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If A can recover the secret then
any B ⊃ A can recover the secret

If all parties come together, they
must be able to recover the
secret (otherwise Γ = ∅ and there
is no point in sharing the secret)

We can further assume that: ∀a ∈ A s,t, {a} ̸∈ Γ since otherwise we can simply send the secret to a
and restrict ourselves to the access structure Γ′ = {A ∈ Γ | a ̸∈ A}

(this implies ∅ ̸∈ Γ)



Access Structures and Qualifying Sets

What’s the access structure for a k-out-of-n threshold secret sharing scheme?



Access Structures and Qualifying Sets

What’s the access structure for a k-out-of-n threshold secret sharing scheme?

Γ = {A ∈ 2A : |A| ≥ k}



Access Structures and Qualifying Sets

What’s the access structure for a k-out-of-n threshold secret sharing scheme?

Γ = {A ∈ 2A : |A| ≥ k}

Example:

• A = {Alice,Bob,Charlie,Dan}, n = |A| = 4, k = 2

• Γ = { {Alice,Bob}, {Alice,Charlie}, {Alice,Dan}, {Bob,Charlie}, {Bob,Dan}, {Charlie,Dan},
{Alice,Bob,Charlie}, {Alice,Bob,Dan}, {Alice,Charlie,Dan}, {Bob,Charlie,Dan},
{Alice,Bob,Charlie,Dan} }
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Definition: A secret sharing scheme for a monotone access structure Γ over a set of parties A with
respect to a space of secrets S is a pair of algorithms:

• Share(s,Γ): a (randomized) algorithm that takes a secret s ∈ S
and a monotone access structure Γ and outputs a value sa for
every a ∈ A. The value sa is called a’s share of the secret.

• Recombine(H): a deterministic algorithm that takes a set
H = {sa | a ∈ A} containing a share for each party in some set
A ⊆ A and outputs a secret s ∈ S if A ∈ Γ and a failure symbol
⊥ if A ̸∈ Γ.

Correctness: If H = {sa | a ∈ A} for a set
A ∈ Γ and all sa were output by Share(s,Γ),
then Recombine(H) = s.

Share

Recombine

Share Recombine



A secret sharing scheme is information theoretically secure (or just secure) if no (computationally
unbounded) adversary can learn anything about the underlying secret without having access to the
shares of a qualifying set.
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A secret sharing scheme is information theoretically secure (or just secure) if no (computationally
unbounded) adversary can learn anything about the underlying secret without having access to the
shares of a qualifying set.

Formalized similarly to perfect secrecy (there are multiple equivalent definitions):

Pr[(Sa)a∈A = α] = Pr[(S′
a)a∈A = α],

A secret sharing scheme is secure if, for every s, s′ ∈ S, every access structure Γ, every A ⊂ A with
A ̸∈ Γ, and every vector of shares α = (αa)a∈A:

where Sa (resp. S′
a) is a random variable representing the share given to the party a ∈ A by

Share(Γ, s) (resp. Share(Γ, s′))

Security Definition
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Consider A = {a, b}. What are the possible access structures?

Γ = {∅, {a}, {b}, {a, b}}
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Trivial: send secret to b and nothing to a

This is the only interesting case

Let the space of secrets be S = {0, 1}ℓ

• Share(s,Γ): choose r u.a.r. from {0, 1}ℓ. Return sa = r and sb = r ⊕ s.

• Recombine(H): if |H| < 2 return ⊥. Otherwise H = {sa, sb}, return sa ⊕ sb.

Correctness: sa ⊕ sb = r ⊕ (r ⊕ s) = s.

2-out-of-2 threshold
secret-sharing scheme
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• If |H| < n return ⊥.
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Secret sharing with arbitrary access structures

Let Γ be an access structure (for an arbitrary number of parties n)

A qualifying set B ∈ Γ is minimal if there is no qualifying set B′ ∈ Γ such that B′ ⊂ B.

