A decision problem corresponds to a language $L \subseteq \{0,1\}^*$ containing all yes-instances (w.r.t. some encoding)

• P (polynomial-time): The class of all languages that can be decided by a deterministic polynomial-time Turing machine

- P (polynomial-time): The class of all languages that can be decided by a deterministic polynomial-time Turing machine
- BPP (bounded-error probabilistic polynomial-time): The class of all languages L that can be decided in polynomial-time by a probabilistic Turing machine T with probability of error bounded by $\frac{1}{3}$
 - If $x \in L$, then $\Pr[T(x) \text{ accepts}] \geq \frac{2}{3}$
 - If $x \notin L$, then $\Pr[T(x) \text{ accepts}] \leq \frac{1}{3}$

- P (polynomial-time): The class of all languages that can be decided by a deterministic polynomial-time Turing machine
- BPP (bounded-error probabilistic polynomial-time): The class of all languages L that can be decided in polynomial-time by a probabilistic Turing machine T with probability of error bounded by $\frac{1}{3}$
 - If $x \in L$, then $\Pr[T(x) \text{ accepts}] \geq \frac{2}{3}$
 - If $x \notin L$, then $\Pr[T(x) \text{ accepts}] \leq \frac{1}{3}$
- NP (non-deterministic polynomial-time): The class of all languages that can be decided by a non-deterministic polynomial-time Turing machine T
 - If $x \in L$, then at least one computation path of T(x) accepts
 - If $x \notin L$, then all computation paths of T(x) reject

- P (polynomial-time): The class of all languages that can be decided by a deterministic polynomial-time Turing machine
- BPP (bounded-error probabilistic polynomial-time): The class of all languages L that can be decided in polynomial-time by a probabilistic Turing machine T with probability of error bounded by $\frac{1}{3}$
 - If $x \in L$, then $\Pr[T(x) \text{ accepts}] \geq \frac{2}{3}$
 - If $x \notin L$, then $\Pr[T(x) \text{ accepts}] \leq \frac{1}{3}$
- NP (non-deterministic polynomial-time): The class of all languages that can be decided by a non-deterministic polynomial-time Turing machine T
 - If $x \in L$, then at least one computation path of T(x) accepts
 - If $x \notin L$, then all computation paths of T(x) reject
- PSPACE (polynomial-space): The class of all languages that can be decided by a deterministic Turing machine that uses a polynomial amount of space (w.r.t. the size of the input)

- P (polynomial-time): The class of all languages that can be decided by a deterministic polynomial-time Turing machine
- BPP (bounded-error probabilistic polynomial-time): The class of all languages L that can be decided in polynomial-time by a probabilistic Turing machine T with probability of error bounded by $\frac{1}{3}$
 - If $x \in L$, then $\Pr[T(x) \text{ accepts}] \geq \frac{2}{3}$
 - If $x \notin L$, then $\Pr[T(x) \text{ accepts}] \leq \frac{1}{3}$
- NP (non-deterministic polynomial-time): The class of all languages that can be decided by a non-deterministic polynomial-time Turing machine T
 - If $x \in L$, then at least one computation path of T(x) accepts
 - If $x \notin L$, then all computation paths of T(x) reject
- PSPACE (polynomial-space): The class of all languages that can be decided by a deterministic Turing machine that uses a polynomial amount of space (w.r.t. the size of the input)
- $\mathsf{P} \subseteq \mathsf{BPP} \subseteq \mathsf{PSPACE} \qquad \qquad \mathsf{P} \subseteq \mathsf{NP} \subseteq \mathsf{PSPACE}$

A decision problem corresponds to a language $L \subseteq \{0,1\}^*$ containing all yes-instances (w.r.t. some encoding)

- P (polynomial-time): The class of all languages that can be decided by a deterministic polynomial-time Turing machine
- BPP (bounded-error probabilistic polynomial-time): The class of all languages L that can be decided in polynomial-time by a probabilistic Turing machine T with probability of error bounded by $\frac{1}{3}$
 - If $x \in L$, then $\Pr[T(x) \text{ accepts}] \geq \frac{2}{3}$
 - If $x \notin L$, then $\Pr[T(x) \text{ accepts}] \leq \frac{1}{3}$
- NP (non-deterministic polynomial-time): The class of all languages that can be decided by a non-deterministic polynomial-time Turing machine T
 - If $x \in L$, then at least one computation path of T(x) accepts
 - If $x \notin L$, then all computation paths of T(x) reject
- PSPACE (polynomial-space): The class of all languages that can be decided by a deterministic Turing machine that uses a polynomial amount of space (w.r.t. the size of the input)

 $\mathsf{P} \subseteq \mathsf{BPP} \subseteq \mathsf{PSPACE} \qquad \mathsf{P} \subseteq \mathsf{NP} \subseteq \mathsf{PSPACE} \qquad \text{The relation between BPP and NP is unknown}$

$5 \\ 6$	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	$\overline{7}$	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

$\frac{5}{6}$	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

$\frac{5}{6}$	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

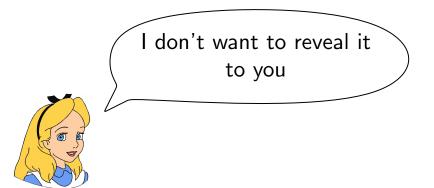
I know a solution to this Sudoku instance

-			_	_				
5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
$\overline{7}$	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

$\frac{5}{6}$	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

$5 \\ 6$	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9



				_				
5	3	4	6	$\overline{7}$	8	9	1	2
6	$\overline{7}$	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
$\overline{7}$	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

$\frac{5}{6}$	3			7				
6			1	9	5			
	9	8					6	
8				6				3
$\frac{4}{7}$			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Then I don't believe you really have a solution

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

$\frac{5}{6}$	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

I can prove to you I have a solution without revealing anything about it

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

$\frac{5}{6}$	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

I can prove to you I have a solution without revealing anything about it

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

I can prove to you I have a solution without revealing anything about it 0 Ø Zero Knowledge protocol

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	$\overline{7}$	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

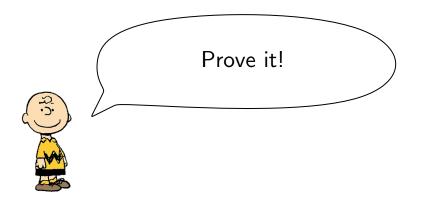
5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

I am now convinced you have the solution Zero Knowledge protocol

$5 \\ 6$	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Hey, Charlie! Alice has a solution to this Sudoku instance

$5 \\ 6$	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9



$5 \\ 6$	3			7				
6			1	9	5			
	9	8					6	
8				6				3
8 4			8		3			1
7				2				6
	6					2	8	
			4	1	9			$\frac{5}{9}$
				8			7	9

Even if I definitely know she has a solution, somehow I have no way of proving that

There is some **claim** x known to both Alice and Bob

A prover (Alice) wants to convince a verifier (Bob) that the claim is true

There is some **claim** x known to both Alice and Bob

A prover (Alice) wants to convince a verifier (Bob) that the claim is true

What is a proof?

