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• He cannot just ask Alice, since this would reveal his inputs

Alice and Bob use a protocol known as oblivious transfer protocol

• In the oblivious transfer protocol Alice has two messages m0,m1 of length ℓ(n)

• Bob wants to learn one of them, say mb, without revealing which one he is interested in to Alice

• Alice wants to be sure that Bob learns exactly one of the two values
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Gen(1n):
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k = H(hy) = H(gxy)

Decapssk(c):

• Here sk = (G, q, g, x,H)

• Output the key H(cx) = H(gxy)
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We can build a CPA-secure PKE scheme by combining a CPA-secure KEM with an EAV-secure DEM

• We use the DDH-based KEM

• We use OTP as a DEM (for fixed-length messages)

The resulting scheme is as follows:

Gen(1n):

• Pick a group G, its order q, a generator g ∈ G, a key-derivation function H : G → {0, 1}ℓ(n)
We think of these as fixed public values agreed upon in advance between Alice and Bob.

• Pick a random x ∈ G, the public-key is h = gx and the secret-key is x

Ench(m):

• Choose a uniform y ∈ {0, . . . , q − 1}. Return the pair c = (gy, H(hy)⊕m)

Decx((c, c
′)):

• Return H(cx)⊕ c′
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• We pick two public keys h0, h1 for Bob

• We ensure that Bob knows the secret key xb corresponding to exactly one of the public
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• Alice encrypts m0 with h0 and m1 with h1

• Bob can only decrypt one of the two ciphertexts, namely the one corresponding to mb
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• We pick two public keys h0, h1 for Bob

• We ensure that Bob knows the secret key xb corresponding to exactly one of the public
keys (of his choice)

• Alice encrypts m0 with h0 and m1 with h1

• Bob can only decrypt one of the two ciphertexts, namely the one corresponding to mb

How can Bob “prove” to Alice that he knows exactly one private key?
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• Alice picks a random group element r ∈ G and sends it to Bob

• Bob picks a random private key x, and computes the two public keys:

— hb = gx. This is the public key that will be used to encrypt the message mb wanted by Bob.
The corresponding secret-key is x

— h1−b = r · (gx)−1. Bob does not have the corresponding secret key

• Bob sends h0 and h1 to Alice

• Alice checks that Bob “did not cheat” while computing the public keys: h0 · h1 = r?

• Alice encrypts m0 and m1:

— Pick a uniform y0 ∈ {0, . . . , q − 1}, let c0 = (gy0 , H(hy0

0 )⊕m0)

— Pick a uniform y1 ∈ {0, . . . , q − 1}, let c1 = (gy1 , H(hy1

1 )⊕m1)

• Alice sends c0 and c1 to Bob

• Bob decrypts cb = (c, c′) as mb = H(cx)⊕ c′

The Oblivious Transfer Protocol
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The Oblivious Transfer Protocol: Security (informal)

Can Bob learn m1−b?

To learn m1−b, Bob needs to either:

• Be able to evaluate H(h
y1−b

1−b ) without knowing h
y1−b

1−b

• m1−b was encrypted as (gy1−b , H(h
y1−b

1−b )⊕m1−b)

• Be able to compute h
y1−b

1−b = (r · g−x)y1−b

Secure if H acts as a
random oracle

Requires computing the discrete
logarithm of a random group element

Secure under the Random Oracle model and the CDH assumption
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• Alice “garbles” the circuit and sends the garbled gates and the wire-labels corresponding to her input
values to Bob

• Bob uses the oblivious transfer protocol to learn the wire-label corresponding to each of his inputs
(without Alice knowing which of the two labels Bob requested)

Back to Yao’s Garbled Circuits: The Overall Protocol

• Bob evaluates the garbled circuit and obtains the wire-label of the output

• Bob sends the output wire-label to Alice

• Alice knows the corresponding truth value, so she learns f(x1, x2, . . . , xm, y1, y2, . . . , yn)

• Alice stars from a circuit that computes f(x1, x2, . . . , xm, y1, y2, . . . , yn)

• If Bob should also know the value of f(x1, x2, . . . , xm, y1, y2, . . . , yn), Alice shares it with Bob
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Multiparty Computation

What if n ≥ 2 parties want to jointly compute a function?

