
How does Bob learn the wire-labels corresponding to his input?

The Oblivious Transfer Protocol

• He cannot just ask Alice, since this would reveal his inputs



How does Bob learn the wire-labels corresponding to his input?

The Oblivious Transfer Protocol

• He cannot just ask Alice, since this would reveal his inputs

Alice and Bob use a protocol known as oblivious transfer protocol

• In the oblivious transfer protocol Alice has two messages m0,m1 of length ℓ(n)

n is the security
parameter



How does Bob learn the wire-labels corresponding to his input?

The Oblivious Transfer Protocol

• He cannot just ask Alice, since this would reveal his inputs

Alice and Bob use a protocol known as oblivious transfer protocol

• In the oblivious transfer protocol Alice has two messages m0,m1 of length ℓ(n)

• Bob wants to learn one of them, say mb, without revealing which one he is interested in to Alice

• Alice wants to be sure that Bob learns exactly one of the two values

Oblivious
Transfer
Protocol

m0,m1 b

n is the security
parameter



How does Bob learn the wire-labels corresponding to his input?

The Oblivious Transfer Protocol

• He cannot just ask Alice, since this would reveal his inputs

Alice and Bob use a protocol known as oblivious transfer protocol

• In the oblivious transfer protocol Alice has two messages m0,m1 of length ℓ(n)

• Bob wants to learn one of them, say mb, without revealing which one he is interested in to Alice

• Alice wants to be sure that Bob learns exactly one of the two values

Oblivious
Transfer
Protocol

m0,m1 b

mb

n is the security
parameter



Reminder: DDH-Based Key Encapsulation Mechanism

Gen(1n):

• Run G(1n), where G is a group generation algorithm, to obtain (G, q, g) where G is a
group of order q and g ∈ G is a generator

• Choose a uniform x u.a.r. from {0, . . . , q − 1}
• Compute h = gx

• Output (pk, sk) where pk = (G, q, g, h,H) and sk = (G, q, g, x,H).

• Pick some key derivation function H : G → {0, 1}ℓ(n)



Reminder: DDH-Based Key Encapsulation Mechanism

Gen(1n):

• Run G(1n), where G is a group generation algorithm, to obtain (G, q, g) where G is a
group of order q and g ∈ G is a generator

• Choose a uniform x u.a.r. from {0, . . . , q − 1}
• Compute h = gx

• Output (pk, sk) where pk = (G, q, g, h,H) and sk = (G, q, g, x,H).

• Pick some key derivation function H : G → {0, 1}ℓ(n)

Encapspk(1
n):

• Here pk = (G, q, g, h,H)

• Choose y u.a.r. from {0, . . . , q − 1}
• Output the pair (c, k) with c = gy and

k = H(hy) = H(gxy)



Reminder: DDH-Based Key Encapsulation Mechanism

Gen(1n):

• Run G(1n), where G is a group generation algorithm, to obtain (G, q, g) where G is a
group of order q and g ∈ G is a generator

• Choose a uniform x u.a.r. from {0, . . . , q − 1}
• Compute h = gx

• Output (pk, sk) where pk = (G, q, g, h,H) and sk = (G, q, g, x,H).

• Pick some key derivation function H : G → {0, 1}ℓ(n)

Encapspk(1
n):

• Here pk = (G, q, g, h,H)

• Choose y u.a.r. from {0, . . . , q − 1}
• Output the pair (c, k) with c = gy and

k = H(hy) = H(gxy)

Decapssk(c):

• Here sk = (G, q, g, x,H)

• Output the key H(cx) = H(gxy)



Reminder: DDH-Based KEM & Hybrid Encryption

We can build a CPA-secure PKE scheme by combining a CPA-secure KEM with an EAV-secure DEM

• We use the DDH-based KEM

• We use OTP as a DEM (for fixed-length messages)



Reminder: DDH-Based KEM & Hybrid Encryption

We can build a CPA-secure PKE scheme by combining a CPA-secure KEM with an EAV-secure DEM

• We use the DDH-based KEM

• We use OTP as a DEM (for fixed-length messages)

The resulting scheme is as follows:

Gen(1n):

• Pick a group G, its order q, a generator g ∈ G, a key-derivation function H : G → {0, 1}ℓ(n)
We think of these as fixed public values agreed upon in advance between Alice and Bob.

• Pick a random x ∈ G, the public-key is h = gx and the secret-key is x

Ench(m):

• Choose a uniform y ∈ {0, . . . , q − 1}. Return the pair c = (gy, H(hy)⊕m)

Decx((c, c
′)):

• Return H(cx)⊕ c′



Idea:

The Oblivious Transfer Protocol

• We pick two public keys h0, h1 for Bob

• We ensure that Bob knows the secret key xb corresponding to exactly one of the public
keys (of his choice)

• Alice encrypts m0 with h0 and m1 with h1

• Bob can only decrypt one of the two ciphertexts, namely the one corresponding to mb



Idea:

The Oblivious Transfer Protocol

• We pick two public keys h0, h1 for Bob

• We ensure that Bob knows the secret key xb corresponding to exactly one of the public
keys (of his choice)

• Alice encrypts m0 with h0 and m1 with h1

• Bob can only decrypt one of the two ciphertexts, namely the one corresponding to mb

How can Bob “prove” to Alice that he knows exactly one private key?