 \bullet Classically, a proof is a string w that "convinces" the verifier

There is some claim x known to both Alice and Bob

A prover (Alice) wants to convince a verifier (Bob) that the claim is true

What is a proof?

• Classically, a proof is a string w that "convinces" the verifier

x = "In a right triangle with legs of length a, b and hypotenuse length c, we have $a^2 + b^2 = c^{2"}$ w = "Consider a right triangle with vertices a, b, c and let... QED."

There is some claim x known to both Alice and Bob

A **prover** (Alice) wants to convince a **verifier** (Bob) that the claim is true What is a proof?

• Classically, a proof is a string w that "convinces" the verifier

x = "In a right triangle with legs of length a, b and hypotenuse length c, we have $a^2 + b^2 = c^{2"}$ w = "Consider a right triangle with vertices a, b, c and let... QED."

x = "The number N is the product of two primes" w = (p,q) where p,q are primes and pq = N

There is some claim x known to both Alice and Bob

A **prover** (Alice) wants to convince a **verifier** (Bob) that the claim is true What is a proof?

• Classically, a proof is a string w that "convinces" the verifier

x = "In a right triangle with legs of length a, b and hypotenuse length c, we have $a^2 + b^2 = c^{2"}$ w = "Consider a right triangle with vertices a, b, c and let... QED."

$$x =$$
 "The number N is the product of two primes"

w = (p,q) where p,q are primes and pq = N

Consider claims of the form "x belongs to some language L"

There is some claim x known to both Alice and Bob

A **prover** (Alice) wants to convince a **verifier** (Bob) that the claim is true What is a proof?

• Classically, a proof is a string w that "convinces" the verifier

x = "In a right triangle with legs of length a, b and hypotenuse length c, we have $a^2 + b^2 = c^{2"}$ w = "Consider a right triangle with vertices a, b, c and let... QED."

$$x =$$
 "The number N is the product of two primes"

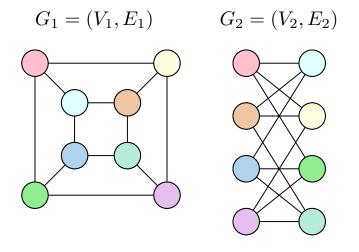
w = (p,q) where p,q are primes and pq = N

Consider claims of the form "x belongs to some language L"

We can model the verifier as a polynomial-time algorithm $\mathcal{V}(x, w)$ that takes as input the claim x and the proof w, and outputs 1 if and only if it accepts w as a proof of x

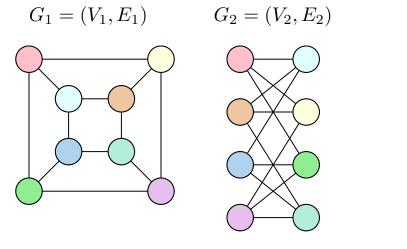
Graph isomorphism problem

 G_1 is isomorphic to G_2 iff \exists bijection $\pi: V_1 \to V_2$ s.t. $(u, v) \in E_1 \iff (\pi(u), \pi(v)) \in E_2$.



Graph isomorphism problem

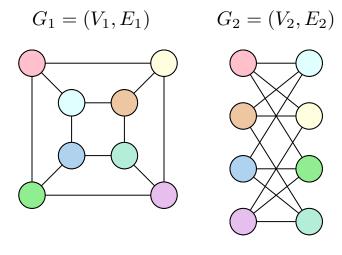
 G_1 is isomorphic to G_2 iff \exists bijection $\pi: V_1 \to V_2$ s.t. $(u, v) \in E_1 \iff (\pi(u), \pi(v)) \in E_2$.



Claim: G_1 and G_2 are isomorphic.

Graph isomorphism problem

 G_1 is isomorphic to G_2 iff \exists bijection $\pi: V_1 \to V_2$ s.t. $(u, v) \in E_1 \iff (\pi(u), \pi(v)) \in E_2$.



Claim: G_1 and G_2 are isomorphic. $L = \{(G_1, G_2) \mid \exists \text{ bijection } \pi : V_1 \to V_2 \text{ s.t. } (u, v) \in E_1$ $\iff (\pi(u), \pi(v)) \in E_2\}$

Graph isomorphism problem

 G_1 is isomorphic to G_2 iff \exists bijection $\pi: V_1 \to V_2$ s.t. $(u, v) \in E_1 \iff (\pi(u), \pi(v)) \in E_2$.

$$G_1 = (V_1, E_1) \qquad \qquad G_2 = (V_2, E_2)$$

Claim: G_1 and G_2 are isomorphic. $L = \{ (G_1, G_2) \mid \exists \text{ bijection } \pi : V_1 \to V_2 \text{ s.t. } (u, v) \in E_1 \\ \iff (\pi(u), \pi(v)) \in E_2 \}$ $x = (G_1, G_2)$

Graph isomorphism problem

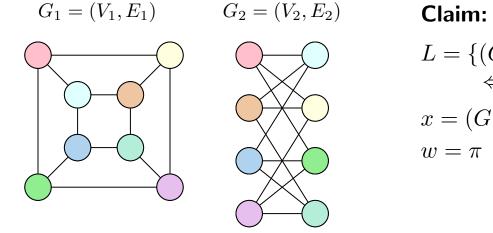
 G_1 is isomorphic to G_2 iff \exists bijection $\pi: V_1 \to V_2$ s.t. $(u, v) \in E_1 \iff (\pi(u), \pi(v)) \in E_2$.

$$G_1 = (V_1, E_1) \qquad G_2 = (V_2, E_2)$$

Claim: G_1 and G_2 are isomorphic. $L = \{(G_1, G_2) \mid \exists \text{ bijection } \pi : V_1 \rightarrow V_2 \text{ s.t. } (u, v) \in E_1$ $\iff (\pi(u), \pi(v)) \in E_2\}$ $x = (G_1, G_2)$ $w = \pi$

Graph isomorphism problem

 G_1 is isomorphic to G_2 iff \exists bijection $\pi: V_1 \to V_2$ s.t. $(u, v) \in E_1 \iff (\pi(u), \pi(v)) \in E_2$.



Claim:
$$G_1$$
 and G_2 are isomorphic.

$$L = \{(G_1, G_2) \mid \exists \text{ bijection } \pi : V_1 \rightarrow V_2 \text{ s.t. } (u, v) \in E_1$$

$$\iff (\pi(u), \pi(v)) \in E_2\}$$

$$x = (G_1, G_2)$$

$$w = \pi$$

Algorithm $\mathcal{V}((G_1, G_2), \pi)$:

- For all $u, v \in V_1^2$:
 - If $((u,v) \in E_1 \land (\pi(u),\pi(v)) \notin E_2) \lor ((u,v) \notin E_1 \land (\pi(u),\pi(v)) \in E_2)$: Return 0
- Return 1

Graph isomorphism problem

 G_1 is isomorphic to G_2 iff \exists bijection $\pi: V_1 \to V_2$ s.t. $(u, v) \in E_1 \iff (\pi(u), \pi(v)) \in E_2$.