Let m(Γ) = {B1, B2, . . . } denote the set of all minimal qualifying sets in Γ

• Γ = { {X,Z}, {Y,W,Z}, {X,Y, Z}, {X,W,Z}, {X,Y,W,Z} }

Example:

• m(Γ) = { {X,Z}, {Y,W,Z} }
If we think of a each party a ∈ A as a Boolean variable, we can define the following Boolean formula
in disjunctive normal form:

• A = {X,Y,W,Z}

_

Bi∈m(Γ)

 ^

b∈Bi

b

!

A set A of parties induces a truth assignment in which a is true iff a ∈ A

(X ∧ Z) ∨ (Y ∧W ∧ Z)

The truth assignment satisfies the formula if and only if A is a qualifying set

Each set Bi is a clause (conjunction of variables)

The formula is a disjunction of clauses
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We can read the DNF formula as a set of instructions to build the shares sa, a ∈ A
• Each clause Bi corresponds to an “inner” |Bi|-out-of-|Bi| threshold secret sharing scheme

Each agent b ∈ Bi gets a share s
(i)
b

Share:
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We can read the DNF formula as a set of instructions to build the shares sa, a ∈ A

For B2 = {Y,W,Z} we pick random strings for s
(2)
Y and s

(2)
W and set s

(2)
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(2)
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W

• Each clause Bi corresponds to an “inner” |Bi|-out-of-|Bi| threshold secret sharing scheme

• The “or” operations denote concatenation of the inner shares of each player

Recombine & Correctness:

If A is a qualifying set, then there is some clause consisting only of variables in A.

The parties involved in the clause can recover s using the Recombine step of the corresponding
k-out-of-k threshold secret sharing scheme

Each agent b ∈ Bi gets a share s
(i)
b

E.g., for B1 = {X,Z} we pick a random string for s
(1)
X and set s

(1)
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(1)
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X ,
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Shamir Secret Sharing

The previous secret sharing scheme can produce shares that are much
larger than the secret s

One notable example where this happens is the k-out-of-n case

• If k = n
2 there are
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�
= Ω(2n/

√
n) minimal qualifying sets

• The shares are exponentially longer than the secret!



Shamir Secret Sharing

The previous secret sharing scheme can produce shares that are much
larger than the secret s

One notable example where this happens is the k-out-of-n case

• If k = n
2 there are


n

n/2

�
= Ω(2n/

√
n) minimal qualifying sets

• The shares are exponentially longer than the secret!

Shamir proposed a secret k-out-of-n threshold secret-sharing scheme in
which all the shares have (approximately) the same length as the secret

The scheme uses Lagrange interpolating polynomials
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Consider a set {(x1, y1), . . . , (xk, yk)} of k points in R2 with distinct xis.

We want to build a polynomial f that “passes through” all the points (i.e., f(xi) = yi for i = 1, . . . , k)

Consider the polynomial:

ℓ1(x) = (x− x2)(x1 − x2)
−1 · (x− x3)(x1 − x3)

−1 · . . . · (x− xk)(x1 − xk)
−1

What happens when ℓ1 is evaluated at the points x1, x2, . . . , xk?

• If x = x1 then each (x− xi)(x1 − xi)
−1 evaluates to 1 =⇒ ℓ1(x1) = 1

• If x = xi for i ̸= 1 then the product includes (x− xi) = 0 =⇒ ℓ1(xi) = 0

We can generalize this to all j: ℓj(x) =
Y

i=1,...,k
i̸=j

(x− xi)(xj − xi)
−1

ℓj(xi) =

(
1 if i = j

0 if i ̸= j
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The collection of polynomials ℓ1(x), . . . , ℓk(x) is called a Lagrange basis

Consider the polynomial:

f(x) = y1ℓ1(x) + y2ℓ2(x) + · · ·+ ykℓk(x)

What’s the value of f(xi)?

• If j ̸= i then yjℓj(xi) = 0

• For i = j we have yiℓi(xi) = yi · 1 = yi

f(x) is called the Lagrange interpolating polynomial

• f(x) is a sum of polynomials of degree k − 1, therefore f(x) has degree k − 1

• Each ℓj is the product of k − 1 terms (x− xi) (and some constants), therefore ℓj has degree k − 1





f(xi) = yi



Lagrange interpolating polynomials

y1 · ℓ1(x)

y2 · ℓ2(x)

y4 · ℓ4(x)

y3 · ℓ3(x)

f(x)
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that f(xi) = yi for all i = 1, . . . , k.
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Theorem: there is a unique polynomial f(x) of degree at most k − 1 with real coefficients such
that f(xi) = yi for all i = 1, . . . , k.

