
Reminder: Complexity Classes
A decision problem corresponds to a language L ⊆ {0, 1}∗ containing all yes-instances (w.r.t. some
encoding)

Reminder: Complexity Classes

• P (polynomial-time): The class of all languages that can be decided by a deterministic
polynomial-time Turing machine

A decision problem corresponds to a language L ⊆ {0, 1}∗ containing all yes-instances (w.r.t. some
encoding)

Reminder: Complexity Classes

• P (polynomial-time): The class of all languages that can be decided by a deterministic
polynomial-time Turing machine

• BPP (bounded-error probabilistic polynomial-time): The class of all languages L that can be
decided in polynomial-time by a probabilistic Turing machine T with probability of error bounded by 1

3

— If x ∈ L, then Pr[T (x) accepts] ≥ 2
3

— If x ̸∈ L, then Pr[T (x) accepts] ≤ 1
3

A decision problem corresponds to a language L ⊆ {0, 1}∗ containing all yes-instances (w.r.t. some
encoding)

Reminder: Complexity Classes

• P (polynomial-time): The class of all languages that can be decided by a deterministic
polynomial-time Turing machine

• NP (non-deterministic polynomial-time): The class of all languages that can be decided by a
non-deterministic polynomial-time Turing machine T

• BPP (bounded-error probabilistic polynomial-time): The class of all languages L that can be
decided in polynomial-time by a probabilistic Turing machine T with probability of error bounded by 1

3

— If x ∈ L, then Pr[T (x) accepts] ≥ 2
3

— If x ̸∈ L, then Pr[T (x) accepts] ≤ 1
3

A decision problem corresponds to a language L ⊆ {0, 1}∗ containing all yes-instances (w.r.t. some
encoding)

— If x ∈ L, then at least one computation path of T (x) accepts

— If x ̸∈ L, then all computation paths of T (x) reject

Reminder: Complexity Classes

• P (polynomial-time): The class of all languages that can be decided by a deterministic
polynomial-time Turing machine

• NP (non-deterministic polynomial-time): The class of all languages that can be decided by a
non-deterministic polynomial-time Turing machine T

• BPP (bounded-error probabilistic polynomial-time): The class of all languages L that can be
decided in polynomial-time by a probabilistic Turing machine T with probability of error bounded by 1

3

— If x ∈ L, then Pr[T (x) accepts] ≥ 2
3

— If x ̸∈ L, then Pr[T (x) accepts] ≤ 1
3

• PSPACE (polynomial-space): The class of all languages that can be decided by a deterministic
Turing machine that uses a polynomial amount of space (w.r.t. the size of the input)

A decision problem corresponds to a language L ⊆ {0, 1}∗ containing all yes-instances (w.r.t. some
encoding)

— If x ∈ L, then at least one computation path of T (x) accepts

— If x ̸∈ L, then all computation paths of T (x) reject

Reminder: Complexity Classes

• P (polynomial-time): The class of all languages that can be decided by a deterministic
polynomial-time Turing machine

• NP (non-deterministic polynomial-time): The class of all languages that can be decided by a
non-deterministic polynomial-time Turing machine T

• BPP (bounded-error probabilistic polynomial-time): The class of all languages L that can be
decided in polynomial-time by a probabilistic Turing machine T with probability of error bounded by 1

3

— If x ∈ L, then Pr[T (x) accepts] ≥ 2
3

— If x ̸∈ L, then Pr[T (x) accepts] ≤ 1
3

• PSPACE (polynomial-space): The class of all languages that can be decided by a deterministic
Turing machine that uses a polynomial amount of space (w.r.t. the size of the input)

P ⊆ BPP ⊆ PSPACE P ⊆ NP ⊆ PSPACE

A decision problem corresponds to a language L ⊆ {0, 1}∗ containing all yes-instances (w.r.t. some
encoding)

— If x ∈ L, then at least one computation path of T (x) accepts

— If x ̸∈ L, then all computation paths of T (x) reject

Reminder: Complexity Classes

• P (polynomial-time): The class of all languages that can be decided by a deterministic
polynomial-time Turing machine

• NP (non-deterministic polynomial-time): The class of all languages that can be decided by a
non-deterministic polynomial-time Turing machine T

• BPP (bounded-error probabilistic polynomial-time): The class of all languages L that can be
decided in polynomial-time by a probabilistic Turing machine T with probability of error bounded by 1

3

— If x ∈ L, then Pr[T (x) accepts] ≥ 2
3

— If x ̸∈ L, then Pr[T (x) accepts] ≤ 1
3

• PSPACE (polynomial-space): The class of all languages that can be decided by a deterministic
Turing machine that uses a polynomial amount of space (w.r.t. the size of the input)

P ⊆ BPP ⊆ PSPACE P ⊆ NP ⊆ PSPACE The relation between BPP and NP is unknown

A decision problem corresponds to a language L ⊆ {0, 1}∗ containing all yes-instances (w.r.t. some
encoding)

— If x ∈ L, then at least one computation path of T (x) accepts

— If x ̸∈ L, then all computation paths of T (x) reject

Zero Knowledge Proofs

5 3
6

9 8
1 9 5

7

6

6

8
4
7

6
8

2
3

3
1
6

97

2 8
54 1 9

8

Zero Knowledge Proofs

5 3
6

9 8
1 9 5

7

6

6

8
4
7

6
8

2
3

3
1
6

97

2 8
54 1 9

8

5 3
6

9 8
1 9 5

7

6

6

8
4
7

6
8

2
3

3
1
6

97

2 8
54 1 9

8

4 6 8 9 1 2
7 2 3 4 8

1 3 4 2 5 7
5 9 7 41 2
2 56 7 9
1 9 53 4 8

9 1 5 3 7 4
2 78 6 3

162543

Zero Knowledge Proofs

5 3
6

9 8
1 9 5

7

6

6

8
4
7

6
8

2
3

3
1
6

97

2 8
54 1 9

8

5 3
6

9 8
1 9 5

7

6

6

8
4
7

6
8

2
3

3
1
6

97

2 8
54 1 9

8

4 6 8 9 1 2
7 2 3 4 8

1 3 4 2 5 7
5 9 7 41 2
2 56 7 9
1 9 53 4 8

9 1 5 3 7 4
2 78 6 3

162543

I know a solution to this
Sudoku instance

Zero Knowledge Proofs

5 3
6

9 8
1 9 5

7

6

6

8
4
7

6
8

2
3

3
1
6

97

2 8
54 1 9

8

5 3
6

9 8
1 9 5

7

6

6

8
4
7

6
8

2
3

3
1
6

97

2 8
54 1 9

8

4 6 8 9 1 2
7 2 3 4 8

1 3 4 2 5 7
5 9 7 41 2
2 56 7 9
1 9 53 4 8

9 1 5 3 7 4
2 78 6 3

162543

Really? Show it to me!