$$G_1 = (V_1, E_1) \qquad \qquad G_2 = (V_2, E_2)$$

Claim: G_1 and G_2 are isomorphic. $L = \{(G_1, G_2) \mid \exists \text{ bijection } \pi : V_1 \rightarrow V_2 \text{ s.t. } (u, v) \in E_1 \Leftrightarrow (\pi(u), \pi(v)) \in E_2\}$ $x = (G_1, G_2)$ $w = \pi$ The verifier learns the isomorphism π

Algorithm $\mathcal{V}((G_1, G_2), \pi)$:

- For all $u, v \in V_1^2$:
 - If $((u,v) \in E_1 \land (\pi(u),\pi(v)) \notin E_2) \lor ((u,v) \notin E_1 \land (\pi(u),\pi(v)) \in E_2)$: Return 0
- Return 1

Graph isomorphism problem

 $G_1 \text{ is isomorphic to } G_2 \text{ iff } \exists \text{ bijection } \pi: V_1 \to V_2 \text{ s.t. } (u,v) \in E_1 \iff (\pi(u),\pi(v)) \in E_2.$

$$G_1 = (V_1, E_1) \qquad \qquad G_2 = (V_2, E_2)$$

Claim: G_1 and G_2 are isomorphic. $L = \{(G_1, G_2) \mid \exists \text{ bijection } \pi : V_1 \rightarrow V_2 \text{ s.t. } (u, v) \in E_1 \Leftrightarrow (\pi(u), \pi(v)) \in E_2\}$ $x = (G_1, G_2)$ $w = \pi$ The verifier learns the isomorphism π

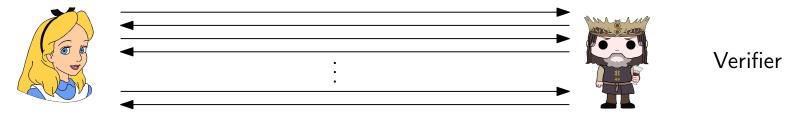
Is it necessary to reveal π ?

Algorithm $\mathcal{V}((G_1, G_2), \pi)$:

- For all $u, v \in V_1^2$:
 - If $((u,v) \in E_1 \land (\pi(u),\pi(v)) \notin E_2) \lor ((u,v) \notin E_1 \land (\pi(u),\pi(v)) \in E_2)$: Return 0
- Return 1

Interactive Proofs Systems

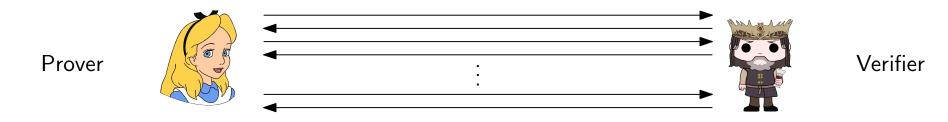
In an **interactive proof system**, the prover and the verifier exchange multiple messages following some **protocol**



Prover

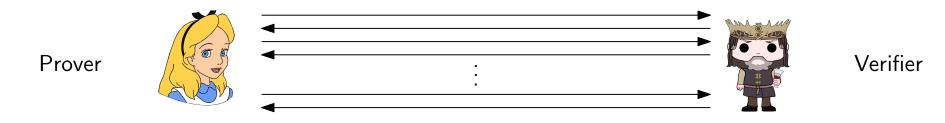
Interactive Proofs Systems

In an **interactive proof system**, the prover and the verifier exchange multiple messages following some **protocol**



The prover is a **computationally unbounded** algorithm

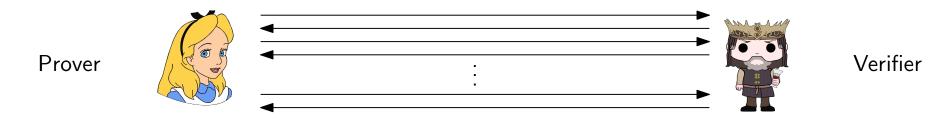
In an **interactive proof system**, the prover and the verifier exchange multiple messages following some **protocol**



The prover is a **computationally unbounded** algorithm

The verifier will be a polynomial-time randomized algorithm

In an **interactive proof system**, the prover and the verifier exchange multiple messages following some **protocol**



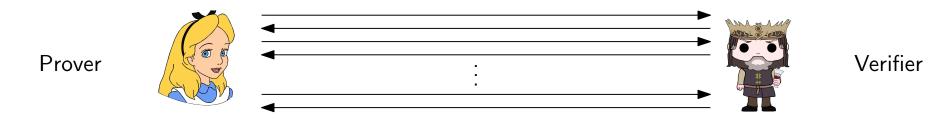
The prover is a **computationally unbounded** algorithm

The verifier will be a polynomial-time **randomized** algorithm

Ideally, at the end of the interaction:

• If $x \in L$, the prover knows a proof, and follows the protocol, then the verifier will be convinced that $x \in L$ (completeness)

In an **interactive proof system**, the prover and the verifier exchange multiple messages following some **protocol**



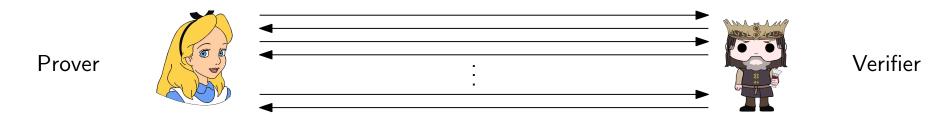
The prover is a **computationally unbounded** algorithm

The verifier will be a polynomial-time **randomized** algorithm

Ideally, at the end of the interaction:

- If $x \in L$, the prover knows a proof, and follows the protocol, then the verifier will be convinced that $x \in L$ (completeness)
- If x ∉ L, no prover (even a cheating prover that deviates from the protocol) manages to convince the verfier that x ∈ L (soundness)

In an **interactive proof system**, the prover and the verifier exchange multiple messages following some **protocol**



The prover is a **computationally unbounded** algorithm

The verifier will be a polynomial-time **randomized** algorithm

Ideally, at the end of the interaction:

- If $x \in L$, the prover knows a proof, and follows the protocol, then the verifier will be convinced that $x \in L$ (completeness)
- If $x \notin L$, no prover (even a cheating prover that deviates from the protocol) manages to convince the verfier that $x \in L$ (soundness)

We relax the above requirements by allowing the verifier to commit errors (with a small probability).