• Alice picks a random group element r ∈ G and sends it to Bob

The Oblivious Transfer Protocol



• Alice picks a random group element r ∈ G and sends it to Bob

• Bob picks a random private key x, and computes the two public keys:

— hb = gx. This is the public key that will be used to encrypt the message mb wanted by Bob.
The corresponding secret-key is x

The Oblivious Transfer Protocol



• Alice picks a random group element r ∈ G and sends it to Bob

• Bob picks a random private key x, and computes the two public keys:

— hb = gx. This is the public key that will be used to encrypt the message mb wanted by Bob.
The corresponding secret-key is x

— h1−b = r · (gx)−1. Bob does not have the corresponding secret key

The Oblivious Transfer Protocol



• Alice picks a random group element r ∈ G and sends it to Bob

• Bob picks a random private key x, and computes the two public keys:

— hb = gx. This is the public key that will be used to encrypt the message mb wanted by Bob.
The corresponding secret-key is x

— h1−b = r · (gx)−1. Bob does not have the corresponding secret key

• Bob sends h0 and h1 to Alice

• Alice checks that Bob “did not cheat” while computing the public keys: h0 · h1 = r?

The Oblivious Transfer Protocol



• Alice picks a random group element r ∈ G and sends it to Bob

• Bob picks a random private key x, and computes the two public keys:

— hb = gx. This is the public key that will be used to encrypt the message mb wanted by Bob.
The corresponding secret-key is x

— h1−b = r · (gx)−1. Bob does not have the corresponding secret key

• Bob sends h0 and h1 to Alice

• Alice checks that Bob “did not cheat” while computing the public keys: h0 · h1 = r?

• Alice encrypts m0 and m1:

— Pick a uniform y0 ∈ {0, . . . , q − 1}, let c0 = (gy0 , H(hy0

0 )⊕m0)

— Pick a uniform y1 ∈ {0, . . . , q − 1}, let c1 = (gy1 , H(hy1

1 )⊕m1)

The Oblivious Transfer Protocol



• Alice picks a random group element r ∈ G and sends it to Bob

• Bob picks a random private key x, and computes the two public keys:

— hb = gx. This is the public key that will be used to encrypt the message mb wanted by Bob.
The corresponding secret-key is x

— h1−b = r · (gx)−1. Bob does not have the corresponding secret key

• Bob sends h0 and h1 to Alice

• Alice checks that Bob “did not cheat” while computing the public keys: h0 · h1 = r?

• Alice encrypts m0 and m1:

— Pick a uniform y0 ∈ {0, . . . , q − 1}, let c0 = (gy0 , H(hy0

0 )⊕m0)

— Pick a uniform y1 ∈ {0, . . . , q − 1}, let c1 = (gy1 , H(hy1

1 )⊕m1)

• Alice sends c0 and c1 to Bob

• Bob decrypts cb = (c, c′) as mb = H(cx)⊕ c′

The Oblivious Transfer Protocol



The Oblivious Transfer Protocol: Security (informal)

Can Bob learn m1−b?

• m1−b was encrypted as (gy1−b , H(h
y1−b

1−b )⊕m1−b)



The Oblivious Transfer Protocol: Security (informal)

Can Bob learn m1−b?

To learn m1−b, Bob needs to either:

• m1−b was encrypted as (gy1−b , H(h
y1−b

1−b )⊕m1−b)

• Be able to compute h
y1−b

1−b



The Oblivious Transfer Protocol: Security (informal)

Can Bob learn m1−b?

To learn m1−b, Bob needs to either:

• m1−b was encrypted as (gy1−b , H(h
y1−b

1−b )⊕m1−b)

• Be able to compute h
y1−b

1−b



The Oblivious Transfer Protocol: Security (informal)

Can Bob learn m1−b?

To learn m1−b, Bob needs to either:

• m1−b was encrypted as (gy1−b , H(h
y1−b

1−b )⊕m1−b)

• Be able to compute h
y1−b

1−b = (r · g−x)y1−b Requires computing the discrete
logarithm of a random group element



The Oblivious Transfer Protocol: Security (informal)

Can Bob learn m1−b?

To learn m1−b, Bob needs to either:

• Be able to evaluate H(h
y1−b

1−b ) without knowing h
y1−b

1−b

• m1−b was encrypted as (gy1−b , H(h
y1−b

1−b )⊕m1−b)

• Be able to compute h
y1−b

1−b = (r · g−x)y1−b Requires computing the discrete
logarithm of a random group element



The Oblivious Transfer Protocol: Security (informal)

Can Bob learn m1−b?

To learn m1−b, Bob needs to either:

• Be able to evaluate H(h
y1−b

1−b ) without knowing h
y1−b

1−b

• m1−b was encrypted as (gy1−b , H(h
y1−b

1−b )⊕m1−b)

• Be able to compute h
y1−b

1−b = (r · g−x)y1−b

Secure if H acts as a
random oracle

Requires computing the discrete
logarithm of a random group element



The Oblivious Transfer Protocol: Security (informal)

Can Bob learn m1−b?