Zero Knowledge Proofs

5 3
6

9 8
1 9 5

7

6

6

8
4
7

6
8

2
3

3
1
6

97

2 8
54 1 9

8

5 3
6

9 8
1 9 5

7

6

6

8
4
7

6
8

2
3

3
1
6

97

2 8
54 1 9

8

4 6 8 9 1 2
7 2 3 4 8

1 3 4 2 5 7
5 9 7 41 2
2 56 7 9
1 9 53 4 8

9 1 5 3 7 4
2 78 6 3

162543

I don’t want to reveal it
to you

Zero Knowledge Proofs

5 3
6

9 8
1 9 5

7

6

6

8
4
7

6
8

2
3

3
1
6

97

2 8
54 1 9

8

5 3
6

9 8
1 9 5

7

6

6

8
4
7

6
8

2
3

3
1
6

97

2 8
54 1 9

8

4 6 8 9 1 2
7 2 3 4 8

1 3 4 2 5 7
5 9 7 41 2
2 56 7 9
1 9 53 4 8

9 1 5 3 7 4
2 78 6 3

162543

Then I don’t believe you
really have a solution

Zero Knowledge Proofs

5 3
6

9 8
1 9 5

7

6

6

8
4
7

6
8

2
3

3
1
6

97

2 8
54 1 9

8

5 3
6

9 8
1 9 5

7

6

6

8
4
7

6
8

2
3

3
1
6

97

2 8
54 1 9

8

4 6 8 9 1 2
7 2 3 4 8

1 3 4 2 5 7
5 9 7 41 2
2 56 7 9
1 9 53 4 8

9 1 5 3 7 4
2 78 6 3

162543

I can prove to you I have a
solution without revealing

anything about it

Zero Knowledge Proofs

5 3
6

9 8
1 9 5

7

6

6

8
4
7

6
8

2
3

3
1
6

97

2 8
54 1 9

8

5 3
6

9 8
1 9 5

7

6

6

8
4
7

6
8

2
3

3
1
6

97

2 8
54 1 9

8

4 6 8 9 1 2
7 2 3 4 8

1 3 4 2 5 7
5 9 7 41 2
2 56 7 9
1 9 53 4 8

9 1 5 3 7 4
2 78 6 3

162543

I can prove to you I have a
solution without revealing

anything about it

Zero Knowledge Proofs

5 3
6

9 8
1 9 5

7

6

6

8
4
7

6
8

2
3

3
1
6

97

2 8
54 1 9

8

5 3
6

9 8
1 9 5

7

6

6

8
4
7

6
8

2
3

3
1
6

97

2 8
54 1 9

8

4 6 8 9 1 2
7 2 3 4 8

1 3 4 2 5 7
5 9 7 41 2
2 56 7 9
1 9 53 4 8

9 1 5 3 7 4
2 78 6 3

162543

I can prove to you I have a
solution without revealing

anything about it

Zero Knowledge protocol

Zero Knowledge Proofs

5 3
6

9 8
1 9 5

7

6

6

8
4
7

6
8

2
3

3
1
6

97

2 8
54 1 9

8

5 3
6

9 8
1 9 5

7

6

6

8
4
7

6
8

2
3

3
1
6

97

2 8
54 1 9

8

4 6 8 9 1 2
7 2 3 4 8

1 3 4 2 5 7
5 9 7 41 2
2 56 7 9
1 9 53 4 8

9 1 5 3 7 4
2 78 6 3

162543

I am now convinced
you have the solution

Zero Knowledge protocol

Zero Knowledge Proofs

5 3
6

9 8
1 9 5

7

6

6

8
4
7

6
8

2
3

3
1
6

97

2 8
54 1 9

8

Hey, Charlie!
Alice has a solution to
this Sudoku instance

Zero Knowledge Proofs

5 3
6

9 8
1 9 5

7

6

6

8
4
7

6
8

2
3

3
1
6

97

2 8
54 1 9

8

Prove it!

Zero Knowledge Proofs

5 3
6

9 8
1 9 5

7

6

6

8
4
7

6
8

2
3

3
1
6

97

2 8
54 1 9

8

Even if I definitely know she
has a solution, somehow I
have no way of proving that

What are proofs anyway?

There is some claim x known to both Alice and Bob

A prover (Alice) wants to convince a verifier (Bob) that the claim is true

What are proofs anyway?

There is some claim x known to both Alice and Bob

A prover (Alice) wants to convince a verifier (Bob) that the claim is true

What is a proof?

• Classically, a proof is a string w that “convinces” the verifier

What are proofs anyway?

There is some claim x known to both Alice and Bob

A prover (Alice) wants to convince a verifier (Bob) that the claim is true

What is a proof?

• Classically, a proof is a string w that “convinces” the verifier

x = “In a right triangle with legs of length a, b and hypotenuse length c, we have a2 + b2 = c2”

w =“Consider a right triangle with vertices a, b, c and let... QED.”

What are proofs anyway?

There is some claim x known to both Alice and Bob

A prover (Alice) wants to convince a verifier (Bob) that the claim is true

What is a proof?

• Classically, a proof is a string w that “convinces” the verifier

x = “In a right triangle with legs of length a, b and hypotenuse length c, we have a2 + b2 = c2”

w =“Consider a right triangle with vertices a, b, c and let... QED.”

x = “The number N is the product of two primes”

w = (p, q) where p, q are primes and pq = N

What are proofs anyway?

There is some claim x known to both Alice and Bob

A prover (Alice) wants to convince a verifier (Bob) that the claim is true

What is a proof?

• Classically, a proof is a string w that “convinces” the verifier

x = “In a right triangle with legs of length a, b and hypotenuse length c, we have a2 + b2 = c2”

w =“Consider a right triangle with vertices a, b, c and let... QED.”

x = “The number N is the product of two primes”

w = (p, q) where p, q are primes and pq = N

Consider claims of the form “x belongs to some language L”

What are proofs anyway?

There is some claim x known to both Alice and Bob

A prover (Alice) wants to convince a verifier (Bob) that the claim is true

What is a proof?

• Classically, a proof is a string w that “convinces” the verifier

x = “In a right triangle with legs of length a, b and hypotenuse length c, we have a2 + b2 = c2”

w =“Consider a right triangle with vertices a, b, c and let... QED.”

x = “The number N is the product of two primes”

w = (p, q) where p, q are primes and pq = N

We can model the verifier as a polynomial-time algorithm V(x,w) that takes as input the claim x and
the proof w, and outputs 1 if and only if it accepts w as a proof of x

Consider claims of the form “x belongs to some language L”

Example: Graph Isomorphism
Graph isomorphism problem

G1 is isomorphic to G2 iff ∃ bijection π : V1→V2 s.t. (u, v) ∈ E1 ⇐⇒ (π(u),π(v)) ∈ E2.