Suppose that the prover needs to convince a colorbrind verifier that this sheet of paper contains multiple colors:

Suppose that the prover needs to convince a colorbrind verifier that this sheet of paper contains multiple colors:

The verifier secretly chooses a random bit \boldsymbol{b}

- If b = 0 the verifier keeps the sheet in the original orientation
- If b = 1 the verifier flips the sheet upside down

Suppose that the prover needs to convince a colorbrind verifier that this sheet of paper contains multiple colors:

The verifier secretly chooses a random bit \boldsymbol{b}

- If b = 0 the verifier keeps the sheet in the original orientation
- If b = 1 the verifier flips the sheet upside down

Then the verifier shows the sheet to the prover

Suppose that the prover needs to convince a colorbrind verifier that this sheet of paper contains multiple colors:

The verifier secretly chooses a random bit b

- If b = 0 the verifier keeps the sheet in the original orientation
- If b = 1 the verifier flips the sheet upside down

Then the verifier shows the sheet to the prover

My guess is $b^\prime = 1$ (you flipped the sheet)

The prover observes the sheet and replies with a guess b^\prime about b

Suppose that the prover needs to convince a colorbrind verifier that this sheet of paper contains multiple colors:

The verifier secretly chooses a random bit b

- If b = 0 the verifier keeps the sheet in the original orientation
- If b = 1 the verifier flips the sheet upside down

Then the verifier shows the sheet to the prover

My guess is $b^\prime = 1$ (you flipped the sheet)

The prover observes the sheet and replies with a guess b' about b

The verifier accepts the proof if b' = b and rejects it if $b' \neq b$

Suppose that the prover needs to convince a colorbrind verifier that this sheet of paper contains multiple colors:

The verifier secretly chooses a random bit b

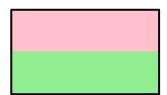
- If b = 0 the verifier keeps the sheet in the original orientation
- If b = 1 the verifier flips the sheet upside down

Then the verifier shows the sheet to the prover

My guess is b' = 1 (you flipped the sheet)

The prover observes the sheet and replies with a guess b' about b

The verifier accepts the proof if b' = b and rejects it if $b' \neq b$



Honest prover (completeness):

 $\Pr[\text{the verifier accepts}] = 1$

Suppose that the prover needs to convince a colorbrind verifier that this sheet of paper contains multiple colors:

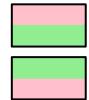
The verifier secretly chooses a random bit b

- If b = 0 the verifier keeps the sheet in the original orientation
- If b = 1 the verifier flips the sheet upside down

Then the verifier shows the sheet to the prover

My guess is b' = 1 (you flipped the sheet)

The prover observes the sheet and replies with a guess b' about bThe verifier accepts the proof if b' = b and rejects it if $b' \neq b$



Honest prover (completeness):

 $\Pr[\text{the verifier accepts}] = 1$

Cheating prover (soundness): (the sheet is monochromatic)

 $\Pr[\text{the verifier accepts}] = \frac{1}{2}$

Suppose that the prover needs to convince a colorbrind verifier that this sheet of paper contains multiple colors:

The verifier secretly chooses a random bit b

- If b = 0 the verifier keeps the sheet in the original orientation
- If b = 1 the verifier flips the sheet upside down

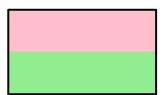
Then the verifier shows the sheet to the prover

My guess is b' = 1 (you flipped the sheet)

The prover observes the sheet and replies with a guess b' about bThe verifier accepts the proof if b' = b and rejects it if $b' \neq b$

What if the verifier does not like those odds?

1	



Honest prover (completeness):

 $\Pr[\text{the verifier accepts}] = 1$

Cheating prover (soundness): (the sheet is monochromatic)

 $\Pr[\text{the verifier accepts}] = \frac{1}{2}$

Suppose that the prover needs to convince a colorbrind verifier that this sheet of paper contains multiple colors:

The verifier secretly chooses a random bit b

- If b = 0 the verifier keeps the sheet in the original orientation
- If b = 1 the verifier flips the sheet upside down

Then the verifier shows the sheet to the prover

My guess is b' = 1 (you flipped the sheet)

The prover observes the sheet and replies with a guess b' about b The verifier accepts the proof if b' = b and rejects it if $b' \neq b$

What if the verifier does not like those odds?

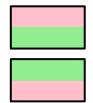
Repeat the experiment k times. Accept iff all trials succeed.

Honest prover (c	ompleteness):
------------------	---------------

 $\Pr[\text{the verifier accepts}] = 1$

Cheating prover (soundness): (the sheet is monochromatic)

 $\Pr[\text{the verifier accepts}] = \frac{1}{2^k} \frac{1}{2^k}$



Given a pair of interactive algorithms A, B and a common input x, we write (A, B)(x) to denote the output of B at the end of the interaction

Given a pair of interactive algorithms A, B and a common input x, we write (A, B)(x) to denote the output of B at the end of the interaction

Definition: A pair of interactive (randomized) algorithms (P, V) is called an **interactive proof** system for language L if V runs in polynomial time and the following two conditions hold:

- **Completeness:** For every $x \in L$, $\Pr[(P, V)(x) = 1] \ge \frac{2}{3}$
- **Soundness:** For every $x \notin L$ and every interactive algorithm A, $\Pr[(A, V)(x) = 1] \leq \frac{1}{3}$

Given a pair of interactive algorithms A, B and a common input x, we write (A, B)(x) to denote the output of B at the end of the interaction

Definition: A pair of interactive (randomized) algorithms (P, V) is called an **interactive proof** system for language L if V runs in polynomial time and the following two conditions hold:

- **Completeness:** For every $x \in L$, $\Pr[(P, V)(x) = 1] \ge \frac{2}{3}$
- **Soundness:** For every $x \notin L$ and every interactive algorithm A, $\Pr[(A, V)(x) = 1] \leq \frac{1}{3}$

Notice that:

 $\bullet\,$ Completeness only needs to hold for the prover P

Given a pair of interactive algorithms A, B and a common input x, we write (A, B)(x) to denote the output of B at the end of the interaction

Definition: A pair of interactive (randomized) algorithms (P, V) is called an **interactive proof** system for language L if V runs in polynomial time and the following two conditions hold:

- **Completeness:** For every $x \in L$, $\Pr[(P, V)(x) = 1] \ge \frac{2}{3}$
- Soundness: For every $x \notin L$ and every interactive algorithm A, $\Pr[(A, V)(x) = 1] \leq \frac{1}{3}$

Notice that:

- $\bullet\,$ Completeness only needs to hold for the prover P
- Soundness needs to hold regardless of the (cheating) prover

Given a pair of interactive algorithms A, B and a common input x, we write (A, B)(x) to denote the output of B at the end of the interaction

Definition: A pair of interactive (randomized) algorithms (P, V) is called an **interactive proof** system for language L if V runs in polynomial time and the following two conditions hold:

- **Completeness:** For every $x \in L$, $\Pr[(P, V)(x) = 1] \ge \frac{2}{3}$
- Soundness: For every $x \notin L$ and every interactive algorithm A, $\Pr[(A, V)(x) = 1] \leq \frac{1}{3}$

Notice that:

- $\bullet\,$ Completeness only needs to hold for the prover P
- Soundness needs to hold regardless of the (cheating) prover

IP is the class of all languages that admit an interactive proof system

The constants $\frac{2}{3}$ and $\frac{1}{3}$ are arbitrary. Any pair of error probabilities that differ by at least $\frac{1}{p(n)}$, for some polynomial p(n) > 0, is enough.

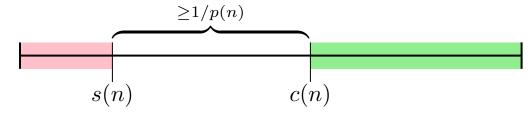
The constants $\frac{2}{3}$ and $\frac{1}{3}$ are arbitrary. Any pair of error probabilities that differ by at least $\frac{1}{p(n)}$, for some polynomial p(n) > 0, is enough.