To learn m1−b, Bob needs to either:

• Be able to evaluate H(h
y1−b

1−b ) without knowing h
y1−b

1−b

• m1−b was encrypted as (gy1−b , H(h
y1−b

1−b )⊕m1−b)

• Be able to compute h
y1−b

1−b = (r · g−x)y1−b

Secure if H acts as a
random oracle

Requires computing the discrete
logarithm of a random group element

Secure under the Random Oracle model and the CDH assumption



Back to Yao’s Garbled Circuits: The Overall Protocol

• Alice stars from a circuit that computes f(x1, x2, . . . , xm, y1, y2, . . . , yn)



• Alice “garbles” the circuit and sends the garbled gates and the wire-labels corresponding to her input
values to Bob

Back to Yao’s Garbled Circuits: The Overall Protocol

• Alice stars from a circuit that computes f(x1, x2, . . . , xm, y1, y2, . . . , yn)



• Alice “garbles” the circuit and sends the garbled gates and the wire-labels corresponding to her input
values to Bob

• Bob uses the oblivious transfer protocol to learn the wire-label corresponding to each of his inputs
(without Alice knowing which of the two labels Bob requested)

Back to Yao’s Garbled Circuits: The Overall Protocol

• Alice stars from a circuit that computes f(x1, x2, . . . , xm, y1, y2, . . . , yn)



• Alice “garbles” the circuit and sends the garbled gates and the wire-labels corresponding to her input
values to Bob

• Bob uses the oblivious transfer protocol to learn the wire-label corresponding to each of his inputs
(without Alice knowing which of the two labels Bob requested)

Back to Yao’s Garbled Circuits: The Overall Protocol

• Bob evaluates the garbled circuit and obtains the wire-label of the output

• Bob sends the output wire-label to Alice

• Alice stars from a circuit that computes f(x1, x2, . . . , xm, y1, y2, . . . , yn)



• Alice “garbles” the circuit and sends the garbled gates and the wire-labels corresponding to her input
values to Bob

• Bob uses the oblivious transfer protocol to learn the wire-label corresponding to each of his inputs
(without Alice knowing which of the two labels Bob requested)

Back to Yao’s Garbled Circuits: The Overall Protocol

• Bob evaluates the garbled circuit and obtains the wire-label of the output

• Bob sends the output wire-label to Alice

• Alice knows the corresponding truth value, so she learns f(x1, x2, . . . , xm, y1, y2, . . . , yn)

• Alice stars from a circuit that computes f(x1, x2, . . . , xm, y1, y2, . . . , yn)



• Alice “garbles” the circuit and sends the garbled gates and the wire-labels corresponding to her input
values to Bob

• Bob uses the oblivious transfer protocol to learn the wire-label corresponding to each of his inputs
(without Alice knowing which of the two labels Bob requested)

Back to Yao’s Garbled Circuits: The Overall Protocol

• Bob evaluates the garbled circuit and obtains the wire-label of the output

• Bob sends the output wire-label to Alice

• Alice knows the corresponding truth value, so she learns f(x1, x2, . . . , xm, y1, y2, . . . , yn)

• Alice stars from a circuit that computes f(x1, x2, . . . , xm, y1, y2, . . . , yn)

• If Bob should also know the value of f(x1, x2, . . . , xm, y1, y2, . . . , yn), Alice shares it with Bob



Multiparty Computation

What if n ≥ 2 parties want to jointly compute a function?



Multiparty Computation

What if n ≥ 2 parties want to jointly compute a function?

We consider functions f(x1, x2, . . . , xn) that are computed by an arithmetic circuit over Zp, for a
prime p > n

• The i-th input xi is an integer in {0, 1, . . . , p− 1} and is controlled by the i-th party



Multiparty Computation

What if n ≥ 2 parties want to jointly compute a function?

We consider functions f(x1, x2, . . . , xn) that are computed by an arithmetic circuit over Zp, for a
prime p > n

• The i-th input xi is an integer in {0, 1, . . . , p− 1} and is controlled by the i-th party

• There are two gate types: addition gates and multiplication gates, that compute the sum and
product of their inputs modulo p, respectively.

x1

x2

x3

Mult

Mult

Add



Multiparty Computation

What if n ≥ 2 parties want to jointly compute a function?

We consider functions f(x1, x2, . . . , xn) that are computed by an arithmetic circuit over Zp, for a
prime p > n

• The i-th input xi is an integer in {0, 1, . . . , p− 1} and is controlled by the i-th party

• There are two gate types: addition gates and multiplication gates, that compute the sum and
product of their inputs modulo p, respectively.

x1

x2

x3

Mult

Mult

Add

Computes (x1 · x2) · (x2 + x3) (mod p)



Multiparty Computation

What if n ≥ 2 parties want to jointly compute a function?