G1 = (V1, E1) G2 = (V2, E2)

Example: Graph Isomorphism
Graph isomorphism problem

G1 is isomorphic to G2 iff ∃ bijection π : V1→V2 s.t. (u, v) ∈ E1 ⇐⇒ (π(u),π(v)) ∈ E2.

G1 = (V1, E1) G2 = (V2, E2) Claim: G1 and G2 are isomorphic.

Example: Graph Isomorphism
Graph isomorphism problem

G1 is isomorphic to G2 iff ∃ bijection π : V1→V2 s.t. (u, v) ∈ E1 ⇐⇒ (π(u),π(v)) ∈ E2.

G1 = (V1, E1) G2 = (V2, E2) Claim: G1 and G2 are isomorphic.

L = {(G1, G2) | ∃ bijection π : V1 → V2 s.t. (u, v) ∈ E1

⇐⇒ (π(u),π(v)) ∈ E2}

Example: Graph Isomorphism
Graph isomorphism problem

G1 is isomorphic to G2 iff ∃ bijection π : V1→V2 s.t. (u, v) ∈ E1 ⇐⇒ (π(u),π(v)) ∈ E2.

G1 = (V1, E1) G2 = (V2, E2) Claim: G1 and G2 are isomorphic.

L = {(G1, G2) | ∃ bijection π : V1 → V2 s.t. (u, v) ∈ E1

⇐⇒ (π(u),π(v)) ∈ E2}
x = (G1, G2)

Example: Graph Isomorphism
Graph isomorphism problem

G1 is isomorphic to G2 iff ∃ bijection π : V1→V2 s.t. (u, v) ∈ E1 ⇐⇒ (π(u),π(v)) ∈ E2.

G1 = (V1, E1) G2 = (V2, E2) Claim: G1 and G2 are isomorphic.

L = {(G1, G2) | ∃ bijection π : V1 → V2 s.t. (u, v) ∈ E1

⇐⇒ (π(u),π(v)) ∈ E2}
x = (G1, G2)

w = π

Example: Graph Isomorphism
Graph isomorphism problem

G1 is isomorphic to G2 iff ∃ bijection π : V1→V2 s.t. (u, v) ∈ E1 ⇐⇒ (π(u),π(v)) ∈ E2.

G1 = (V1, E1) G2 = (V2, E2) Claim: G1 and G2 are isomorphic.

L = {(G1, G2) | ∃ bijection π : V1 → V2 s.t. (u, v) ∈ E1

⇐⇒ (π(u),π(v)) ∈ E2}
x = (G1, G2)

w = π

Algorithm V((G1, G2),π):

• For all u, v ∈ V 2
1 :

• If ((u, v) ∈ E1 ∧ (π(u),π(v)) ̸∈ E2) ∨ ((u, v) ̸∈ E1 ∧ (π(u),π(v)) ∈ E2): Return 0

• Return 1

Example: Graph Isomorphism
Graph isomorphism problem

G1 is isomorphic to G2 iff ∃ bijection π : V1→V2 s.t. (u, v) ∈ E1 ⇐⇒ (π(u),π(v)) ∈ E2.

G1 = (V1, E1) G2 = (V2, E2) Claim: G1 and G2 are isomorphic.

L = {(G1, G2) | ∃ bijection π : V1 → V2 s.t. (u, v) ∈ E1

⇐⇒ (π(u),π(v)) ∈ E2}
x = (G1, G2)

w = π

Algorithm V((G1, G2),π):

• For all u, v ∈ V 2
1 :

• If ((u, v) ∈ E1 ∧ (π(u),π(v)) ̸∈ E2) ∨ ((u, v) ̸∈ E1 ∧ (π(u),π(v)) ∈ E2): Return 0

• Return 1

The verifier learns the isomorphism π

Example: Graph Isomorphism
Graph isomorphism problem

G1 is isomorphic to G2 iff ∃ bijection π : V1→V2 s.t. (u, v) ∈ E1 ⇐⇒ (π(u),π(v)) ∈ E2.

G1 = (V1, E1) G2 = (V2, E2) Claim: G1 and G2 are isomorphic.

L = {(G1, G2) | ∃ bijection π : V1 → V2 s.t. (u, v) ∈ E1

⇐⇒ (π(u),π(v)) ∈ E2}
x = (G1, G2)

w = π

Algorithm V((G1, G2),π):

• For all u, v ∈ V 2
1 :

• If ((u, v) ∈ E1 ∧ (π(u),π(v)) ̸∈ E2) ∨ ((u, v) ̸∈ E1 ∧ (π(u),π(v)) ∈ E2): Return 0

• Return 1

The verifier learns the isomorphism π

Is it necessary to reveal π?

Interactive Proofs Systems

In an interactive proof system, the prover and the verifier exchange multiple messages following some
protocol

...
Prover Verifier

Interactive Proofs Systems

In an interactive proof system, the prover and the verifier exchange multiple messages following some
protocol

...

The prover is a computationally unbounded algorithm

Prover Verifier

Interactive Proofs Systems

In an interactive proof system, the prover and the verifier exchange multiple messages following some
protocol

...

The verifier will be a polynomial-time randomized algorithm

The prover is a computationally unbounded algorithm

Prover Verifier

Interactive Proofs Systems

In an interactive proof system, the prover and the verifier exchange multiple messages following some
protocol

...

The verifier will be a polynomial-time randomized algorithm

The prover is a computationally unbounded algorithm

Ideally, at the end of the interaction:

• If x ∈ L, the prover knows a proof, and follows the protocol, then the verifier will be convinced that
x ∈ L (completeness)

Prover Verifier

Interactive Proofs Systems

In an interactive proof system, the prover and the verifier exchange multiple messages following some
protocol

...

The verifier will be a polynomial-time randomized algorithm

The prover is a computationally unbounded algorithm

Ideally, at the end of the interaction:

• If x ∈ L, the prover knows a proof, and follows the protocol, then the verifier will be convinced that
x ∈ L (completeness)

• If x ̸∈ L, no prover (even a cheating prover that deviates from the protocol) manages to convince
the verfier that x ∈ L (soundness)

Prover Verifier

Interactive Proofs Systems

In an interactive proof system, the prover and the verifier exchange multiple messages following some
protocol

...

The verifier will be a polynomial-time randomized algorithm

The prover is a computationally unbounded algorithm

Ideally, at the end of the interaction:

• If x ∈ L, the prover knows a proof, and follows the protocol, then the verifier will be convinced that
x ∈ L (completeness)

• If x ̸∈ L, no prover (even a cheating prover that deviates from the protocol) manages to convince
the verfier that x ∈ L (soundness)

We relax the above requirements by allowing the verifier to commit errors (with a small probability).