Let (P, V) be an interactive proof system such that:

• $\Pr[(P,V)(x) = 1] \ge c(n)$ for $x \in L$

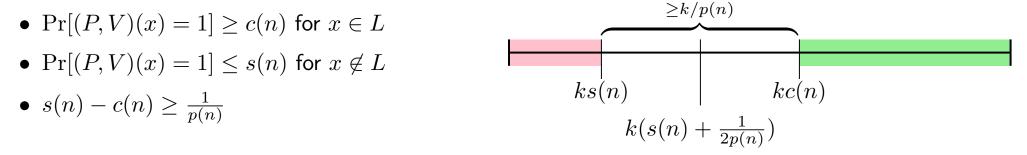
•
$$\Pr[(P,V)(x) = 1] \le s(n)$$
 for $x \notin L$

• $s(n) - c(n) \ge \frac{1}{p(n)}$



The constants $\frac{2}{3}$ and $\frac{1}{3}$ are arbitrary. Any pair of error probabilities that differ by at least $\frac{1}{p(n)}$, for some polynomial p(n) > 0, is enough.

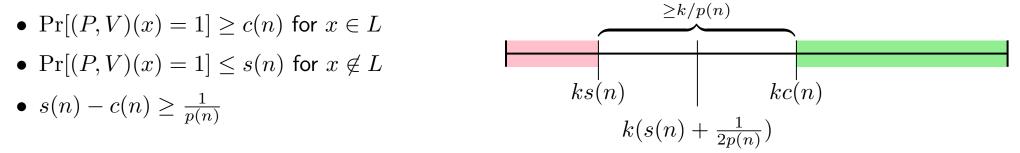
Let (P, V) be an interactive proof system such that:



Strategy: Repeat the protocol k times and accept if the (P, V)(x) = 1 in at least $k(s(n) + \frac{1}{2p(n)})$ executions

The constants $\frac{2}{3}$ and $\frac{1}{3}$ are arbitrary. Any pair of error probabilities that differ by at least $\frac{1}{p(n)}$, for some polynomial p(n) > 0, is enough.

Let (P, V) be an interactive proof system such that:



Strategy: Repeat the protocol k times and accept if the (P, V)(x) = 1 in at least $k(s(n) + \frac{1}{2p(n)})$ executions

Chernoff bound: Let $X = X_1 + X_2 + ...$ where the X_i s are independent binary random variables and let $\mu = \mathbb{E}[X]$. Then, for any $\delta > 0$:

$$\Pr[X \le (1-\delta)\mu] \le e^{-\delta^2\mu/2}$$

 $O(p(n)^3)$ repetitions suffice

The class NP can be thought of as the set of all claims that admit a short, efficiently verifiable proof

A language $L \subseteq \{0,1\}^*$ is in NP iff there exists a non-deterministic polynomial-time Turing machine T such that $x \in L$ iff (at least one computation path of) T(x) accepts

The class NP can be thought of as the set of all claims that admit a short, efficiently verifiable proof

A language $L \subseteq \{0,1\}^*$ is in NP iff there exists a non-deterministic polynomial-time Turing machine T such that $x \in L$ iff (at least one computation path of) T(x) accepts

Equivalently: A language: $L \subseteq \{0, 1\}^*$ is in NP iff there exists a polynomial-time algorithm \mathcal{V} such that:

- For every $x \in L$, there exists a witness (i.e., a "proof") w with $|w| \in O(poly(|x|))$ s.t. $\mathcal{V}(x, w) = 1$.
- For every $x \notin L$, there is no witness w s.t. $\mathcal{V}(x, w) = 1$.

The class NP can be thought of as the set of all claims that admit a short, efficiently verifiable proof

A language $L \subseteq \{0,1\}^*$ is in NP iff there exists a non-deterministic polynomial-time Turing machine T such that $x \in L$ iff (at least one computation path of) T(x) accepts

Equivalently: A language: $L \subseteq \{0, 1\}^*$ is in NP iff there exists a polynomial-time algorithm \mathcal{V} such that:

- For every $x \in L$, there exists a witness (i.e., a "proof") w with $|w| \in O(poly(|x|))$ s.t. $\mathcal{V}(x, w) = 1$.
- For every $x \notin L$, there is no witness w s.t. $\mathcal{V}(x, w) = 1$.

Proof sketch:

 \implies : A (poynomial-length) accepting computation path of T(x) is a witness w(\mathcal{V} simulates T but already know the "right" non-deterministic choices from w)

The class NP can be thought of as the set of all claims that admit a short, efficiently verifiable proof

A language $L \subseteq \{0,1\}^*$ is in NP iff there exists a non-deterministic polynomial-time Turing machine T such that $x \in L$ iff (at least one computation path of) T(x) accepts

Equivalently: A language: $L \subseteq \{0, 1\}^*$ is in NP iff there exists a polynomial-time algorithm \mathcal{V} such that:

- For every $x \in L$, there exists a witness (i.e., a "proof") w with $|w| \in O(poly(|x|))$ s.t. $\mathcal{V}(x, w) = 1$.
- For every $x \notin L$, there is no witness w s.t. $\mathcal{V}(x, w) = 1$.

Proof sketch:

 \implies : A (poynomial-length) accepting computation path of T(x) is a witness w(\mathcal{V} simulates T but already know the "right" non-deterministic choices from w)

 \iff : A non-determistic Turing machine T can "guess" the witness w, and then check if $\mathcal{V}(x,w) = 1$

We immediately have an interactive proof for all languages $L \in \mathsf{NP}$

We immediately have an interactive proof for all languages $L \in \mathsf{NP}$

NP contains exactly all languages that admit an interactive proof with a deterministic verifier and in which at most one message is exchanged (from the prover to the verifier)

We immediately have an interactive proof for all languages $L \in \mathsf{NP}$

NP contains exactly all languages that admit an interactive proof with a deterministic verifier and in which at most one message is exchanged (from the prover to the verifier)

 $\mathsf{NP}\subseteq\mathsf{IP}$

We immediately have an interactive proof for all languages $L \in \mathsf{NP}$

NP contains exactly all languages that admit an interactive proof with a deterministic verifier and in which at most one message is exchanged (from the prover to the verifier)

What if $L \in \mathsf{BPP}$?

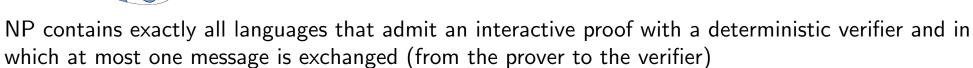
 $\mathsf{NP}\subseteq\mathsf{IP}$

We immediately have an interactive proof for all languages $L \in \mathsf{NP}$

w

 $\mathsf{NP}\subseteq\mathsf{IP}$

 $\mathcal{V}(x,w)$



What if $L \in \mathsf{BPP}$?

• There is a (randomized) polynomial time algorithm $\mathcal{A}(x)$ that decides whether $x \in L$

We immediately have an interactive proof for all languages $L \in \mathsf{NP}$

w

NP contains exactly all languages that admit an interactive proof with a deterministic verifier and in which at most one message is exchanged (from the prover to the verifier)

What if $L \in \mathsf{BPP}$?