We consider functions f(x1, x2, . . . , xn) that are computed by an arithmetic circuit over Zp, for a
prime p > n

• The i-th input xi is an integer in {0, 1, . . . , p− 1} and is controlled by the i-th party

• There are two gate types: addition gates and multiplication gates, that compute the sum and
product of their inputs modulo p, respectively.

x1

x2

x3

Mult

Mult

Add

Computes (x1 · x2) · (x2 + x3) (mod p)

With inputs x1 = 3, x2 = 5, and x3 = 2,
and p = 11 it computes 6

3

5

2



Multiparty Computation

What if n ≥ 2 parties want to jointly compute a function?

We consider functions f(x1, x2, . . . , xn) that are computed by an arithmetic circuit over Zp, for a
prime p > n

• The i-th input xi is an integer in {0, 1, . . . , p− 1} and is controlled by the i-th party

• There are two gate types: addition gates and multiplication gates, that compute the sum and
product of their inputs modulo p, respectively.

x1

x2

x3

Mult

Mult

Add

Computes (x1 · x2) · (x2 + x3) (mod p)

With inputs x1 = 3, x2 = 5, and x3 = 2,
and p = 11 it computes 6

3

5

2
7

4



Multiparty Computation

What if n ≥ 2 parties want to jointly compute a function?

We consider functions f(x1, x2, . . . , xn) that are computed by an arithmetic circuit over Zp, for a
prime p > n

• The i-th input xi is an integer in {0, 1, . . . , p− 1} and is controlled by the i-th party

• There are two gate types: addition gates and multiplication gates, that compute the sum and
product of their inputs modulo p, respectively.

x1

x2

x3

Mult

Mult

Add

Computes (x1 · x2) · (x2 + x3) (mod p)

With inputs x1 = 3, x2 = 5, and x3 = 2,
and p = 11 it computes 6

3

5

2
7

4

6



Multiparty Computation

What if n ≥ 2 parties want to jointly compute a function?

We consider functions f(x1, x2, . . . , xn) that are computed by an arithmetic circuit over Zp, for a
prime p > n

• The i-th input xi is an integer in {0, 1, . . . , p− 1} and is controlled by the i-th party

• There are two gate types: addition gates and multiplication gates, that compute the sum and
product of their inputs modulo p, respectively.

How do Boolean circuits and arithmetic circuits compare?

x1

x2

x3

Mult

Mult

Add

Computes (x1 · x2) · (x2 + x3) (mod p)

With inputs x1 = 3, x2 = 5, and x3 = 2,
and p = 11 it computes 6

3

5

2
7

4

6



Arithmetic Circuits & Boolean Circuits

⇒ We can simulate a Boolean circuit with an arithmetic circuit:



Arithmetic Circuits & Boolean Circuits

⇒ We can simulate a Boolean circuit with an arithmetic circuit:

• x1 ∧ x2 = x1 · x2

• ¬x = 1− x

• x1 ∨ x2 = x1 + x2 − x1 · x2



Arithmetic Circuits & Boolean Circuits

⇒ We can simulate a Boolean circuit with an arithmetic circuit:

• x1 ∧ x2 = x1 · x2

• ¬x = 1− x

• x1 ∨ x2 = x1 + x2 − x1 · x2

⇐ We can simulate an arithmetic circuit with a Boolean circuit:



Arithmetic Circuits & Boolean Circuits

⇒ We can simulate a Boolean circuit with an arithmetic circuit:

• x1 ∧ x2 = x1 · x2

• ¬x = 1− x

• x1 ∨ x2 = x1 + x2 − x1 · x2

⇐ We can simulate an arithmetic circuit with a Boolean circuit:

• Replace each wire of the arithmetic circuit with ⌈log p⌉ Boolean wires

• Replace each Addition/Multiplication gate with a Boolean circuit that computes the Sum/Product
of the inputs modulo p



Multiparty Computation

How do we “garble” an arithmetic circuit for multiple parties?

How do we evaluate it?



Multiparty Computation

How do we “garble” an arithmetic circuit for multiple parties?

How do we evaluate it?

Idea:

• Do not garble the circuit, use the homomorphic properties of Shamir secret sharing instead



Multiparty Computation

How do we “garble” an arithmetic circuit for multiple parties?

How do we evaluate it?

Idea:

• Do not garble the circuit, use the homomorphic properties of Shamir secret sharing instead

We can perform computation on shares,
without having to recover their secrets first!



Multiparty Computation

How do we “garble” an arithmetic circuit for multiple parties?

How do we evaluate it?

Idea:

• Each party shares its input with all other parties using Shamir’s k-out-of-n threshold secret sharing
scheme

• Do not garble the circuit, use the homomorphic properties of Shamir secret sharing instead

We can perform computation on shares,
without having to recover their secrets first!



Multiparty Computation

How do we “garble” an arithmetic circuit for multiple parties?

How do we evaluate it?