We consider functions f(x1, x2, . . . , xn) that are computed by an arithmetic circuit over Zp, for a
prime p > n

• The i-th input xi is an integer in {0, 1, . . . , p− 1} and is controlled by the i-th party

• There are two gate types: addition gates and multiplication gates, that compute the sum and
product of their inputs modulo p, respectively.

How do Boolean circuits and arithmetic circuits compare?
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Arithmetic Circuits & Boolean Circuits

⇒ We can simulate a Boolean circuit with an arithmetic circuit:

• x1 ∧ x2 = x1 · x2

• ¬x = 1− x

• x1 ∨ x2 = x1 + x2 − x1 · x2

⇐ We can simulate an arithmetic circuit with a Boolean circuit:

• Replace each wire of the arithmetic circuit with ⌈log p⌉ Boolean wires

• Replace each Addition/Multiplication gate with a Boolean circuit that computes the Sum/Product
of the inputs modulo p
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How do we “garble” an arithmetic circuit for multiple parties?

How do we evaluate it?

Idea:

• Each party shares its input with all other parties using Shamir’s k-out-of-n threshold secret sharing
scheme

• Each party evaluates the arithmetic circuit: a gate takes a share for each of the two inputs and
produces a share of the output

• Do not garble the circuit, use the homomorphic properties of Shamir secret sharing instead

• The output of the circuit is a share of f(x1, . . . , xn)

• The parties combine their output shares and recover the value of f(x1, . . . , xn)

We can perform computation on shares,
without having to recover their secrets first!

k is an integer parameter that controls how resilient the protocol is to coalitions of curious parties.
No group of less than k parties can collude to recover the secret. The construction works for k ≤ ⌈n

2 ⌉
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Addition Gates

Party i has the i-th shares (i, ai), (i, bi) of two (unknown) secrets a, b, respectively, . . .

. . . and wants to compute the i-th share (i, ci) of the secret c = a+ b (mod p)

• Let fa(x) and fb(x) be the polynomials (of degree at most k − 1) used to share a and b

• Notice that the polynomial fc(x) = fa(x) + fb(x) (mod p) has degree at most k − 1 and is such
that fc(0) = fa(0) + fb(0) = a+ b (mod p)

• fc is a valid polynomial for sharing c in the Shamir’s k-out-of-n threshold secret sharing scheme!

What is the i-th share (i, ci) of fc?

ci = fc(i) = fa(i) + fb(i) = ai + bi (mod p)

Addition gates do not require any special care!

Add
ai
bi

ci = ai + bi (mod p)



Addition Gates

fa

b2

a2

c2

a
c

b

fa(x) = −4x3 + 19x2 − 22x+ 4

fb(x) = 3x3 − 13x2 + 13x− 1

fc(x) = −x3 + 6x2 − 9x+ 3
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. . . and wants to compute the i-th share ci of the secret c = a · b (mod p)

We can’t just use the share (i, ci) with ci = ai · bi
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• After each multiplication, the number of shares needed to recover c roughly doubles

Problem: since fa and fb have deree up to k − 1, the degree of fc can be as high as 2(k − 1)



Multiplication Gates

Party i has the i-th shares ai, bi of two (unknown) secrets a, b, respectively, . . .

. . . and wants to compute the i-th share ci of the secret c = a · b (mod p)

We can’t just use the share (i, ci) with ci = ai · bi

• We could define fc(x) = fa(x) · fb(x), and it would satisfy fc(0) = a · b . . .

Why?

• Also, ci = ai · bi would be the value of fc(i) . . .

• After each multiplication, the number of shares needed to recover c roughly doubles

We need to use another property of interpolating polynomials. . .

Problem: since fa and fb have deree up to k − 1, the degree of fc can be as high as 2(k − 1)



Recombination Vectors

Lemma: Given distinct x1, . . . , xn, define rj=
Y

i=1,...,n
i̸=j

xi · (xi − xj)
−1.

For any polynomial f of degree at most n− 1:

f(0) =
kX

j=1

rjf(xj)
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Remark: The coefficients ri depend only on the x-coordinates xi (and not on the choice of f)

The vector (r1, r2, . . . , rn) is called the recombination vector
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i=1,...,n
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xi · (xi − xj)
−1.