Proof:

• We have already shown that a polynomial f(x) of degree k − 1 exists, we just need to argue that it
is unique

• Let g(x) be any polynomial of degree at most k − 1 such that g(xi) = yi for all i

• The polynomial h(x) = g(x)− f(x) has degree at most k − 1 and satisfies h(xi) = 0 for all i

• h(x) has k roots and degree k − 1

Fundamental theorem of algebra: every non-zero, single-variable, degree d polynomial
with complex coefficients has, counted with multiplicity, exactly d complex roots.

=⇒ h(x) = 0 =⇒ g(x) = f(x)

□
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Lagrange interpolating polynomials with coefficient over Zp

We will need to choose an interpolating polynomial uniformly at random to obtain a secure
secret-sharing scheme

• Unclear how to do that over the reals

• Unclear how to represent a real number on a computer

Idea: we restrict ourselves to polynomials with coefficients over Zp, for some prime p

A field is a set of elements together with two binary operations (F,⊕,⊗) such that:

• (F,⊕) is an Abelian group, we call its identity element 0

• (F \ {0},⊗) is an Abelian group

• The ⊗ operation distributes over the ⊕ operation: i.e., a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)

• The fundamental theorem of algebra can be extended to univariate polynomials over a finite field

• (Zp,+, ·) is a finite filed

Good news:



Theorem: Let {(x1, y1), . . . , (xk, yk)} be a set of k points in Zp × Zp with
distinct xis. There is a unique polynomial f(x) of degree at most k − 1 with
coefficients in Zp such that f(xi) = yi (mod p) for all i = 1, . . . , k.

The construction and the proof of uniqueness are identical to the previous ones

(where −x and x−1 denote the additive and multiplicative inverses of x in Zp).
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Source: Mike Rosulek, The Joy of Cryptography
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coefficients in Zp such that f(xi) = yi (mod p) for all i = 1, . . . , k.

The construction and the proof of uniqueness are identical to the previous ones

(where −x and x−1 denote the additive and multiplicative inverses of x in Zp).
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f(x) = x2 + 4x+ 7

Over the reals Over Z11

Example:

Source: Mike Rosulek, The Joy of Cryptography



Back to Shamir Secret Sharing

Share(s):

The space of secrets S is Zp for some prime number p

If the secret s is a binary number with t bits, we can pick a prime p > max{s, n} with Θ(t+ log n) bits.

The Shamir k-out-of-n threshold secret sharing scheme is as follows:

(we omit the access structure, which is determined by k and n)

• Choose k − 1 coefficients β1, . . . ,βk−1 independently and u.a.r. from Zp

• Define the polynomial: f(x) = s+
Pk−1

i=1 βix
i

• For i = 1, . . . , n:

The set of parties is A = {1, 2, . . . , n}

• Assign to party i the share si = (i, f(i)) , where f is evaluated in Zp

(f is a random polynomial such that f(0) = s)
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Share(s):

The space of secrets S is Zp for some prime number p

If the secret s is a binary number with t bits, we can pick a prime p > max{s, n} with Θ(t+ log n) bits.

The Shamir k-out-of-n threshold secret sharing scheme is as follows:

(we omit the access structure, which is determined by k and n)

• Choose k − 1 coefficients β1, . . . ,βk−1 independently and u.a.r. from Zp

• Define the polynomial: f(x) = s+
Pk−1

i=1 βix
i

• For i = 1, . . . , n:

The set of parties is A = {1, 2, . . . , n}

• Assign to party i the share si = (i, f(i)) , where f is evaluated in Zp

Recombine({si | i ∈ A}) (A is a qualifying set)

(f is a random polynomial such that f(0) = s)

• Compute the (unique) interpolating polynomial f (with coefficient in Zp) of degree k − 1 such
that f(i) = si