Idea:

• Each party shares its input with all other parties using Shamir’s k-out-of-n threshold secret sharing
scheme

• Do not garble the circuit, use the homomorphic properties of Shamir secret sharing instead

We can perform computation on shares,
without having to recover their secrets first!

k is an integer parameter that controls how resilient the protocol is to coalitions of curious parties.
No group of less than k parties can collude to recover the secret. The construction works for k ≤ ⌈n

2 ⌉



Multiparty Computation

How do we “garble” an arithmetic circuit for multiple parties?

How do we evaluate it?

Idea:

• Each party shares its input with all other parties using Shamir’s k-out-of-n threshold secret sharing
scheme

• Each party evaluates the arithmetic circuit: a gate takes a share for each of the two inputs and
produces a share of the output

• Do not garble the circuit, use the homomorphic properties of Shamir secret sharing instead

We can perform computation on shares,
without having to recover their secrets first!

k is an integer parameter that controls how resilient the protocol is to coalitions of curious parties.
No group of less than k parties can collude to recover the secret. The construction works for k ≤ ⌈n

2 ⌉



Multiparty Computation

How do we “garble” an arithmetic circuit for multiple parties?

How do we evaluate it?

Idea:

• Each party shares its input with all other parties using Shamir’s k-out-of-n threshold secret sharing
scheme

• Each party evaluates the arithmetic circuit: a gate takes a share for each of the two inputs and
produces a share of the output

• Do not garble the circuit, use the homomorphic properties of Shamir secret sharing instead

• The output of the circuit is a share of f(x1, . . . , xn)

We can perform computation on shares,
without having to recover their secrets first!

k is an integer parameter that controls how resilient the protocol is to coalitions of curious parties.
No group of less than k parties can collude to recover the secret. The construction works for k ≤ ⌈n

2 ⌉



Multiparty Computation

How do we “garble” an arithmetic circuit for multiple parties?

How do we evaluate it?

Idea:

• Each party shares its input with all other parties using Shamir’s k-out-of-n threshold secret sharing
scheme

• Each party evaluates the arithmetic circuit: a gate takes a share for each of the two inputs and
produces a share of the output

• Do not garble the circuit, use the homomorphic properties of Shamir secret sharing instead

• The output of the circuit is a share of f(x1, . . . , xn)

• The parties combine their output shares and recover the value of f(x1, . . . , xn)

We can perform computation on shares,
without having to recover their secrets first!

k is an integer parameter that controls how resilient the protocol is to coalitions of curious parties.
No group of less than k parties can collude to recover the secret. The construction works for k ≤ ⌈n

2 ⌉



Addition Gates

Party i has the i-th shares (i, ai), (i, bi) of two (unknown) secrets a, b, respectively, . . .



Addition Gates

Party i has the i-th shares (i, ai), (i, bi) of two (unknown) secrets a, b, respectively, . . .

. . . and wants to compute the i-th share (i, ci) of the secret c = a+ b (mod p)



Addition Gates

Party i has the i-th shares (i, ai), (i, bi) of two (unknown) secrets a, b, respectively, . . .

. . . and wants to compute the i-th share (i, ci) of the secret c = a+ b (mod p)

• Let fa(x) and fb(x) be the polynomials (of degree at most k − 1) used to share a and b



Addition Gates

Party i has the i-th shares (i, ai), (i, bi) of two (unknown) secrets a, b, respectively, . . .

. . . and wants to compute the i-th share (i, ci) of the secret c = a+ b (mod p)

• Let fa(x) and fb(x) be the polynomials (of degree at most k − 1) used to share a and b

• Notice that the polynomial fc(x) = fa(x) + fb(x) (mod p) has degree at most k − 1 and is such
that fc(0) = fa(0) + fb(0) = a+ b (mod p)



Addition Gates

Party i has the i-th shares (i, ai), (i, bi) of two (unknown) secrets a, b, respectively, . . .

. . . and wants to compute the i-th share (i, ci) of the secret c = a+ b (mod p)

• Let fa(x) and fb(x) be the polynomials (of degree at most k − 1) used to share a and b

• Notice that the polynomial fc(x) = fa(x) + fb(x) (mod p) has degree at most k − 1 and is such
that fc(0) = fa(0) + fb(0) = a+ b (mod p)

• fc is a valid polynomial for sharing c in the Shamir’s k-out-of-n threshold secret sharing scheme!



Addition Gates

Party i has the i-th shares (i, ai), (i, bi) of two (unknown) secrets a, b, respectively, . . .

. . . and wants to compute the i-th share (i, ci) of the secret c = a+ b (mod p)

• Let fa(x) and fb(x) be the polynomials (of degree at most k − 1) used to share a and b

• Notice that the polynomial fc(x) = fa(x) + fb(x) (mod p) has degree at most k − 1 and is such
that fc(0) = fa(0) + fb(0) = a+ b (mod p)

• fc is a valid polynomial for sharing c in the Shamir’s k-out-of-n threshold secret sharing scheme!

What is the i-th share (i, ci) of fc?



Addition Gates

Party i has the i-th shares (i, ai), (i, bi) of two (unknown) secrets a, b, respectively, . . .

