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Turing machine that uses a polynomial amount of space (w.r.t. the size of the input)

P ⊆ BPP ⊆ PSPACE P ⊆ NP ⊆ PSPACE The relation between BPP and NP is unknown
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What are proofs anyway?

There is some claim x known to both Alice and Bob

A prover (Alice) wants to convince a verifier (Bob) that the claim is true

What is a proof?

• Classically, a proof is a string w that “convinces” the verifier

x = “In a right triangle with legs of length a, b and hypotenuse length c, we have a2 + b2 = c2”

w =“Consider a right triangle with vertices a, b, c and let... QED.”

x = “The number N is the product of two primes”

w = (p, q) where p, q are primes and pq = N

We can model the verifier as a polynomial-time algorithm V(x,w) that takes as input the claim x and
the proof w, and outputs 1 if and only if it accepts w as a proof of x

Consider claims of the form “x belongs to some language L”
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Algorithm V((G1, G2),π):
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1 :
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• Return 1

The verifier learns the isomorphism π

Is it necessary to reveal π?
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Interactive Proofs Systems

In an interactive proof system, the prover and the verifier exchange multiple messages following some
protocol

...

The verifier will be a polynomial-time randomized algorithm

The prover is a computationally unbounded algorithm

Ideally, at the end of the interaction:

• If x ∈ L, the prover knows a proof, and follows the protocol, then the verifier will be convinced that
x ∈ L (completeness)

• If x ̸∈ L, no prover (even a cheating prover that deviates from the protocol) manages to convince
the verfier that x ∈ L (soundness)

We relax the above requirements by allowing the verifier to commit errors (with a small probability).

Prover Verifier
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Suppose that the prover needs to convince a colorbrind verifier that this sheet of
paper contains multiple colors:

The verifier secretly chooses a random bit b

Then the verifier shows the sheet to the prover

• If b = 0 the verifier keeps the sheet in the original orientation

• If b = 1 the verifier flips the sheet upside down

The prover observes the sheet and replies with a guess b′ about b

My guess is b′ = 1 (you flipped the sheet)
Pr[the verifier accepts] = 1

The verifier accepts the proof if b′ = b and rejects it if b′ ̸= b

Honest prover (completeness):

Cheating prover (soundness):

Pr[the verifier accepts] = 1
2

(the sheet is monochromatic)

What if the verifier does not like those odds?

Repeat the experiment k times. Accept iff all trials succeed.

1
2k
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Definition: A pair of interactive (randomized) algorithms (P, V ) is called an interactive proof
system for language L if V runs in polynomial time and the following two conditions hold:

Interactive Proof Systems (Formal)

• Completeness: For every x ∈ L, Pr[(P, V )(x) = 1] ≥ 2
3

• Soundness: For every x ̸∈ L and every interactive algorithm A, Pr[(A, V )(x) = 1] ≤ 1
3

Notice that:

• Completeness only needs to hold for the prover P

• Soundness needs to hold regardless of the (cheating) prover

Given a pair of interactive algorithms A,B and a common input x, we write (A,B)(x) to denote the
output of B at the end of the interaction

IP is the class of all languages that admit an interactive proof system
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Probability Amplification

The constants 2
3 and 1

3 are arbitrary. Any pair of error probabilities that differ by at least 1
p(n) , for some

polynomial p(n) > 0, is enough.

Let (P, V ) be an interactive proof system such that:

• Pr[(P, V )(x) = 1] ≥ c(n) for x ∈ L

• Pr[(P, V )(x) = 1] ≤ s(n) for x ̸∈ L

• s(n)− c(n) ≥ 1
p(n)

Chernoff bound: Let X = X1 +X2 + . . . where the Xis are independent binary random variables
and let µ = E[X]. Then, for any δ > 0:

Pr[X ≤ (1− δ)µ] ≤ e−δ2µ/2

Strategy: Repeat the protocol k times and accept if the (P, V )(x) = 1 in at least k(s(n) + 1
2p(n) )

executions

ks(n) kc(n)

≥k/p(n)z }| {

k(s(n) + 1
2p(n) )

O(p(n)3) repetitions suffice
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The class NP can be thought of as the set of all claims that admit a short, efficiently verifiable proof

Efficiently verifiable proofs

A language L ⊆ {0, 1}∗ is in NP iff there exists a non-deterministic polynomial-time Turing machine T
such that x ∈ L iff (at least one computation path of) T (x) accepts

Equivalently: A language: L ⊆ {0, 1}∗ is in NP iff there exists a polynomial-time algorithm V such
that:

• For every x ∈ L, there exists a witness (i.e., a “proof”) w with |w| ∈ O(poly(|x|)) s.t. V(x,w) = 1.

• For every x ̸∈ L, there is no witness w s.t. V(x,w) = 1.

=⇒ : A (poynomial-length) accepting computation path of T (x) is a witness w
(V simulates T but already know the “right” non-deterministic choices from w)

⇐=: A non-determistic Turing machine T can “guess” the witness w, and then check if V(x,w) = 1

Proof sketch:
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Interactive Proofs for NP and BPP

We immediately have an interactive proof for all languages L ∈ NP

w
V(x,w)

What if L ∈ BPP?

• There is a (randomized) polynomial time algorithm A(x) that decides whether x ∈ L

• There is no need for a witness! The verifier can convince itself that the claim is true!

• The verifier ignores the prover and runs A(x)

V(x) :
return A(x)

No interaction

An interactive proof in which the verifier never talks to the prover is degenerate

NP contains exactly all languages that admit an interactive proof with a deterministic verifier and in
which at most one message is exchanged (from the prover to the verifier)

NP ⊆ IP

BPP ⊆ IP
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An Interactive Proof for Graph Non-Isomorphism

Let’s look at a non-degenerate interactive proof for a problem that is not known to be in NP ∪ BPP

The language L contains all pairs of graphs (G1, G2) such that G1 and G2 are not isomorphic

Notice: no obvious (short) witness!

• The verifier chooses b u.a.r. in {1, 2}
• The verifier picks a random permutation π : V → V and sends the graph G′ = π(Gb) to the prover

• The prover checks whether G′ is isomorphic to G1. If so it replies with b′ = 1, otherwise it replies
with b′ = 2.

Common input: x = (G1, G2) where G1 = (V,E1), G2 = (V,E2), and V = {1, . . . , n}

• If b′ = b, the verifier accepts. Otherwise it rejects

If G = (V,E) and π is a permutation on V , we denote by π(G) the graph (V, F ) where
F = {(π(u),π(v)) | (u, v) ∈ E}
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Pr[b = 1 | π(Gb) = G′]

For any graph G′ isomorphic to G1 (and G2):

= Pr[b = 2 | π(Gb) = G′]

Let R be the (possibily randomized) process used by the prover to compute the reply to the verifier

Pr[R(Gb) = b]

The verifier accepts with probability:

=
P

G′ Pr[R(G′) = b | π(Gb) = G′] · Pr[π(Gb) = G′]

Pr[R(G′) = b | π(Gb) = G′]

= 1
2

≤ P
G′

1
2 · Pr[π(Gb) = G′] = 1

2

≤ 1
2

If G1 and G2, are isomorphic and π is a random permutation then Pr[π(G1)=H]=Pr[π(G2)=H]
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Use probability amplification