• Return f(0)
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Consider a set of n = 5 parties that want to share a secret s = 8 using Sharmir’s 3-out-of-5 threshold
secret sharing scheme

Sharing:

• We pick two random coefficients, e.g., β1 = 4, β2 = 7

We will work in the field Z11

• The polynomial f(x) = s+ β1x+ β2x
2 is 8 + 4x+ 7x2

• The five shares are: s1 = (1, f(1)) = (1, 8) s2 = (2, f(2)) = (2, 0) s3 = (3, f(3)) = (3, 6)
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Each party wants the other party to learn nothing about their inputs*

*Except from what they can deduce from knowing the value f(x1, . . . , xm, y1, . . . , yn) (this is inevitable)

We actually consider a stronger variant: Alice wants to learn f(x1, x2, . . . , xm, y1, y2, . . . , yn)
while Bob learns nothing

• If we can solve this variant, then we can solve the above case (Alice sends the final output to Bob)

• This allows us to solve the more general case in which Alice learns fA(x1, x2, . . . , xm, y1, y2, . . . , yn)
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Finally, Alice sends to Bob all the (now garbled) logic gates, the connections between them, and the
wire-labels corresponding to her inputs
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Finally, Alice sends to Bob all the (now garbled) logic gates, the connections between them, and the
wire-labels corresponding to her inputs

For example, when x1 = 1, Alice sends to Bob all the
garbled gates together with k10
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Bob receives the garbled circuit from Alice, together with the wire-labels of Alice’s inputs
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Suppose that Bob somehow knows the wire-labels corresponding to his input (we will handle this later)

Bob receives the garbled circuit from Alice, together with the wire-labels of Alice’s inputs
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Suppose that Bob somehow knows the wire-labels corresponding to his input (we will handle this later)

Bob receives the garbled circuit from Alice, together with the wire-labels of Alice’s inputs

Bob can evaluate the garbled circuit and recover the wire-label corresponding to the output wire
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Suppose that Bob somehow knows the wire-labels corresponding to his input (we will handle this later)

Bob receives the garbled circuit from Alice, together with the wire-labels of Alice’s inputs

Bob can evaluate the garbled circuit and recover the wire-label corresponding to the output wire

• To evaluate a logic gate, bob tries to decrypt each of the four possible encrypted rows



Yao’s Garbled Circuits: Evaluating the Circuit

x1

y1

y2

k10

k01

k12

Enck0
0,k

1
1
(k0

3)

Enck1
0,k

1
1
(k1

3)

Enck0
0,k

0
1
(k0

3)

Enck1
0,k

0
1
(k0

3)

Enck1
1,k

1
2
(k1

4)

Enck0
1,k

1
2
(k1

4)

Enck0
1,k

0
2
(k0

4)

Enck1
1,k

0
2
(k1

4)

Enck0
3,k

1
4
(k0

5)

Enck1
3,k

0
4
(k0

5)

Enck1
3,k

1
4
(k1

5)

Enck0
3,k

0
4
(k0

5)
Enck1

5,k
1
2
(k1

6)

Enck1
5,k

0
2
(k1

6)

Enck0
5,k

1
2
(k0

6)

Enck0
5,k

0
2
(k1

6)

Suppose that Bob somehow knows the wire-labels corresponding to his input (we will handle this later)

Bob receives the garbled circuit from Alice, together with the wire-labels of Alice’s inputs

Bob can evaluate the garbled circuit and recover the wire-label corresponding to the output wire

• To evaluate a logic gate, bob tries to decrypt each of the four possible encrypted rows

• Since we are using a secure authenticated encryption scheme, exactly one of these rows will decrypt
successfully (except for negligible probability)
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Suppose that Bob somehow knows the wire-labels corresponding to his input (we will handle this later)

Bob receives the garbled circuit from Alice, together with the wire-labels of Alice’s inputs

Bob can evaluate the garbled circuit and recover the wire-label corresponding to the output wire

• To evaluate a logic gate, bob tries to decrypt each of the four possible encrypted rows

• Since we are using a secure authenticated encryption scheme, exactly one of these rows will decrypt
successfully (except for negligible probability)
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Suppose that Bob somehow knows the wire-labels corresponding to his input (we will handle this later)