. . . and wants to compute the i-th share (i, ci) of the secret c = a+ b (mod p)

• Let fa(x) and fb(x) be the polynomials (of degree at most k − 1) used to share a and b

• Notice that the polynomial fc(x) = fa(x) + fb(x) (mod p) has degree at most k − 1 and is such
that fc(0) = fa(0) + fb(0) = a+ b (mod p)

• fc is a valid polynomial for sharing c in the Shamir’s k-out-of-n threshold secret sharing scheme!

What is the i-th share (i, ci) of fc?

ci = fc(i) = fa(i) + fb(i) = ai + bi (mod p)



Addition Gates

Party i has the i-th shares (i, ai), (i, bi) of two (unknown) secrets a, b, respectively, . . .

. . . and wants to compute the i-th share (i, ci) of the secret c = a+ b (mod p)

• Let fa(x) and fb(x) be the polynomials (of degree at most k − 1) used to share a and b

• Notice that the polynomial fc(x) = fa(x) + fb(x) (mod p) has degree at most k − 1 and is such
that fc(0) = fa(0) + fb(0) = a+ b (mod p)

• fc is a valid polynomial for sharing c in the Shamir’s k-out-of-n threshold secret sharing scheme!

What is the i-th share (i, ci) of fc?

ci = fc(i) = fa(i) + fb(i) = ai + bi (mod p)

Addition gates do not require any special care!

Add
ai
bi

ci = ai + bi (mod p)



Addition Gates

fa

b2

a2

c2

a
c

b

fa(x) = −4x3 + 19x2 − 22x+ 4

fb(x) = 3x3 − 13x2 + 13x− 1

fc(x) = −x3 + 6x2 − 9x+ 3



Multiplication Gates

Party i has the i-th shares ai, bi of two (unknown) secrets a, b, respectively, . . .

. . . and wants to compute the i-th share ci of the secret c = a · b (mod p)



Multiplication Gates

Party i has the i-th shares ai, bi of two (unknown) secrets a, b, respectively, . . .

. . . and wants to compute the i-th share ci of the secret c = a · b (mod p)

We can’t just use the share (i, ci) with ci = ai · bi Why?



Multiplication Gates

Party i has the i-th shares ai, bi of two (unknown) secrets a, b, respectively, . . .

. . . and wants to compute the i-th share ci of the secret c = a · b (mod p)

We can’t just use the share (i, ci) with ci = ai · bi

• We could define fc(x) = fa(x) · fb(x), and it would satisfy fc(0) = a · b . . .

Why?



Multiplication Gates

Party i has the i-th shares ai, bi of two (unknown) secrets a, b, respectively, . . .

. . . and wants to compute the i-th share ci of the secret c = a · b (mod p)

We can’t just use the share (i, ci) with ci = ai · bi

• We could define fc(x) = fa(x) · fb(x), and it would satisfy fc(0) = a · b . . .

Why?

• Also, ci = ai · bi would be the value of fc(i) . . .



Multiplication Gates

Party i has the i-th shares ai, bi of two (unknown) secrets a, b, respectively, . . .

. . . and wants to compute the i-th share ci of the secret c = a · b (mod p)

We can’t just use the share (i, ci) with ci = ai · bi

• We could define fc(x) = fa(x) · fb(x), and it would satisfy fc(0) = a · b . . .

Why?

• Also, ci = ai · bi would be the value of fc(i) . . .

• After each multiplication, the number of shares needed to recover c roughly doubles

Problem: since fa and fb have deree up to k − 1, the degree of fc can be as high as 2(k − 1)



Multiplication Gates

Party i has the i-th shares ai, bi of two (unknown) secrets a, b, respectively, . . .

. . . and wants to compute the i-th share ci of the secret c = a · b (mod p)

We can’t just use the share (i, ci) with ci = ai · bi

• We could define fc(x) = fa(x) · fb(x), and it would satisfy fc(0) = a · b . . .

Why?

• Also, ci = ai · bi would be the value of fc(i) . . .

• After each multiplication, the number of shares needed to recover c roughly doubles

We need to use another property of interpolating polynomials. . .

Problem: since fa and fb have deree up to k − 1, the degree of fc can be as high as 2(k − 1)



Recombination Vectors

Lemma: Given distinct x1, . . . , xn, define rj=
Y

i=1,...,n
i̸=j

xi · (xi − xj)
−1.

For any polynomial f of degree at most n− 1:

f(0) =
kX

j=1

rjf(xj)



Recombination Vectors

Lemma: Given distinct x1, . . . , xn, define rj=
Y

i=1,...,n
i̸=j

xi · (xi − xj)
−1.

For any polynomial f of degree at most n− 1:

f(0) =
kX

j=1

rjf(xj) The same holds in Zp!



Recombination Vectors

Lemma: Given distinct x1, . . . , xn, define rj=
Y

i=1,...,n
i̸=j

xi · (xi − xj)
−1.

For any polynomial f of degree at most n− 1:

f(0) =
kX

j=1

rjf(xj)

Remark: The coefficients ri depend only on the x-coordinates xi (and not on the choice of f)

The vector (r1, r2, . . . , rn) is called the recombination vector

The same holds in Zp!



