,k

0
2
(k1

6)

Enck0
5,k

1
2
(k0

6)

Enck0
5,k

0
2
(k1

6)

Finally, Alice sends to Bob all the (now garbled) logic gates, the connections between them, and the
wire-labels corresponding to her inputs

For example, when x1 = 1, Alice sends to Bob all the
garbled gates together with k10

Yao’s Garbled Circuits: Evaluating the Circuit

x1

y1

y2

k10
Enck0

0,k
1
1
(k0

3)

Enck1
0,k

1
1
(k1

3)

Enck0
0,k

0
1
(k0

3)

Enck1
0,k

0
1
(k0

3)

Enck1
1,k

1
2
(k1

4)

Enck0
1,k

1
2
(k1

4)

Enck0
1,k

0
2
(k0

4)

Enck1
1,k

0
2
(k1

4)

Enck0
3,k

1
4
(k0

5)

Enck1
3,k

0
4
(k0

5)

Enck1
3,k

1
4
(k1

5)

Enck0
3,k

0
4
(k0

5)
Enck1

5,k
1
2
(k1

6)

Enck1
5,k

0
2
(k1

6)

Enck0
5,k

1
2
(k0

6)

Enck0
5,k

0
2
(k1

6)

Bob receives the garbled circuit from Alice, together with the wire-labels of Alice’s inputs

Yao’s Garbled Circuits: Evaluating the Circuit

x1

y1

y2

k10

k01

k12

Enck0
0,k

1
1
(k0

3)

Enck1
0,k

1
1
(k1

3)

Enck0
0,k

0
1
(k0

3)

Enck1
0,k

0
1
(k0

3)

Enck1
1,k

1
2
(k1

4)

Enck0
1,k

1
2
(k1

4)

Enck0
1,k

0
2
(k0

4)

Enck1
1,k

0
2
(k1

4)

Enck0
3,k

1
4
(k0

5)

Enck1
3,k

0
4
(k0

5)

Enck1
3,k

1
4
(k1

5)

Enck0
3,k

0
4
(k0

5)
Enck1

5,k
1
2
(k1

6)

Enck1
5,k

0
2
(k1

6)

Enck0
5,k

1
2
(k0

6)

Enck0
5,k

0
2
(k1

6)

Suppose that Bob somehow knows the wire-labels corresponding to his input (we will handle this later)

Bob receives the garbled circuit from Alice, together with the wire-labels of Alice’s inputs

Yao’s Garbled Circuits: Evaluating the Circuit

x1

y1

y2

k10

k01

k12

Enck0
0,k

1
1
(k0

3)

Enck1
0,k

1
1
(k1

3)

Enck0
0,k

0
1
(k0

3)

Enck1
0,k

0
1
(k0

3)

Enck1
1,k

1
2
(k1

4)

Enck0
1,k

1
2
(k1

4)

Enck0
1,k

0
2
(k0

4)

Enck1
1,k

0
2
(k1

4)

Enck0
3,k

1
4
(k0

5)

Enck1
3,k

0
4
(k0

5)

Enck1
3,k

1
4
(k1

5)

Enck0
3,k

0
4
(k0

5)
Enck1

5,k
1
2
(k1

6)

Enck1
5,k

0
2
(k1

6)

Enck0
5,k

1
2
(k0

6)

Enck0
5,k

0
2
(k1

6)

Suppose that Bob somehow knows the wire-labels corresponding to his input (we will handle this later)

Bob receives the garbled circuit from Alice, together with the wire-labels of Alice’s inputs

Bob can evaluate the garbled circuit and recover the wire-label corresponding to the output wire

Yao’s Garbled Circuits: Evaluating the Circuit

x1

y1

y2

k10

k01

k12

Enck0
0,k

1
1
(k0

3)

Enck1
0,k

1
1
(k1

3)

Enck0
0,k

0
1
(k0

3)

Enck1
0,k

0
1
(k0

3)

Enck1
1,k

1
2
(k1

4)

Enck0
1,k

1
2
(k1

4)

Enck0
1,k

0
2
(k0

4)

Enck1
1,k

0
2
(k1

4)

Enck0
3,k

1
4
(k0

5)

Enck1
3,k

0
4
(k0

5)

Enck1
3,k

1
4
(k1

5)