- There is a (randomized) polynomial time algorithm $\mathcal{A}(x)$ that decides whether $x \in L$
- There is no need for a witness! The verifier can convince itself that the claim is true!
- The verifier ignores the prover and runs $\mathcal{A}(x)$

 $\mathcal{V}(x,w)$

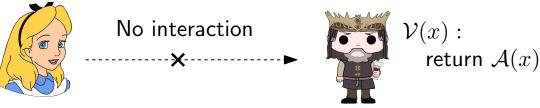
We immediately have an interactive proof for all languages $L \in \mathsf{NP}$

w

NP contains exactly all languages that admit an interactive proof with a deterministic verifier and in which at most one message is exchanged (from the prover to the verifier)

What if $L \in \mathsf{BPP}$?

- There is a (randomized) polynomial time algorithm $\mathcal{A}(x)$ that decides whether $x \in L$
- There is no need for a witness! The verifier can convince itself that the claim is true!
- The verifier ignores the prover and runs $\mathcal{A}(x)$



 $\mathsf{BPP}\subseteq\mathsf{IP}$

 $\mathsf{NP} \subset \mathsf{IP}$

We immediately have an interactive proof for all languages $L \in \mathsf{NP}$

NP contains exactly all languages that admit an interactive proof with a deterministic verifier and in which at most one message is exchanged (from the prover to the verifier)

What if $L \in \mathsf{BPP}$?

- There is a (randomized) polynomial time algorithm $\mathcal{A}(x)$ that decides whether $x \in L$
- There is no need for a witness! The verifier can convince itself that the claim is true!
- The verifier ignores the prover and runs $\mathcal{A}(x)$

An interactive proof in which the verifier never talks to the prover is degenerate

 $\mathcal{V}(x,w)$

 $\mathsf{NP} \subset \mathsf{IP}$

An Interactive Proof for Graph Non-Isomorphism

Let's look at a non-degenerate interactive proof for a problem that is not known to be in NP \cup BPP The language L contains all pairs of graphs (G_1, G_2) such that G_1 and G_2 are **not** isomorphic

An Interactive Proof for Graph Non-Isomorphism

Let's look at a non-degenerate interactive proof for a problem that is not known to be in NP \cup BPP The language L contains all pairs of graphs (G_1, G_2) such that G_1 and G_2 are **not** isomorphic **Notice:** no obvious (short) witness!

Let's look at a non-degenerate interactive proof for a problem that is not known to be in NP \cup BPP The language L contains all pairs of graphs (G_1, G_2) such that G_1 and G_2 are **not** isomorphic **Notice:** no obvious (short) witness!

If G = (V, E) and π is a permutation on V, we denote by $\pi(G)$ the graph (V, F) where $F = \{(\pi(u), \pi(v)) \mid (u, v) \in E\}$

Let's look at a non-degenerate interactive proof for a problem that is not known to be in NP \cup BPP The language L contains all pairs of graphs (G_1, G_2) such that G_1 and G_2 are **not** isomorphic **Notice:** no obvious (short) witness!

If G = (V, E) and π is a permutation on V, we denote by $\pi(G)$ the graph (V, F) where $F = \{(\pi(u), \pi(v)) \mid (u, v) \in E\}$

Common input: $x = (G_1, G_2)$ where $G_1 = (V, E_1)$, $G_2 = (V, E_2)$, and $V = \{1, ..., n\}$

- The verifier chooses b u.a.r. in $\{1,2\}$
- The verifier picks a random permutation $\pi: V \to V$ and sends the graph $G' = \pi(G_b)$ to the prover
- The prover checks whether G' is isomorphic to G_1 . If so it replies with b' = 1, otherwise it replies with b' = 2.
- If b' = b, the verifier accepts. Otherwise it rejects

Completeness

If $(G_1, G_2) \in L$ then G_b will be isomorphic to exactly one of G_1 and G_2 . The (computationally unbounded) prover always guesses correctly

Completeness

If $(G_1, G_2) \in L$ then G_b will be isomorphic to exactly one of G_1 and G_2 . The (computationally unbounded) prover always guesses correctly

Soundness

Idea: If the input graphs are isomorphic (the prover is cheating), then a random isomorphic copy of one graph will be distributed identically to a random isomorphic copy of the other graph.

If G_1 and G_2 , are isomorphic and π is a random permutation then $\Pr[\pi(G_1) = H] = \Pr[\pi(G_2) = H]$

Completeness

If $(G_1, G_2) \in L$ then G_b will be isomorphic to exactly one of G_1 and G_2 . The (computationally unbounded) prover always guesses correctly

Soundness

Idea: If the input graphs are isomorphic (the prover is cheating), then a random isomorphic copy of one graph will be distributed identically to a random isomorphic copy of the other graph.

If G_1 and G_2 , are isomorphic and π is a random permutation then $\Pr[\pi(G_1) = H] = \Pr[\pi(G_2) = H]$

For any graph G' isomorphic to G_1 (and G_2):

 $\Pr[b=1 \mid \pi(G_b) = G']$

 $\Pr[b=2 \mid \pi(G_b)=G']$

Completeness

If $(G_1, G_2) \in L$ then G_b will be isomorphic to exactly one of G_1 and G_2 . The (computationally unbounded) prover always guesses correctly

Soundness

Idea: If the input graphs are isomorphic (the prover is cheating), then a random isomorphic copy of one graph will be distributed identically to a random isomorphic copy of the other graph.

If G_1 and G_2 , are isomorphic and π is a random permutation then $\Pr[\pi(G_1) = H] = \Pr[\pi(G_2) = H]$

For any graph G' isomorphic to G_1 (and G_2): $\Pr[b = 1 \mid \pi(G_b) = G'] = \Pr[\pi(G_b) = G' \mid b = 1] \cdot \frac{\Pr[b=1]}{\Pr[\pi(G_b) = G']}$ $\Pr[b = 2 \mid \pi(G_b) = G'] = \Pr[\pi(G_b) = G' \mid b = 2] \cdot \frac{\Pr[b=2]}{\Pr[\pi(G_b) = G']}$

Completeness

If $(G_1, G_2) \in L$ then G_b will be isomorphic to exactly one of G_1 and G_2 . The (computationally unbounded) prover always guesses correctly

Soundness

Idea: If the input graphs are isomorphic (the prover is cheating), then a random isomorphic copy of one graph will be distributed identically to a random isomorphic copy of the other graph.

If G_1 and G_2 , are isomorphic and π is a random permutation then $\Pr[\pi(G_1) = H] = \Pr[\pi(G_2) = H]$

For any graph G' isomorphic to G_1 (and G_2): $\Pr[b = 1 \mid \pi(G_b) = G'] = \Pr[\pi(G_b) = G' \mid b = 1] \cdot \frac{\Pr[b=1]}{\Pr[\pi(G_b) = G']} = \Pr[\pi(G_1) = G'] \cdot \frac{\Pr[b=1]}{\Pr[\pi(G_b) = G']}$ $\Pr[b = 2 \mid \pi(G_b) = G'] = \Pr[\pi(G_b) = G' \mid b = 2] \cdot \frac{\Pr[b=2]}{\Pr[\pi(G_b) = G']} = \Pr[\pi(G_2) = G'] \cdot \frac{\Pr[b=2]}{\Pr[\pi(G_b) = G']}$

Completeness

If $(G_1, G_2) \in L$ then G_b will be isomorphic to exactly one of G_1 and G_2 . The (computationally unbounded) prover always guesses correctly

Soundness

Idea: If the input graphs are isomorphic (the prover is cheating), then a random isomorphic copy of one graph will be distributed identically to a random isomorphic copy of the other graph.