Prover Verifier

A Physical Interactive Proof System
Suppose that the prover needs to convince a colorbrind verifier that this sheet of
paper contains multiple colors:

A Physical Interactive Proof System
Suppose that the prover needs to convince a colorbrind verifier that this sheet of
paper contains multiple colors:

The verifier secretly chooses a random bit b

• If b = 0 the verifier keeps the sheet in the original orientation

• If b = 1 the verifier flips the sheet upside down

A Physical Interactive Proof System
Suppose that the prover needs to convince a colorbrind verifier that this sheet of
paper contains multiple colors:

The verifier secretly chooses a random bit b

Then the verifier shows the sheet to the prover

• If b = 0 the verifier keeps the sheet in the original orientation

• If b = 1 the verifier flips the sheet upside down

A Physical Interactive Proof System
Suppose that the prover needs to convince a colorbrind verifier that this sheet of
paper contains multiple colors:

The verifier secretly chooses a random bit b

Then the verifier shows the sheet to the prover

• If b = 0 the verifier keeps the sheet in the original orientation

• If b = 1 the verifier flips the sheet upside down

The prover observes the sheet and replies with a guess b′ about b

My guess is b′ = 1 (you flipped the sheet)

A Physical Interactive Proof System
Suppose that the prover needs to convince a colorbrind verifier that this sheet of
paper contains multiple colors:

The verifier secretly chooses a random bit b

Then the verifier shows the sheet to the prover

• If b = 0 the verifier keeps the sheet in the original orientation

• If b = 1 the verifier flips the sheet upside down

The prover observes the sheet and replies with a guess b′ about b

My guess is b′ = 1 (you flipped the sheet)

The verifier accepts the proof if b′ = b and rejects it if b′ ̸= b

A Physical Interactive Proof System
Suppose that the prover needs to convince a colorbrind verifier that this sheet of
paper contains multiple colors:

The verifier secretly chooses a random bit b

Then the verifier shows the sheet to the prover

• If b = 0 the verifier keeps the sheet in the original orientation

• If b = 1 the verifier flips the sheet upside down

The prover observes the sheet and replies with a guess b′ about b

My guess is b′ = 1 (you flipped the sheet)
Pr[the verifier accepts] = 1

The verifier accepts the proof if b′ = b and rejects it if b′ ̸= b

Honest prover (completeness):

A Physical Interactive Proof System
Suppose that the prover needs to convince a colorbrind verifier that this sheet of
paper contains multiple colors:

The verifier secretly chooses a random bit b

Then the verifier shows the sheet to the prover

• If b = 0 the verifier keeps the sheet in the original orientation

• If b = 1 the verifier flips the sheet upside down

The prover observes the sheet and replies with a guess b′ about b

My guess is b′ = 1 (you flipped the sheet)
Pr[the verifier accepts] = 1

The verifier accepts the proof if b′ = b and rejects it if b′ ̸= b

Honest prover (completeness):

Cheating prover (soundness):

Pr[the verifier accepts] = 1
2

(the sheet is monochromatic)

A Physical Interactive Proof System
Suppose that the prover needs to convince a colorbrind verifier that this sheet of
paper contains multiple colors:

The verifier secretly chooses a random bit b

Then the verifier shows the sheet to the prover

• If b = 0 the verifier keeps the sheet in the original orientation

• If b = 1 the verifier flips the sheet upside down

The prover observes the sheet and replies with a guess b′ about b

My guess is b′ = 1 (you flipped the sheet)
Pr[the verifier accepts] = 1

The verifier accepts the proof if b′ = b and rejects it if b′ ̸= b

Honest prover (completeness):

Cheating prover (soundness):

Pr[the verifier accepts] = 1
2

(the sheet is monochromatic)

What if the verifier does not like those odds?

A Physical Interactive Proof System
Suppose that the prover needs to convince a colorbrind verifier that this sheet of
paper contains multiple colors:

The verifier secretly chooses a random bit b

Then the verifier shows the sheet to the prover

• If b = 0 the verifier keeps the sheet in the original orientation

• If b = 1 the verifier flips the sheet upside down

The prover observes the sheet and replies with a guess b′ about b

My guess is b′ = 1 (you flipped the sheet)
Pr[the verifier accepts] = 1

The verifier accepts the proof if b′ = b and rejects it if b′ ̸= b

Honest prover (completeness):

Cheating prover (soundness):

Pr[the verifier accepts] = 1
2

(the sheet is monochromatic)

What if the verifier does not like those odds?

Repeat the experiment k times. Accept iff all trials succeed.

1
2k

Interactive Proof Systems (Formal)

Given a pair of interactive algorithms A,B and a common input x, we write (A,B)(x) to denote the
output of B at the end of the interaction

Definition: A pair of interactive (randomized) algorithms (P, V) is called an interactive proof
system for language L if V runs in polynomial time and the following two conditions hold:

Interactive Proof Systems (Formal)

• Completeness: For every x ∈ L, Pr[(P, V)(x) = 1] ≥ 2
3

• Soundness: For every x ̸∈ L and every interactive algorithm A, Pr[(A, V)(x) = 1] ≤ 1
3

Given a pair of interactive algorithms A,B and a common input x, we write (A,B)(x) to denote the
output of B at the end of the interaction

Definition: A pair of interactive (randomized) algorithms (P, V) is called an interactive proof
system for language L if V runs in polynomial time and the following two conditions hold:

Interactive Proof Systems (Formal)

• Completeness: For every x ∈ L, Pr[(P, V)(x) = 1] ≥ 2
3

• Soundness: For every x ̸∈ L and every interactive algorithm A, Pr[(A, V)(x) = 1] ≤ 1
3

Notice that:

• Completeness only needs to hold for the prover P

Given a pair of interactive algorithms A,B and a common input x, we write (A,B)(x) to denote the
output of B at the end of the interaction

Definition: A pair of interactive (randomized) algorithms (P, V) is called an interactive proof
system for language L if V runs in polynomial time and the following two conditions hold:

Interactive Proof Systems (Formal)

• Completeness: For every x ∈ L, Pr[(P, V)(x) = 1] ≥ 2
3

• Soundness: For every x ̸∈ L and every interactive algorithm A, Pr[(A, V)(x) = 1] ≤ 1
3

Notice that:

• Completeness only needs to hold for the prover P

• Soundness needs to hold regardless of the (cheating) prover

Given a pair of interactive algorithms A,B and a common input x, we write (A,B)(x) to denote the
output of B at the end of the interaction

Definition: A pair of interactive (randomized) algorithms (P, V) is called an interactive proof
system for language L if V runs in polynomial time and the following two conditions hold:

Interactive Proof Systems (Formal)

• Completeness: For every x ∈ L, Pr[(P, V)(x) = 1] ≥ 2
3

• Soundness: For every x ̸∈ L and every interactive algorithm A, Pr[(A, V)(x) = 1] ≤ 1
3

Notice that:

• Completeness only needs to hold for the prover P

• Soundness needs to hold regardless of the (cheating) prover

Given a pair of interactive algorithms A,B and a common input x, we write (A,B)(x) to denote the
output of B at the end of the interaction

IP is the class of all languages that admit an interactive proof system

Probability Amplification

The constants 2
3 and 1

3 are arbitrary. Any pair of error probabilities that differ by at least 1
p(n) , for some

polynomial p(n) > 0, is enough.