Recombination Vectors

Lemma: Given distinct x1, . . . , xn, define rj=
Y

i=1,...,n
i̸=j

xi · (xi − xj)
−1.

For any polynomial f of degree at most n− 1:

f(0) =
kX

j=1

rjf(xj)

From Lagrange interpolation we know that: f(x) =
nX

j=1

f(xj)
Y

i=1,...,n
i̸=j

(x− xi)(xj − xi)
−1

Remark: The coefficients ri depend only on the x-coordinates xi (and not on the choice of f)

Proof:

The vector (r1, r2, . . . , rn) is called the recombination vector

The same holds in Zp!



Recombination Vectors

Lemma: Given distinct x1, . . . , xn, define rj=
Y

i=1,...,n
i̸=j

xi · (xi − xj)
−1.

For any polynomial f of degree at most n− 1:

f(0) =
kX

j=1

rjf(xj)

From Lagrange interpolation we know that: f(x) =
nX

j=1

f(xj)
Y

i=1,...,n
i̸=j

(x− xi)(xj − xi)
−1

Remark: The coefficients ri depend only on the x-coordinates xi (and not on the choice of f)

Proof: yj

The vector (r1, r2, . . . , rn) is called the recombination vector

The same holds in Zp!



Recombination Vectors

Lemma: Given distinct x1, . . . , xn, define rj=
Y

i=1,...,n
i̸=j

xi · (xi − xj)
−1.

For any polynomial f of degree at most n− 1:

f(0) =
kX

j=1

rjf(xj)

From Lagrange interpolation we know that: f(x) =
nX

j=1

f(xj)
Y

i=1,...,n
i̸=j

(x− xi)(xj − xi)
−1

Remark: The coefficients ri depend only on the x-coordinates xi (and not on the choice of f)

Proof:

ℓj(x)

yj

The vector (r1, r2, . . . , rn) is called the recombination vector

The same holds in Zp!



Recombination Vectors

Lemma: Given distinct x1, . . . , xn, define rj=
Y

i=1,...,n
i̸=j

xi · (xi − xj)
−1.

For any polynomial f of degree at most n− 1:

f(0) =
kX

j=1

rjf(xj)

From Lagrange interpolation we know that: f(x) =
nX

j=1

f(xj)
Y

i=1,...,n
i̸=j

(x− xi)(xj − xi)
−1

f(0) =
kX

j=1

f(xj)
Y

i=1,...,n
i̸=j

xi(xi − xj)
−1

Remark: The coefficients ri depend only on the x-coordinates xi (and not on the choice of f)

Proof:

ℓj(x)

yj

The vector (r1, r2, . . . , rn) is called the recombination vector

The same holds in Zp!



Recombination Vectors

Lemma: Given distinct x1, . . . , xn, define rj=
Y

i=1,...,n
i̸=j

xi · (xi − xj)
−1.

For any polynomial f of degree at most n− 1:

f(0) =
kX

j=1

rjf(xj)

From Lagrange interpolation we know that: f(x) =
nX

j=1

f(xj)
Y

i=1,...,n
i̸=j

(x− xi)(xj − xi)
−1

f(0) =
kX

j=1

f(xj)
Y

i=1,...,n
i̸=j

xi(xi − xj)
−1

Remark: The coefficients ri depend only on the x-coordinates xi (and not on the choice of f)

Proof:

ℓj(x)

yj

rj

□

The vector (r1, r2, . . . , rn) is called the recombination vector

The same holds in Zp!



Multiplication Gates

• Pick a random polynomial δi of degree k − 1 such that δi(0) = ai · bi (mod p)

• Send δi(j) to each other party j ∈ {1, . . . , n} \ {i}
• Use the (public) recombination vector (r1, . . . , rn) for {1, . . . , n} to compute ci =

Pn
j=1 rj · δj(i)

To compute a share ci of c = a · b from ai and bi:



Multiplication Gates

• Pick a random polynomial δi of degree k − 1 such that δi(0) = ai · bi (mod p)

• Send δi(j) to each other party j ∈ {1, . . . , n} \ {i}
• Use the (public) recombination vector (r1, . . . , rn) for {1, . . . , n} to compute ci =

Pn
j=1 rj · δj(i)

To compute a share ci of c = a · b from ai and bi:

Why does this work?



Multiplication Gates

• Pick a random polynomial δi of degree k − 1 such that δi(0) = ai · bi (mod p)

• Send δi(j) to each other party j ∈ {1, . . . , n} \ {i}
• Use the (public) recombination vector (r1, . . . , rn) for {1, . . . , n} to compute ci =

Pn
j=1 rj · δj(i)

To compute a share ci of c = a · b from ai and bi:

Why does this work?

• Consider the polynomial g(x) = fa(x) · fb(x) of degree at most 2(k − 1) ≤ n− 1.



Multiplication Gates

• Pick a random polynomial δi of degree k − 1 such that δi(0) = ai · bi (mod p)

• Send δi(j) to each other party j ∈ {1, . . . , n} \ {i}
• Use the (public) recombination vector (r1, . . . , rn) for {1, . . . , n} to compute ci =

Pn
j=1 rj · δj(i)

To compute a share ci of c = a · b from ai and bi:

Why does this work?