If G_1 and G_2 , are isomorphic and π is a random permutation then $\Pr[\pi(G_1) = H] = \Pr[\pi(G_2) = H]$

For any graph G' isomorphic to G_1 (and G_2): $\Pr[b = 1 \mid \pi(G_b) = G'] = \Pr[\pi(G_b) = G' \mid b = 1] \cdot \frac{\Pr[b=1]}{\Pr[\pi(G_b) = G']} = \Pr[\pi(G_1) = G'] \cdot \frac{\Pr[b=1]}{\Pr[\pi(G_b) = G']}$ $\Pr[b = 2 \mid \pi(G_b) = G'] = \Pr[\pi(G_b) = G' \mid b = 2] \cdot \frac{\Pr[b=2]}{\Pr[\pi(G_b) = G']} = \Pr[\pi(G_2) = G'] \cdot \frac{\Pr[b=2]}{\Pr[\pi(G_b) = G']}$

Completeness

If $(G_1, G_2) \in L$ then G_b will be isomorphic to exactly one of G_1 and G_2 . The (computationally unbounded) prover always guesses correctly

Soundness

Idea: If the input graphs are isomorphic (the prover is cheating), then a random isomorphic copy of one graph will be distributed identically to a random isomorphic copy of the other graph.

If G_1 and G_2 , are isomorphic and π is a random permutation then $\Pr[\pi(G_1) = H] = \Pr[\pi(G_2) = H]$

For any graph G' isomorphic to G_1 (and G_2):

 $\Pr[b = 1 \mid \pi(G_b) = G'] = \Pr[b = 2 \mid \pi(G_b) = G']$

Completeness

If $(G_1, G_2) \in L$ then G_b will be isomorphic to exactly one of G_1 and G_2 . The (computationally unbounded) prover always guesses correctly

Soundness

Idea: If the input graphs are isomorphic (the prover is cheating), then a random isomorphic copy of one graph will be distributed identically to a random isomorphic copy of the other graph.

If G_1 and G_2 , are isomorphic and π is a random permutation then $\Pr[\pi(G_1) = H] = \Pr[\pi(G_2) = H]$

For any graph G' isomorphic to G_1 (and G_2):

 $\Pr[b=1 \mid \pi(G_b) = G'] = \Pr[b=2 \mid \pi(G_b) = G'] = \frac{1}{2}$

Completeness

If $(G_1, G_2) \in L$ then G_b will be isomorphic to exactly one of G_1 and G_2 . The (computationally unbounded) prover always guesses correctly

Soundness

Idea: If the input graphs are isomorphic (the prover is cheating), then a random isomorphic copy of one graph will be distributed identically to a random isomorphic copy of the other graph.

If G_1 and G_2 , are isomorphic and π is a random permutation then $\Pr[\pi(G_1) = H] = \Pr[\pi(G_2) = H]$

For any graph G' isomorphic to G_1 (and G_2):

 $\Pr[b=1 \mid \pi(G_b) = G'] = \Pr[b=2 \mid \pi(G_b) = G'] = \frac{1}{2}$

Let R be the (possibily randomized) process used by the prover to compute the reply to the verifier The verifier accepts with probability:

 $\Pr[R(G_b) = b]$

Completeness

If $(G_1, G_2) \in L$ then G_b will be isomorphic to exactly one of G_1 and G_2 . The (computationally unbounded) prover always guesses correctly

Soundness

Idea: If the input graphs are isomorphic (the prover is cheating), then a random isomorphic copy of one graph will be distributed identically to a random isomorphic copy of the other graph.

If G_1 and G_2 , are isomorphic and π is a random permutation then $\Pr[\pi(G_1) = H] = \Pr[\pi(G_2) = H]$

For any graph G' isomorphic to G_1 (and G_2):

$$\Pr[b=1 \mid \pi(G_b) = G'] = \Pr[b=2 \mid \pi(G_b) = G'] = \frac{1}{2}$$

Let R be the (possibily randomized) process used by the prover to compute the reply to the verifier The verifier accepts with probability:

 $\Pr[R(G_b) = b] = \sum_{G'} \Pr[R(G') = b \mid \pi(G_b) = G'] \cdot \Pr[\pi(G_b) = G']$

Completeness

If $(G_1, G_2) \in L$ then G_b will be isomorphic to exactly one of G_1 and G_2 . The (computationally unbounded) prover always guesses correctly

Soundness

Idea: If the input graphs are isomorphic (the prover is cheating), then a random isomorphic copy of one graph will be distributed identically to a random isomorphic copy of the other graph.

If G_1 and G_2 , are isomorphic and π is a random permutation then $\Pr[\pi(G_1) = H] = \Pr[\pi(G_2) = H]$

For any graph G' isomorphic to G_1 (and G_2):

$$\Pr[b=1 \mid \pi(G_b) = G'] = \Pr[b=2 \mid \pi(G_b) = G'] = \frac{1}{2}$$

Let R be the (possibily randomized) process used by the prover to compute the reply to the verifier The verifier accepts with probability:

 $\Pr[R(G_b) = b] = \sum_{G'} \Pr[R(G') = b \mid \pi(G_b) = G'] \cdot \Pr[\pi(G_b) = G']$

 $\Pr[R(G') = b \mid \pi(G_b) = G']$

Completeness

If $(G_1, G_2) \in L$ then G_b will be isomorphic to exactly one of G_1 and G_2 . The (computationally unbounded) prover always guesses correctly

Soundness

Idea: If the input graphs are isomorphic (the prover is cheating), then a random isomorphic copy of one graph will be distributed identically to a random isomorphic copy of the other graph.

If G_1 and G_2 , are isomorphic and π is a random permutation then $\Pr[\pi(G_1) = H] = \Pr[\pi(G_2) = H]$

For any graph G' isomorphic to G_1 (and G_2):

$$\Pr[b=1 \mid \pi(G_b) = G'] = \Pr[b=2 \mid \pi(G_b) = G'] = \frac{1}{2}$$

Let R be the (possibily randomized) process used by the prover to compute the reply to the verifier The verifier accepts with probability:

 $\Pr[R(G_b) = b] = \sum_{G'} \Pr[R(G') = b \mid \pi(G_b) = G'] \cdot \Pr[\pi(G_b) = G']$

 $\Pr[R(G') = b \mid \pi(G_b) = G'] \leq \sum_{b^* \in \{1,2\}} \Pr[R(G') = b^* \land b = b^* \mid \pi(G_b) = G']$

Completeness

If $(G_1, G_2) \in L$ then G_b will be isomorphic to exactly one of G_1 and G_2 . The (computationally unbounded) prover always guesses correctly

Soundness

Idea: If the input graphs are isomorphic (the prover is cheating), then a random isomorphic copy of one graph will be distributed identically to a random isomorphic copy of the other graph.