Probability Amplification

The constants 2
3 and 1

3 are arbitrary. Any pair of error probabilities that differ by at least 1
p(n) , for some

polynomial p(n) > 0, is enough.

Let (P, V) be an interactive proof system such that:

• Pr[(P, V)(x) = 1] ≥ c(n) for x ∈ L

• Pr[(P, V)(x) = 1] ≤ s(n) for x ̸∈ L

• s(n)− c(n) ≥ 1
p(n)

s(n) c(n)

≥1/p(n)z }| {

Probability Amplification

The constants 2
3 and 1

3 are arbitrary. Any pair of error probabilities that differ by at least 1
p(n) , for some

polynomial p(n) > 0, is enough.

Let (P, V) be an interactive proof system such that:

• Pr[(P, V)(x) = 1] ≥ c(n) for x ∈ L

• Pr[(P, V)(x) = 1] ≤ s(n) for x ̸∈ L

• s(n)− c(n) ≥ 1
p(n)

Strategy: Repeat the protocol k times and accept if the (P, V)(x) = 1 in at least k(s(n) + 1
2p(n))

executions

ks(n) kc(n)

≥k/p(n)z }| {

k(s(n) + 1
2p(n))

Probability Amplification

The constants 2
3 and 1

3 are arbitrary. Any pair of error probabilities that differ by at least 1
p(n) , for some

polynomial p(n) > 0, is enough.

Let (P, V) be an interactive proof system such that:

• Pr[(P, V)(x) = 1] ≥ c(n) for x ∈ L

• Pr[(P, V)(x) = 1] ≤ s(n) for x ̸∈ L

• s(n)− c(n) ≥ 1
p(n)

Chernoff bound: Let X = X1 +X2 + . . . where the Xis are independent binary random variables
and let µ = E[X]. Then, for any δ > 0:

Pr[X ≤ (1− δ)µ] ≤ e−δ2µ/2

Strategy: Repeat the protocol k times and accept if the (P, V)(x) = 1 in at least k(s(n) + 1
2p(n))

executions

ks(n) kc(n)

≥k/p(n)z }| {

k(s(n) + 1
2p(n))

O(p(n)3) repetitions suffice

The class NP can be thought of as the set of all claims that admit a short, efficiently verifiable proof

Efficiently verifiable proofs

A language L ⊆ {0, 1}∗ is in NP iff there exists a non-deterministic polynomial-time Turing machine T
such that x ∈ L iff (at least one computation path of) T (x) accepts

The class NP can be thought of as the set of all claims that admit a short, efficiently verifiable proof

Efficiently verifiable proofs

A language L ⊆ {0, 1}∗ is in NP iff there exists a non-deterministic polynomial-time Turing machine T
such that x ∈ L iff (at least one computation path of) T (x) accepts

Equivalently: A language: L ⊆ {0, 1}∗ is in NP iff there exists a polynomial-time algorithm V such
that:

• For every x ∈ L, there exists a witness (i.e., a “proof”) w with |w| ∈ O(poly(|x|)) s.t. V(x,w) = 1.

• For every x ̸∈ L, there is no witness w s.t. V(x,w) = 1.

The class NP can be thought of as the set of all claims that admit a short, efficiently verifiable proof

Efficiently verifiable proofs

A language L ⊆ {0, 1}∗ is in NP iff there exists a non-deterministic polynomial-time Turing machine T
such that x ∈ L iff (at least one computation path of) T (x) accepts

Equivalently: A language: L ⊆ {0, 1}∗ is in NP iff there exists a polynomial-time algorithm V such
that:

• For every x ∈ L, there exists a witness (i.e., a “proof”) w with |w| ∈ O(poly(|x|)) s.t. V(x,w) = 1.

• For every x ̸∈ L, there is no witness w s.t. V(x,w) = 1.

=⇒ : A (poynomial-length) accepting computation path of T (x) is a witness w
(V simulates T but already know the “right” non-deterministic choices from w)

Proof sketch:

The class NP can be thought of as the set of all claims that admit a short, efficiently verifiable proof

Efficiently verifiable proofs

A language L ⊆ {0, 1}∗ is in NP iff there exists a non-deterministic polynomial-time Turing machine T
such that x ∈ L iff (at least one computation path of) T (x) accepts

Equivalently: A language: L ⊆ {0, 1}∗ is in NP iff there exists a polynomial-time algorithm V such
that:

• For every x ∈ L, there exists a witness (i.e., a “proof”) w with |w| ∈ O(poly(|x|)) s.t. V(x,w) = 1.

• For every x ̸∈ L, there is no witness w s.t. V(x,w) = 1.

=⇒ : A (poynomial-length) accepting computation path of T (x) is a witness w
(V simulates T but already know the “right” non-deterministic choices from w)

⇐=: A non-determistic Turing machine T can “guess” the witness w, and then check if V(x,w) = 1

Proof sketch:

Interactive Proofs for NP and BPP

We immediately have an interactive proof for all languages L ∈ NP

w
V(x,w)

Interactive Proofs for NP and BPP

We immediately have an interactive proof for all languages L ∈ NP

w
V(x,w)

NP contains exactly all languages that admit an interactive proof with a deterministic verifier and in
which at most one message is exchanged (from the prover to the verifier)

Interactive Proofs for NP and BPP

We immediately have an interactive proof for all languages L ∈ NP

w
V(x,w)

NP contains exactly all languages that admit an interactive proof with a deterministic verifier and in
which at most one message is exchanged (from the prover to the verifier)

NP ⊆ IP

Interactive Proofs for NP and BPP

We immediately have an interactive proof for all languages L ∈ NP

w
V(x,w)

What if L ∈ BPP?

NP contains exactly all languages that admit an interactive proof with a deterministic verifier and in
which at most one message is exchanged (from the prover to the verifier)

NP ⊆ IP

Interactive Proofs for NP and BPP

We immediately have an interactive proof for all languages L ∈ NP

w
V(x,w)

What if L ∈ BPP?