Enck0
3,k

0
4
(k0

5)
Enck1

5,k
1
2
(k1

6)

Enck1
5,k

0
2
(k1

6)

Enck0
5,k

1
2
(k0

6)

Enck0
5,k

0
2
(k1

6)

Suppose that Bob somehow knows the wire-labels corresponding to his input (we will handle this later)

Bob receives the garbled circuit from Alice, together with the wire-labels of Alice’s inputs

Bob can evaluate the garbled circuit and recover the wire-label corresponding to the output wire

• To evaluate a logic gate, bob tries to decrypt each of the four possible encrypted rows

Yao’s Garbled Circuits: Evaluating the Circuit

x1

y1

y2

k10

k01

k12

Enck0
0,k

1
1
(k0

3)

Enck1
0,k

1
1
(k1

3)

Enck0
0,k

0
1
(k0

3)

Enck1
0,k

0
1
(k0

3)

Enck1
1,k

1
2
(k1

4)

Enck0
1,k

1
2
(k1

4)

Enck0
1,k

0
2
(k0

4)

Enck1
1,k

0
2
(k1

4)

Enck0
3,k

1
4
(k0

5)

Enck1
3,k

0
4
(k0

5)

Enck1
3,k

1
4
(k1

5)

Enck0
3,k

0
4
(k0

5)
Enck1

5,k
1
2
(k1

6)

Enck1
5,k

0
2
(k1

6)

Enck0
5,k

1
2
(k0

6)

Enck0
5,k

0
2
(k1

6)

Suppose that Bob somehow knows the wire-labels corresponding to his input (we will handle this later)

Bob receives the garbled circuit from Alice, together with the wire-labels of Alice’s inputs

Bob can evaluate the garbled circuit and recover the wire-label corresponding to the output wire

• To evaluate a logic gate, bob tries to decrypt each of the four possible encrypted rows

• Since we are using a secure authenticated encryption scheme, exactly one of these rows will decrypt
successfully (except for negligible probability)

Yao’s Garbled Circuits: Evaluating the Circuit

x1

y1

y2

k10

k01

k12

Enck0
0,k

1
1
(k0

3)

Enck1
0,k

1
1
(k1

3)

Enck0
0,k

0
1
(k0

3)

Enck1
0,k

0
1
(k0

3)

Enck1
1,k

1
2
(k1

4)

Enck0
1,k

1
2
(k1

4)

Enck0
1,k

0
2
(k0

4)

Enck1
1,k

0
2
(k1

4)

Enck0
3,k

1
4
(k0

5)

Enck1
3,k

0
4
(k0

5)

Enck1
3,k

1
4
(k1

5)

Enck0
3,k

0
4
(k0

5)
Enck1

5,k
1
2
(k1

6)

Enck1
5,k

0
2
(k1

6)

Enck0
5,k

1
2
(k0

6)

Enck0
5,k

0
2
(k1

6)

Suppose that Bob somehow knows the wire-labels corresponding to his input (we will handle this later)

Bob receives the garbled circuit from Alice, together with the wire-labels of Alice’s inputs

Bob can evaluate the garbled circuit and recover the wire-label corresponding to the output wire

• To evaluate a logic gate, bob tries to decrypt each of the four possible encrypted rows

• Since we are using a secure authenticated encryption scheme, exactly one of these rows will decrypt
successfully (except for negligible probability)

k03

Yao’s Garbled Circuits: Evaluating the Circuit

x1

y1

y2

k10

k01

k12

Enck0
0,k

1
1
(k0

3)

Enck1
0,k

1
1
(k1

3)

Enck0
0,k

0
1
(k0

3)

Enck1
0,k

0
1
(k0

3)

Enck1
1,k

1
2
(k1

4)

Enck0
1,k

1
2
(k1

4)

Enck0
1,k

0
2
(k0

4)

Enck1
1,k

0
2
(k1

4)

Enck0
3,k

1
4
(k0

5)

Enck1
3,k

0
4
(k0

5)

Enck1
3,k

1
4
(k1

5)

Enck0
3,k

0
4
(k0

5)
Enck1

5,k
1
2
(k1

6)

Enck1
5,k

0
2
(k1

6)

Enck0
5,k

1
2
(k0

6)