For any polynomial f of degree at most n− 1:
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Recombination Vectors

Lemma: Given distinct x1, . . . , xn, define rj=
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i=1,...,n
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xi · (xi − xj)
−1.

For any polynomial f of degree at most n− 1:
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Y
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Remark: The coefficients ri depend only on the x-coordinates xi (and not on the choice of f)

Proof: yj

The vector (r1, r2, . . . , rn) is called the recombination vector
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Lemma: Given distinct x1, . . . , xn, define rj=
Y

i=1,...,n
i̸=j

xi · (xi − xj)
−1.

For any polynomial f of degree at most n− 1:

f(0) =
kX

j=1

rjf(xj)

From Lagrange interpolation we know that: f(x) =
nX

j=1

f(xj)
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i=1,...,n
i̸=j

(x− xi)(xj − xi)
−1

Remark: The coefficients ri depend only on the x-coordinates xi (and not on the choice of f)

Proof:

ℓj(x)

yj

The vector (r1, r2, . . . , rn) is called the recombination vector

The same holds in Zp!



Recombination Vectors

Lemma: Given distinct x1, . . . , xn, define rj=
Y

i=1,...,n
i̸=j

xi · (xi − xj)
−1.

For any polynomial f of degree at most n− 1:

f(0) =
kX

j=1

rjf(xj)

From Lagrange interpolation we know that: f(x) =
nX

j=1

f(xj)
Y

i=1,...,n
i̸=j

(x− xi)(xj − xi)
−1

f(0) =
kX

j=1

f(xj)
Y

i=1,...,n
i̸=j

xi(xi − xj)
−1

Remark: The coefficients ri depend only on the x-coordinates xi (and not on the choice of f)

Proof:

ℓj(x)

yj

The vector (r1, r2, . . . , rn) is called the recombination vector

The same holds in Zp!



Recombination Vectors

Lemma: Given distinct x1, . . . , xn, define rj=
Y

i=1,...,n
i̸=j

xi · (xi − xj)
−1.

For any polynomial f of degree at most n− 1:

f(0) =
kX

j=1

rjf(xj)

From Lagrange interpolation we know that: f(x) =
nX

j=1

f(xj)
Y

i=1,...,n
i̸=j

(x− xi)(xj − xi)
−1

f(0) =
kX

j=1

f(xj)
Y

i=1,...,n
i̸=j

xi(xi − xj)
−1

Remark: The coefficients ri depend only on the x-coordinates xi (and not on the choice of f)

Proof:

ℓj(x)

yj

rj

□

The vector (r1, r2, . . . , rn) is called the recombination vector

The same holds in Zp!
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• Pick a random polynomial δi of degree k − 1 such that δi(0) = ai · bi (mod p)

• Send δi(j) to each other party j ∈ {1, . . . , n} \ {i}
• Use the (public) recombination vector (r1, . . . , rn) for {1, . . . , n} to compute ci =

Pn
j=1 rj · δj(i)

To compute a share ci of c = a · b from ai and bi:
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Multiplication Gates

• Pick a random polynomial δi of degree k − 1 such that δi(0) = ai · bi (mod p)

• Send δi(j) to each other party j ∈ {1, . . . , n} \ {i}
• Use the (public) recombination vector (r1, . . . , rn) for {1, . . . , n} to compute ci =

Pn
j=1 rj · δj(i)

To compute a share ci of c = a · b from ai and bi:

Why does this work?

• Consider the polynomial g(x) = fa(x) · fb(x) of degree at most 2(k − 1) ≤ n− 1.

• By the previous lemma, we can write: c = g(0) =
nP

i=1

ri · g(i) =
nP

i=1

ri · δi(0) (mod p)

• Consider the polynomial h obtained as a linear combination of the δis using the coefficients of the
recombination vector:

h(x) =
nX

i=1

ri · δi(x) h(0) =
nX

i=1

ri · δi(0) (mod p)= c

• h is a polynomial of degree at most k − 1 s.t. h(0) = c and ci is exactly the i-th share of h

h(i) =
nX

j=1

rj · δj(i) = ci