• There is a (randomized) polynomial time algorithm A(x) that decides whether x ∈ L

NP contains exactly all languages that admit an interactive proof with a deterministic verifier and in
which at most one message is exchanged (from the prover to the verifier)

NP ⊆ IP

Interactive Proofs for NP and BPP

We immediately have an interactive proof for all languages L ∈ NP

w
V(x,w)

What if L ∈ BPP?

• There is a (randomized) polynomial time algorithm A(x) that decides whether x ∈ L

• There is no need for a witness! The verifier can convince itself that the claim is true!

• The verifier ignores the prover and runs A(x)

V(x) :
return A(x)

No interaction

NP contains exactly all languages that admit an interactive proof with a deterministic verifier and in
which at most one message is exchanged (from the prover to the verifier)

NP ⊆ IP

Interactive Proofs for NP and BPP

We immediately have an interactive proof for all languages L ∈ NP

w
V(x,w)

What if L ∈ BPP?

• There is a (randomized) polynomial time algorithm A(x) that decides whether x ∈ L

• There is no need for a witness! The verifier can convince itself that the claim is true!

• The verifier ignores the prover and runs A(x)

V(x) :
return A(x)

No interaction

NP contains exactly all languages that admit an interactive proof with a deterministic verifier and in
which at most one message is exchanged (from the prover to the verifier)

NP ⊆ IP

BPP ⊆ IP

Interactive Proofs for NP and BPP

We immediately have an interactive proof for all languages L ∈ NP

w
V(x,w)

What if L ∈ BPP?

• There is a (randomized) polynomial time algorithm A(x) that decides whether x ∈ L

• There is no need for a witness! The verifier can convince itself that the claim is true!

• The verifier ignores the prover and runs A(x)

V(x) :
return A(x)

No interaction

An interactive proof in which the verifier never talks to the prover is degenerate

NP contains exactly all languages that admit an interactive proof with a deterministic verifier and in
which at most one message is exchanged (from the prover to the verifier)

NP ⊆ IP

BPP ⊆ IP

An Interactive Proof for Graph Non-Isomorphism

Let’s look at a non-degenerate interactive proof for a problem that is not known to be in NP ∪ BPP

The language L contains all pairs of graphs (G1, G2) such that G1 and G2 are not isomorphic

An Interactive Proof for Graph Non-Isomorphism

Let’s look at a non-degenerate interactive proof for a problem that is not known to be in NP ∪ BPP

The language L contains all pairs of graphs (G1, G2) such that G1 and G2 are not isomorphic

Notice: no obvious (short) witness!

An Interactive Proof for Graph Non-Isomorphism

Let’s look at a non-degenerate interactive proof for a problem that is not known to be in NP ∪ BPP

The language L contains all pairs of graphs (G1, G2) such that G1 and G2 are not isomorphic

Notice: no obvious (short) witness!

If G = (V,E) and π is a permutation on V , we denote by π(G) the graph (V, F) where
F = {(π(u),π(v)) | (u, v) ∈ E}

An Interactive Proof for Graph Non-Isomorphism

Let’s look at a non-degenerate interactive proof for a problem that is not known to be in NP ∪ BPP

The language L contains all pairs of graphs (G1, G2) such that G1 and G2 are not isomorphic

Notice: no obvious (short) witness!

• The verifier chooses b u.a.r. in {1, 2}
• The verifier picks a random permutation π : V → V and sends the graph G′ = π(Gb) to the prover

• The prover checks whether G′ is isomorphic to G1. If so it replies with b′ = 1, otherwise it replies
with b′ = 2.

Common input: x = (G1, G2) where G1 = (V,E1), G2 = (V,E2), and V = {1, . . . , n}

• If b′ = b, the verifier accepts. Otherwise it rejects

If G = (V,E) and π is a permutation on V , we denote by π(G) the graph (V, F) where
F = {(π(u),π(v)) | (u, v) ∈ E}

If (G1, G2) ∈ L then Gb will be isomorphic to exactly one of G1 and G2. The (computationally
unbounded) prover always guesses correctly

An Interactive Proof for Graph Non-Isomorphism
Completeness

If (G1, G2) ∈ L then Gb will be isomorphic to exactly one of G1 and G2. The (computationally
unbounded) prover always guesses correctly

Soundness

Idea: If the input graphs are isomorphic (the prover is cheating), then a random isomorphic copy of one
graph will be distributed identically to a random isomorphic copy of the other graph.

An Interactive Proof for Graph Non-Isomorphism
Completeness

If G1 and G2, are isomorphic and π is a random permutation then Pr[π(G1)=H]=Pr[π(G2)=H]

If (G1, G2) ∈ L then Gb will be isomorphic to exactly one of G1 and G2. The (computationally
unbounded) prover always guesses correctly

Soundness

Idea: If the input graphs are isomorphic (the prover is cheating), then a random isomorphic copy of one
graph will be distributed identically to a random isomorphic copy of the other graph.

An Interactive Proof for Graph Non-Isomorphism
Completeness

Pr[b = 1 | π(Gb) = G′]

For any graph G′ isomorphic to G1 (and G2):

If G1 and G2, are isomorphic and π is a random permutation then Pr[π(G1)=H]=Pr[π(G2)=H]

Pr[b = 2 | π(Gb) = G′]

If (G1, G2) ∈ L then Gb will be isomorphic to exactly one of G1 and G2. The (computationally
unbounded) prover always guesses correctly

Soundness

Idea: If the input graphs are isomorphic (the prover is cheating), then a random isomorphic copy of one
graph will be distributed identically to a random isomorphic copy of the other graph.

An Interactive Proof for Graph Non-Isomorphism
Completeness

Pr[b = 1 | π(Gb) = G′] = Pr[π(Gb) = G′ | b = 1] · Pr[b=1]
Pr[π(Gb)=G′]

For any graph G′ isomorphic to G1 (and G2):

If G1 and G2, are isomorphic and π is a random permutation then Pr[π(G1)=H]=Pr[π(G2)=H]

Pr[b = 2 | π(Gb) = G′] = Pr[π(Gb) = G′ | b = 2] · Pr[b=2]
Pr[π(Gb)=G′]

If (G1, G2) ∈ L then Gb will be isomorphic to exactly one of G1 and G2. The (computationally
unbounded) prover always guesses correctly

Soundness

Idea: If the input graphs are isomorphic (the prover is cheating), then a random isomorphic copy of one
graph will be distributed identically to a random isomorphic copy of the other graph.