Enck0
5,k

0
2
(k1

6)

Suppose that Bob somehow knows the wire-labels corresponding to his input (we will handle this later)

Bob receives the garbled circuit from Alice, together with the wire-labels of Alice’s inputs

Bob can evaluate the garbled circuit and recover the wire-label corresponding to the output wire

• To evaluate a logic gate, bob tries to decrypt each of the four possible encrypted rows

• Since we are using a secure authenticated encryption scheme, exactly one of these rows will decrypt
successfully (except for negligible probability)

k03

k14

Yao’s Garbled Circuits: Evaluating the Circuit

x1

y1

y2

k10

k01

k12

Enck0
0,k

1
1
(k0

3)

Enck1
0,k

1
1
(k1

3)

Enck0
0,k

0
1
(k0

3)

Enck1
0,k

0
1
(k0

3)

Enck1
1,k

1
2
(k1

4)

Enck0
1,k

1
2
(k1

4)

Enck0
1,k

0
2
(k0

4)

Enck1
1,k

0
2
(k1

4)

Enck0
3,k

1
4
(k0

5)

Enck1
3,k

0
4
(k0

5)

Enck1
3,k

1
4
(k1

5)

Enck0
3,k

0
4
(k0

5)
Enck1

5,k
1
2
(k1

6)

Enck1
5,k

0
2
(k1

6)

Enck0
5,k

1
2
(k0

6)

Enck0
5,k

0
2
(k1

6)

Suppose that Bob somehow knows the wire-labels corresponding to his input (we will handle this later)

Bob receives the garbled circuit from Alice, together with the wire-labels of Alice’s inputs

Bob can evaluate the garbled circuit and recover the wire-label corresponding to the output wire

• To evaluate a logic gate, bob tries to decrypt each of the four possible encrypted rows

• Since we are using a secure authenticated encryption scheme, exactly one of these rows will decrypt
successfully (except for negligible probability)

k03

k14

k05

Yao’s Garbled Circuits: Evaluating the Circuit

x1

y1

y2

k10

k01

k12

Enck0
0,k

1
1
(k0

3)

Enck1
0,k

1
1
(k1

3)

Enck0
0,k

0
1
(k0

3)

Enck1
0,k

0
1
(k0

3)

Enck1
1,k

1
2
(k1

4)

Enck0
1,k

1
2
(k1

4)

Enck0
1,k

0
2
(k0

4)

Enck1
1,k

0
2
(k1

4)

Enck0
3,k

1
4
(k0

5)

Enck1
3,k

0
4
(k0

5)

Enck1
3,k

1
4
(k1

5)

Enck0
3,k

0
4
(k0

5)
Enck1

5,k
1
2
(k1

6)

Enck1
5,k

0
2
(k1

6)

Enck0
5,k

1
2
(k0

6)

Enck0
5,k

0
2
(k1

6)

Suppose that Bob somehow knows the wire-labels corresponding to his input (we will handle this later)

Bob receives the garbled circuit from Alice, together with the wire-labels of Alice’s inputs

Bob can evaluate the garbled circuit and recover the wire-label corresponding to the output wire

• To evaluate a logic gate, bob tries to decrypt each of the four possible encrypted rows

• Since we are using a secure authenticated encryption scheme, exactly one of these rows will decrypt
successfully (except for negligible probability)

k03

k14

k05

k06

Yao’s Garbled Circuits: Evaluating the Circuit

x1

y1

y2

k10

k01

k12

Enck0
0,k

1
1
(k0

3)

Enck1
0,k

1
1
(k1

3)

Enck0
0,k

0
1
(k0

3)

Enck1
0,k

0
1
(k0

3)

Enck1
1,k

1
2
(k1

4)

Enck0
1,k

1
2
(k1

4)

Enck0
1,k

0
2
(k0

4)

Enck1
1,k

0
2
(k1

4)

Enck0
3,k

1
4
(k0

5)

Enck1
3,k

0
4
(k0

5)

Enck1
3,k

1
4
(k1

5)

Enck0
3,k

0
4
(k0

5)
Enck1

5,k
1
2
(k1

6)

Enck1
5,k

0
2
(k1

6)

Enck0
5,k

1
2
(k0

6)

Enck0
5,k

0
2
(k1

6)