Bob receives the garbled circuit from Alice, together with the wire-labels of Alice’s inputs

Bob can evaluate the garbled circuit and recover the wire-label corresponding to the output wire

• To evaluate a logic gate, bob tries to decrypt each of the four possible encrypted rows

• Since we are using a secure authenticated encryption scheme, exactly one of these rows will decrypt
successfully (except for negligible probability)
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Suppose that Bob somehow knows the wire-labels corresponding to his input (we will handle this later)

Bob receives the garbled circuit from Alice, together with the wire-labels of Alice’s inputs

Bob can evaluate the garbled circuit and recover the wire-label corresponding to the output wire

• To evaluate a logic gate, bob tries to decrypt each of the four possible encrypted rows

• Since we are using a secure authenticated encryption scheme, exactly one of these rows will decrypt
successfully (except for negligible probability)

k03

k14

k05



Yao’s Garbled Circuits: Evaluating the Circuit

x1

y1

y2

k10

k01

k12

Enck0
0,k

1
1
(k0

3)

Enck1
0,k

1
1
(k1

3)

Enck0
0,k

0
1
(k0

3)

Enck1
0,k

0
1
(k0

3)

Enck1
1,k

1
2
(k1

4)

Enck0
1,k

1
2
(k1

4)

Enck0
1,k

0
2
(k0

4)

Enck1
1,k

0
2
(k1

4)

Enck0
3,k

1
4
(k0

5)

Enck1
3,k

0
4
(k0

5)

Enck1
3,k

1
4
(k1

5)

Enck0
3,k

0
4
(k0

5)
Enck1

5,k
1
2
(k1

6)

Enck1
5,k

0
2
(k1

6)

Enck0
5,k

1
2
(k0

6)

Enck0
5,k

0
2
(k1

6)

Suppose that Bob somehow knows the wire-labels corresponding to his input (we will handle this later)

Bob receives the garbled circuit from Alice, together with the wire-labels of Alice’s inputs

Bob can evaluate the garbled circuit and recover the wire-label corresponding to the output wire

• To evaluate a logic gate, bob tries to decrypt each of the four possible encrypted rows

• Since we are using a secure authenticated encryption scheme, exactly one of these rows will decrypt
successfully (except for negligible probability)
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Suppose that Bob somehow knows the wire-labels corresponding to his input (we will handle this later)

Bob receives the garbled circuit from Alice, together with the wire-labels of Alice’s inputs

Bob can evaluate the garbled circuit and recover the wire-label corresponding to the output wire

• To evaluate a logic gate, bob tries to decrypt each of the four possible encrypted rows

• Since we are using a secure authenticated encryption scheme, exactly one of these rows will decrypt
successfully (except for negligible probability)
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Suppose that Bob somehow knows the wire-labels corresponding to his input (we will handle this later)

Bob receives the garbled circuit from Alice, together with the wire-labels of Alice’s inputs

Bob can evaluate the garbled circuit and recover the wire-label corresponding to the output wire
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Once Bob knows the (garbled) circuit’s output, he sends it to Alice
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Suppose that Bob somehow knows the wire-labels corresponding to his input (we will handle this later)

Bob receives the garbled circuit from Alice, together with the wire-labels of Alice’s inputs

Bob can evaluate the garbled circuit and recover the wire-label corresponding to the output wire
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Garbled circuit
output

Once Bob knows the (garbled) circuit’s output, he sends it to Alice

Alice knows whether the label she received corresponds to 0 or 1.
She learns f(x1, x2, . . . , xm, y1, y2, . . . , yn)
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How does Bob learn the wire-labels corresponding to his input?

The Oblivious Transfer Protocol

• He cannot just ask Alice, since this would reveal his inputs

Alice and Bob use a protocol known as oblivious transfer protocol

• In the oblivious transfer protocol Alice has two messages m0,m1 of length ℓ(n)

• Bob wants to learn one of them, say mb, without revealing which one he is interested in to Alice

• Alice wants to be sure that Bob learns exactly one of the two values

Oblivious
Transfer
Protocol

m0,m1 b

n is the security
parameter