• Consider the polynomial g(x) = fa(x) · fb(x) of degree at most 2(k − 1) ≤ n− 1.

• By the previous lemma, we can write: c = g(0) =
nP

i=1

ri · g(i) =
nP

i=1

ri · δi(0) (mod p)



Multiplication Gates

• Pick a random polynomial δi of degree k − 1 such that δi(0) = ai · bi (mod p)

• Send δi(j) to each other party j ∈ {1, . . . , n} \ {i}
• Use the (public) recombination vector (r1, . . . , rn) for {1, . . . , n} to compute ci =

Pn
j=1 rj · δj(i)

To compute a share ci of c = a · b from ai and bi:

Why does this work?

• Consider the polynomial g(x) = fa(x) · fb(x) of degree at most 2(k − 1) ≤ n− 1.

• By the previous lemma, we can write: c = g(0) =
nP

i=1

ri · g(i) =
nP

i=1

ri · δi(0) (mod p)

• Consider the polynomial h obtained as a linear combination of the δis using the coefficients of the
recombination vector:

h(x) =
nX

i=1

ri · δi(x) (mod p)



Multiplication Gates

• Pick a random polynomial δi of degree k − 1 such that δi(0) = ai · bi (mod p)

• Send δi(j) to each other party j ∈ {1, . . . , n} \ {i}
• Use the (public) recombination vector (r1, . . . , rn) for {1, . . . , n} to compute ci =

Pn
j=1 rj · δj(i)

To compute a share ci of c = a · b from ai and bi:

Why does this work?

• Consider the polynomial g(x) = fa(x) · fb(x) of degree at most 2(k − 1) ≤ n− 1.

• By the previous lemma, we can write: c = g(0) =
nP

i=1

ri · g(i) =
nP

i=1

ri · δi(0) (mod p)

• Consider the polynomial h obtained as a linear combination of the δis using the coefficients of the
recombination vector:

h(x) =
nX

i=1

ri · δi(x) h(0) =
nX

i=1

ri · δi(0) (mod p)



Multiplication Gates

• Pick a random polynomial δi of degree k − 1 such that δi(0) = ai · bi (mod p)

• Send δi(j) to each other party j ∈ {1, . . . , n} \ {i}
• Use the (public) recombination vector (r1, . . . , rn) for {1, . . . , n} to compute ci =

Pn
j=1 rj · δj(i)

To compute a share ci of c = a · b from ai and bi:

Why does this work?

• Consider the polynomial g(x) = fa(x) · fb(x) of degree at most 2(k − 1) ≤ n− 1.

• By the previous lemma, we can write: c = g(0) =
nP

i=1

ri · g(i) =
nP

i=1

ri · δi(0) (mod p)

• Consider the polynomial h obtained as a linear combination of the δis using the coefficients of the
recombination vector:

h(x) =
nX

i=1

ri · δi(x) h(0) =
nX

i=1

ri · δi(0) (mod p)= c



Multiplication Gates

• Pick a random polynomial δi of degree k − 1 such that δi(0) = ai · bi (mod p)

• Send δi(j) to each other party j ∈ {1, . . . , n} \ {i}
• Use the (public) recombination vector (r1, . . . , rn) for {1, . . . , n} to compute ci =

Pn
j=1 rj · δj(i)

To compute a share ci of c = a · b from ai and bi:

Why does this work?

• Consider the polynomial g(x) = fa(x) · fb(x) of degree at most 2(k − 1) ≤ n− 1.

• By the previous lemma, we can write: c = g(0) =
nP

i=1

ri · g(i) =
nP

i=1

ri · δi(0) (mod p)

• Consider the polynomial h obtained as a linear combination of the δis using the coefficients of the
recombination vector:

h(x) =
nX

i=1

ri · δi(x) h(0) =
nX

i=1

ri · δi(0) (mod p)= c h(i) =
nX

j=1

rj · δj(i) = ci



Multiplication Gates

• Pick a random polynomial δi of degree k − 1 such that δi(0) = ai · bi (mod p)

• Send δi(j) to each other party j ∈ {1, . . . , n} \ {i}
• Use the (public) recombination vector (r1, . . . , rn) for {1, . . . , n} to compute ci =

Pn
j=1 rj · δj(i)

To compute a share ci of c = a · b from ai and bi:

Why does this work?

• Consider the polynomial g(x) = fa(x) · fb(x) of degree at most 2(k − 1) ≤ n− 1.

• By the previous lemma, we can write: c = g(0) =
nP

i=1

ri · g(i) =
nP

i=1

ri · δi(0) (mod p)

• Consider the polynomial h obtained as a linear combination of the δis using the coefficients of the
recombination vector:

h(x) =
nX

i=1

ri · δi(x) h(0) =
nX

i=1

ri · δi(0) (mod p)= c

• h is a polynomial of degree at most k − 1 s.t. h(0) = c and ci is exactly the i-th share of h

h(i) =
nX

j=1

rj · δj(i) = ci