An Interactive Proof for Graph Non-Isomorphism
Completeness

Pr[b = 1 | π(Gb) = G′] = Pr[π(Gb) = G′ | b = 1] · Pr[b=1]
Pr[π(Gb)=G′] = Pr[π(G1) = G′] · Pr[b=1]

Pr[π(Gb)=G′]

For any graph G′ isomorphic to G1 (and G2):

If G1 and G2, are isomorphic and π is a random permutation then Pr[π(G1)=H]=Pr[π(G2)=H]

Pr[b = 2 | π(Gb) = G′] = Pr[π(Gb) = G′ | b = 2] · Pr[b=2]
Pr[π(Gb)=G′] = Pr[π(G2) = G′] · Pr[b=2]

Pr[π(Gb)=G′]

If (G1, G2) ∈ L then Gb will be isomorphic to exactly one of G1 and G2. The (computationally
unbounded) prover always guesses correctly

Soundness

Idea: If the input graphs are isomorphic (the prover is cheating), then a random isomorphic copy of one
graph will be distributed identically to a random isomorphic copy of the other graph.

An Interactive Proof for Graph Non-Isomorphism
Completeness

Pr[b = 1 | π(Gb) = G′] = Pr[π(Gb) = G′ | b = 1] · Pr[b=1]
Pr[π(Gb)=G′] = Pr[π(G1) = G′] · Pr[b=1]

Pr[π(Gb)=G′]

For any graph G′ isomorphic to G1 (and G2):

If G1 and G2, are isomorphic and π is a random permutation then Pr[π(G1)=H]=Pr[π(G2)=H]

Pr[b = 2 | π(Gb) = G′] = Pr[π(Gb) = G′ | b = 2] · Pr[b=2]
Pr[π(Gb)=G′] = Pr[π(G2) = G′] · Pr[b=2]

Pr[π(Gb)=G′]

If (G1, G2) ∈ L then Gb will be isomorphic to exactly one of G1 and G2. The (computationally
unbounded) prover always guesses correctly

Soundness

Idea: If the input graphs are isomorphic (the prover is cheating), then a random isomorphic copy of one
graph will be distributed identically to a random isomorphic copy of the other graph.

An Interactive Proof for Graph Non-Isomorphism
Completeness

Pr[b = 1 | π(Gb) = G′]

For any graph G′ isomorphic to G1 (and G2):

= Pr[b = 2 | π(Gb) = G′]

If G1 and G2, are isomorphic and π is a random permutation then Pr[π(G1)=H]=Pr[π(G2)=H]

If (G1, G2) ∈ L then Gb will be isomorphic to exactly one of G1 and G2. The (computationally
unbounded) prover always guesses correctly

Soundness

Idea: If the input graphs are isomorphic (the prover is cheating), then a random isomorphic copy of one
graph will be distributed identically to a random isomorphic copy of the other graph.

An Interactive Proof for Graph Non-Isomorphism
Completeness

Pr[b = 1 | π(Gb) = G′]

For any graph G′ isomorphic to G1 (and G2):

= Pr[b = 2 | π(Gb) = G′] = 1
2

If G1 and G2, are isomorphic and π is a random permutation then Pr[π(G1)=H]=Pr[π(G2)=H]

If (G1, G2) ∈ L then Gb will be isomorphic to exactly one of G1 and G2. The (computationally
unbounded) prover always guesses correctly

Soundness

Idea: If the input graphs are isomorphic (the prover is cheating), then a random isomorphic copy of one
graph will be distributed identically to a random isomorphic copy of the other graph.

An Interactive Proof for Graph Non-Isomorphism
Completeness

Pr[b = 1 | π(Gb) = G′]

For any graph G′ isomorphic to G1 (and G2):

= Pr[b = 2 | π(Gb) = G′]

Let R be the (possibily randomized) process used by the prover to compute the reply to the verifier

Pr[R(Gb) = b]

The verifier accepts with probability:

= 1
2

If G1 and G2, are isomorphic and π is a random permutation then Pr[π(G1)=H]=Pr[π(G2)=H]

If (G1, G2) ∈ L then Gb will be isomorphic to exactly one of G1 and G2. The (computationally
unbounded) prover always guesses correctly

Soundness

Idea: If the input graphs are isomorphic (the prover is cheating), then a random isomorphic copy of one
graph will be distributed identically to a random isomorphic copy of the other graph.

An Interactive Proof for Graph Non-Isomorphism
Completeness

Pr[b = 1 | π(Gb) = G′]

For any graph G′ isomorphic to G1 (and G2):

= Pr[b = 2 | π(Gb) = G′]

Let R be the (possibily randomized) process used by the prover to compute the reply to the verifier

Pr[R(Gb) = b]

The verifier accepts with probability:

=
P

G′ Pr[R(G′) = b | π(Gb) = G′] · Pr[π(Gb) = G′]

= 1
2

If G1 and G2, are isomorphic and π is a random permutation then Pr[π(G1)=H]=Pr[π(G2)=H]

If (G1, G2) ∈ L then Gb will be isomorphic to exactly one of G1 and G2. The (computationally
unbounded) prover always guesses correctly

Soundness

Idea: If the input graphs are isomorphic (the prover is cheating), then a random isomorphic copy of one
graph will be distributed identically to a random isomorphic copy of the other graph.

An Interactive Proof for Graph Non-Isomorphism
Completeness

Pr[b = 1 | π(Gb) = G′]

For any graph G′ isomorphic to G1 (and G2):

= Pr[b = 2 | π(Gb) = G′]

Let R be the (possibily randomized) process used by the prover to compute the reply to the verifier

Pr[R(Gb) = b]

The verifier accepts with probability:

=
P

G′ Pr[R(G′) = b | π(Gb) = G′] · Pr[π(Gb) = G′]

Pr[R(G′) = b | π(Gb) = G′]

= 1
2

If G1 and G2, are isomorphic and π is a random permutation then Pr[π(G1)=H]=Pr[π(G2)=H]

If (G1, G2) ∈ L then Gb will be isomorphic to exactly one of G1 and G2. The (computationally
unbounded) prover always guesses correctly

Soundness

Idea: If the input graphs are isomorphic (the prover is cheating), then a random isomorphic copy of one
graph will be distributed identically to a random isomorphic copy of the other graph.

An Interactive Proof for Graph Non-Isomorphism
Completeness

Pr[b = 1 | π(Gb) = G′]

For any graph G′ isomorphic to G1 (and G2):

= Pr[b = 2 | π(Gb) = G′]

Let R be the (possibily randomized) process used by the prover to compute the reply to the verifier

Pr[R(Gb) = b]

The verifier accepts with probability:

=
P

G′ Pr[R(G′) = b | π(Gb) = G′] · Pr[π(Gb) = G′]

Pr[R(G′) = b | π(Gb) = G′] ≤
P

b∗∈{1,2} Pr[R(G′) = b∗ ∧ b = b∗ | π(Gb) = G′]

= 1
2

If G1 and G2, are isomorphic and π is a random permutation then Pr[π(G1)=H]=Pr[π(G2)=H]

If (G1, G2) ∈ L then Gb will be isomorphic to exactly one of G1 and G2. The (computationally
unbounded) prover always guesses correctly

Soundness

Idea: If the input graphs are isomorphic (the prover is cheating), then a random isomorphic copy of one
graph will be distributed identically to a random isomorphic copy of the other graph.