Suppose that Bob somehow knows the wire-labels corresponding to his input (we will handle this later)

Bob receives the garbled circuit from Alice, together with the wire-labels of Alice’s inputs

Bob can evaluate the garbled circuit and recover the wire-label corresponding to the output wire

• To evaluate a logic gate, bob tries to decrypt each of the four possible encrypted rows

• Since we are using a secure authenticated encryption scheme, exactly one of these rows will decrypt
successfully (except for negligible probability)

k03

k14

k05

k06

Garbled circuit
output

Yao’s Garbled Circuits: Evaluating the Circuit

x1

y1

y2

k10

k01

k12

Enck0
0,k

1
1
(k0

3)

Enck1
0,k

1
1
(k1

3)

Enck0
0,k

0
1
(k0

3)

Enck1
0,k

0
1
(k0

3)

Enck1
1,k

1
2
(k1

4)

Enck0
1,k

1
2
(k1

4)

Enck0
1,k

0
2
(k0

4)

Enck1
1,k

0
2
(k1

4)

Enck0
3,k

1
4
(k0

5)

Enck1
3,k

0
4
(k0

5)

Enck1
3,k

1
4
(k1

5)

Enck0
3,k

0
4
(k0

5)
Enck1

5,k
1
2
(k1

6)

Enck1
5,k

0
2
(k1

6)

Enck0
5,k

1
2
(k0

6)

Enck0
5,k

0
2
(k1

6)

Suppose that Bob somehow knows the wire-labels corresponding to his input (we will handle this later)

Bob receives the garbled circuit from Alice, together with the wire-labels of Alice’s inputs

Bob can evaluate the garbled circuit and recover the wire-label corresponding to the output wire

k03

k14

k05

k06

Garbled circuit
output

Once Bob knows the (garbled) circuit’s output, he sends it to Alice

Yao’s Garbled Circuits: Evaluating the Circuit

x1

y1

y2

k10

k01

k12

Enck0
0,k

1
1
(k0

3)

Enck1
0,k

1
1
(k1

3)

Enck0
0,k

0
1
(k0

3)

Enck1
0,k

0
1
(k0

3)

Enck1
1,k

1
2
(k1

4)

Enck0
1,k

1
2
(k1

4)

Enck0
1,k

0
2
(k0

4)

Enck1
1,k

0
2
(k1

4)

Enck0
3,k

1
4
(k0

5)

Enck1
3,k

0
4
(k0

5)

Enck1
3,k

1
4
(k1

5)

Enck0
3,k

0
4
(k0

5)
Enck1

5,k
1
2
(k1

6)

Enck1
5,k

0
2
(k1

6)

Enck0
5,k

1
2
(k0

6)

Enck0
5,k

0
2
(k1

6)

Suppose that Bob somehow knows the wire-labels corresponding to his input (we will handle this later)

Bob receives the garbled circuit from Alice, together with the wire-labels of Alice’s inputs

Bob can evaluate the garbled circuit and recover the wire-label corresponding to the output wire

k03

k14

k05

k06

Garbled circuit
output

Once Bob knows the (garbled) circuit’s output, he sends it to Alice

Alice knows whether the label she received corresponds to 0 or 1.
She learns f(x1, x2, . . . , xm, y1, y2, . . . , yn)

How does Bob learn the wire-labels corresponding to his input?

The Oblivious Transfer Protocol

• He cannot just ask Alice, since this would reveal his inputs

How does Bob learn the wire-labels corresponding to his input?

The Oblivious Transfer Protocol

• He cannot just ask Alice, since this would reveal his inputs

Alice and Bob use a protocol known as oblivious transfer protocol

• In the oblivious transfer protocol Alice has two messages m0,m1 of length ℓ(n)

n is the security
parameter

How does Bob learn the wire-labels corresponding to his input?

The Oblivious Transfer Protocol

• He cannot just ask Alice, since this would reveal his inputs

Alice and Bob use a protocol known as oblivious transfer protocol

• In the oblivious transfer protocol Alice has two messages m0,m1 of length ℓ(n)

• Bob wants to learn one of them, say mb, without revealing which one he is interested in to Alice

• Alice wants to be sure that Bob learns exactly one of the two values

Oblivious
Transfer
Protocol

m0,m1 b

n is the security
parameter