If G_1 and G_2 , are isomorphic and π is a random permutation then $\Pr[\pi(G_1) = H] = \Pr[\pi(G_2) = H]$

For any graph G' isomorphic to G_1 (and G_2):

$$\Pr[b=1 \mid \pi(G_b) = G'] = \Pr[b=2 \mid \pi(G_b) = G'] = \frac{1}{2}$$

Let R be the (possibily randomized) process used by the prover to compute the reply to the verifier The verifier accepts with probability:

$$\Pr[R(G_b) = b] = \sum_{G'} \Pr[R(G') = b \mid \pi(G_b) = G'] \cdot \Pr[\pi(G_b) = G']$$

 $\Pr[R(G') = b \mid \pi(G_b) = G'] \le \sum_{b^* \in \{1,2\}} \Pr[R(G') = b^* \mid b = b^* \land \pi(G_b) = G'] \cdot \Pr[b = b^* \mid \pi(G_b) = G']$

Completeness

If $(G_1, G_2) \in L$ then G_b will be isomorphic to exactly one of G_1 and G_2 . The (computationally unbounded) prover always guesses correctly

Soundness

Idea: If the input graphs are isomorphic (the prover is cheating), then a random isomorphic copy of one graph will be distributed identically to a random isomorphic copy of the other graph.

If G_1 and G_2 , are isomorphic and π is a random permutation then $\Pr[\pi(G_1) = H] = \Pr[\pi(G_2) = H]$

For any graph G' isomorphic to G_1 (and G_2):

$$\Pr[b=1 \mid \pi(G_b) = G'] = \Pr[b=2 \mid \pi(G_b) = G'] = \frac{1}{2}$$

Let R be the (possibily randomized) process used by the prover to compute the reply to the verifier The verifier accepts with probability:

 $\Pr[R(G_b) = b] = \sum_{G'} \Pr[R(G') = b \mid \pi(G_b) = G'] \cdot \Pr[\pi(G_b) = G']$

 $\Pr[R(G') = b \mid \pi(G_b) = G'] \le \sum_{b^* \in \{1,2\}} \Pr[R(G') = b^*] \cdot \frac{1}{2}$

Completeness

If $(G_1, G_2) \in L$ then G_b will be isomorphic to exactly one of G_1 and G_2 . The (computationally unbounded) prover always guesses correctly

Soundness

Idea: If the input graphs are isomorphic (the prover is cheating), then a random isomorphic copy of one graph will be distributed identically to a random isomorphic copy of the other graph.

If G_1 and G_2 , are isomorphic and π is a random permutation then $\Pr[\pi(G_1) = H] = \Pr[\pi(G_2) = H]$

For any graph G' isomorphic to G_1 (and G_2):

$$\Pr[b=1 \mid \pi(G_b) = G'] = \Pr[b=2 \mid \pi(G_b) = G'] = \frac{1}{2}$$

Let R be the (possibily randomized) process used by the prover to compute the reply to the verifier The verifier accepts with probability:

 $\Pr[R(G_b) = b] = \sum_{G'} \Pr[R(G') = b \mid \pi(G_b) = G'] \cdot \Pr[\pi(G_b) = G']$

 $\Pr[R(G') = b \mid \pi(G_b) = G'] \le \frac{1}{2}$

Completeness

If $(G_1, G_2) \in L$ then G_b will be isomorphic to exactly one of G_1 and G_2 . The (computationally unbounded) prover always guesses correctly

Soundness

Idea: If the input graphs are isomorphic (the prover is cheating), then a random isomorphic copy of one graph will be distributed identically to a random isomorphic copy of the other graph.

If G_1 and G_2 , are isomorphic and π is a random permutation then $\Pr[\pi(G_1) = H] = \Pr[\pi(G_2) = H]$

For any graph G' isomorphic to G_1 (and G_2):

$$\Pr[b=1 \mid \pi(G_b) = G'] = \Pr[b=2 \mid \pi(G_b) = G'] = \frac{1}{2}$$

Let R be the (possibily randomized) process used by the prover to compute the reply to the verifier The verifier accepts with probability:

$$\Pr[R(G_b) = b] = \sum_{G'} \Pr[R(G') = b \mid \pi(G_b) = G'] \cdot \Pr[\pi(G_b) = G'] \le \sum_{G'} \frac{1}{2} \cdot \Pr[\pi(G_b) = G']$$
$$\Pr[R(G') = b \mid \pi(G_b) = G'] \le \frac{1}{2}$$

Completeness

If $(G_1, G_2) \in L$ then G_b will be isomorphic to exactly one of G_1 and G_2 . The (computationally unbounded) prover always guesses correctly

Soundness

Idea: If the input graphs are isomorphic (the prover is cheating), then a random isomorphic copy of one graph will be distributed identically to a random isomorphic copy of the other graph.

If G_1 and G_2 , are isomorphic and π is a random permutation then $\Pr[\pi(G_1) = H] = \Pr[\pi(G_2) = H]$

For any graph G' isomorphic to G_1 (and G_2):

$$\Pr[b=1 \mid \pi(G_b) = G'] = \Pr[b=2 \mid \pi(G_b) = G'] = \frac{1}{2}$$

Let R be the (possibily randomized) process used by the prover to compute the reply to the verifier The verifier accepts with probability:

$$\Pr[R(G_b) = b] = \sum_{G'} \Pr[R(G') = b \mid \pi(G_b) = G'] \cdot \Pr[\pi(G_b) = G'] \le \sum_{G'} \frac{1}{2} \cdot \Pr[\pi(G_b) = G'] = \frac{1}{2}$$
$$\Pr[R(G') = b \mid \pi(G_b) = G'] \le \frac{1}{2}$$

Completeness

If $(G_1, G_2) \in L$ then G_b will be isomorphic to exactly one of G_1 and G_2 . The (computationally unbounded) prover always guesses correctly

Soundness

Idea: If the input graphs are isomorphic (the prover is cheating), then a random isomorphic copy of one graph will be distributed identically to a random isomorphic copy of the other graph.

If G_1 and G_2 , are isomorphic and π is a random permutation then $\Pr[\pi(G_1) = H] = \Pr[\pi(G_2) = H]$

For any graph G' isomorphic to G_1 (and G_2):

$$\Pr[b=1 \mid \pi(G_b) = G'] = \Pr[b=2 \mid \pi(G_b) = G'] = \frac{1}{2}$$

Let R be the (possibily randomized) process used by the prover to compute the reply to the verifier The verifier accepts with probability:

 $\Pr[R(G_b) = b] = \sum_{G'} \Pr[R(G') = b \mid \pi(G_b) = G'] \cdot \Pr[\pi(G_b) = G'] \le \sum_{G'} \frac{1}{2} \cdot \Pr[\pi(G_b) = G'] = \frac{1}{2}$

 $\Pr[R(G') = b \mid \pi(G_b) = G'] \le \frac{1}{2}$ Use prob

Use probability amplification