An Interactive Proof for Graph Non-Isomorphism
Completeness

Pr[b = 1 | π(Gb) = G′]

For any graph G′ isomorphic to G1 (and G2):

= Pr[b = 2 | π(Gb) = G′]

Let R be the (possibily randomized) process used by the prover to compute the reply to the verifier

Pr[R(Gb) = b]

The verifier accepts with probability:

=
P

G′ Pr[R(G′) = b | π(Gb) = G′] · Pr[π(Gb) = G′]

Pr[R(G′) = b | π(Gb) = G′] ≤
P

b∗∈{1,2} Pr[R(G′) = b∗ | b = b∗ ∧ π(Gb) = G′] ·Pr[b = b∗ | π(Gb) = G′]

= 1
2

If G1 and G2, are isomorphic and π is a random permutation then Pr[π(G1)=H]=Pr[π(G2)=H]

If (G1, G2) ∈ L then Gb will be isomorphic to exactly one of G1 and G2. The (computationally
unbounded) prover always guesses correctly

Soundness

Idea: If the input graphs are isomorphic (the prover is cheating), then a random isomorphic copy of one
graph will be distributed identically to a random isomorphic copy of the other graph.

An Interactive Proof for Graph Non-Isomorphism
Completeness

Pr[b = 1 | π(Gb) = G′]

For any graph G′ isomorphic to G1 (and G2):

= Pr[b = 2 | π(Gb) = G′]

Let R be the (possibily randomized) process used by the prover to compute the reply to the verifier

Pr[R(Gb) = b]

The verifier accepts with probability:

=
P

G′ Pr[R(G′) = b | π(Gb) = G′] · Pr[π(Gb) = G′]

Pr[R(G′) = b | π(Gb) = G′]

= 1
2

≤ P
b∗∈{1,2} Pr[R(G′) = b∗] · 1

2

If G1 and G2, are isomorphic and π is a random permutation then Pr[π(G1)=H]=Pr[π(G2)=H]

If (G1, G2) ∈ L then Gb will be isomorphic to exactly one of G1 and G2. The (computationally
unbounded) prover always guesses correctly

Soundness

Idea: If the input graphs are isomorphic (the prover is cheating), then a random isomorphic copy of one
graph will be distributed identically to a random isomorphic copy of the other graph.

An Interactive Proof for Graph Non-Isomorphism
Completeness

Pr[b = 1 | π(Gb) = G′]

For any graph G′ isomorphic to G1 (and G2):

= Pr[b = 2 | π(Gb) = G′]

Let R be the (possibily randomized) process used by the prover to compute the reply to the verifier

Pr[R(Gb) = b]

The verifier accepts with probability:

=
P

G′ Pr[R(G′) = b | π(Gb) = G′] · Pr[π(Gb) = G′]

Pr[R(G′) = b | π(Gb) = G′]

= 1
2

≤ 1
2

If G1 and G2, are isomorphic and π is a random permutation then Pr[π(G1)=H]=Pr[π(G2)=H]

If (G1, G2) ∈ L then Gb will be isomorphic to exactly one of G1 and G2. The (computationally
unbounded) prover always guesses correctly

Soundness

Idea: If the input graphs are isomorphic (the prover is cheating), then a random isomorphic copy of one
graph will be distributed identically to a random isomorphic copy of the other graph.

An Interactive Proof for Graph Non-Isomorphism
Completeness

Pr[b = 1 | π(Gb) = G′]

For any graph G′ isomorphic to G1 (and G2):

= Pr[b = 2 | π(Gb) = G′]

Let R be the (possibily randomized) process used by the prover to compute the reply to the verifier

Pr[R(Gb) = b]

The verifier accepts with probability:

=
P

G′ Pr[R(G′) = b | π(Gb) = G′] · Pr[π(Gb) = G′]

Pr[R(G′) = b | π(Gb) = G′]

= 1
2

≤ P
G′

1
2 · Pr[π(Gb) = G′]

≤ 1
2

If G1 and G2, are isomorphic and π is a random permutation then Pr[π(G1)=H]=Pr[π(G2)=H]

If (G1, G2) ∈ L then Gb will be isomorphic to exactly one of G1 and G2. The (computationally
unbounded) prover always guesses correctly

Soundness

Idea: If the input graphs are isomorphic (the prover is cheating), then a random isomorphic copy of one
graph will be distributed identically to a random isomorphic copy of the other graph.

An Interactive Proof for Graph Non-Isomorphism
Completeness

Pr[b = 1 | π(Gb) = G′]

For any graph G′ isomorphic to G1 (and G2):

= Pr[b = 2 | π(Gb) = G′]

Let R be the (possibily randomized) process used by the prover to compute the reply to the verifier

Pr[R(Gb) = b]

The verifier accepts with probability:

=
P

G′ Pr[R(G′) = b | π(Gb) = G′] · Pr[π(Gb) = G′]

Pr[R(G′) = b | π(Gb) = G′]

= 1
2

≤ P
G′

1
2 · Pr[π(Gb) = G′] = 1

2

≤ 1
2

If G1 and G2, are isomorphic and π is a random permutation then Pr[π(G1)=H]=Pr[π(G2)=H]

If (G1, G2) ∈ L then Gb will be isomorphic to exactly one of G1 and G2. The (computationally
unbounded) prover always guesses correctly

Soundness

Idea: If the input graphs are isomorphic (the prover is cheating), then a random isomorphic copy of one
graph will be distributed identically to a random isomorphic copy of the other graph.

An Interactive Proof for Graph Non-Isomorphism
Completeness

Pr[b = 1 | π(Gb) = G′]

For any graph G′ isomorphic to G1 (and G2):

= Pr[b = 2 | π(Gb) = G′]

Let R be the (possibily randomized) process used by the prover to compute the reply to the verifier

Pr[R(Gb) = b]

The verifier accepts with probability:

=
P

G′ Pr[R(G′) = b | π(Gb) = G′] · Pr[π(Gb) = G′]

Pr[R(G′) = b | π(Gb) = G′]

= 1
2

≤ P
G′

1
2 · Pr[π(Gb) = G′] = 1

2

□≤ 1
2

If G1 and G2, are isomorphic and π is a random permutation then Pr[π(G1)=H]=Pr[π(G2)=H]

Use probability amplification

