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Idea: the verifier learns something if, after the interaction, he is able to compute some function that
he was not able to compute before the interaction

How do we formalize this?

Definition: An interactive proof system (P, V ) for a language L is perfect zero-knowledge if for
every probabilistic polynomial-time verifier V ∗ there exists a probabilistic polynomial-time algorithm
M∗ such that the following two random variables are identically distributed for every x ∈ L:

• viewP
V ∗(x)

• M∗(x)

The algorithm M∗ is called a simulator for the interaction of V ∗ with P .

Let viewP
V (x) be a random variable denoting the transcript of the message received by V during an

interaction between P and V with common input x, plus all the random bits used by V .

Note: the condition must hold for every verifier V ∗

(even one that deviates from the protocol and tries to trick the prover into leaking information)
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If M∗ is a simulator for V ∗, then the execution of an algorithm A(x, viewV ∗
P ) can always be simulated

by an algorithm that returns A(x,M∗(x))

It is trivial to design a perfect zero-knowledge proof system for any language in BPP.

V (x) :
return A(x)

No interaction

Simulator: Take an interactive protocol (P, V ) in which P does not interact with V and, given V ∗,
define M∗ as follows:

• Simulate an execution of V ∗(x) and record the value of all random bits used during the execution

• Return the recorded view
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Completeness:

Consider (G1, G2) ∈ L, i.e., there is an isomorphism ϕ between G1 and G2

If b = 2, the prover replies with ψ = π. G′ = π(G2) = ψ(G2) =⇒ the verifier accepts

If b = 1, the prover replies with ψ = π ◦ ϕ. G′ = π(G2) = π(ϕ(G1)) = ψ(G1) =⇒ the verifier accepts

Soundness:

Consider (G1, G2) ̸∈ L, i.e., there is no isomorphism between G1 and G2

The graph G′ sent by the prover is isomorphic to at most one of G1 and G2

Since the verifier chooses b u.a.r. in {1, 2}, there is a probability of at least 1
2 that Gb is not isomorphic

to G′

In this case, the verifier cannot reply with an isomorphism ψ that satisfies ψ(Gb) = G′

Pr[V accepts] ≤ 1
2

Use probability amplification

Pr[V accepts] = 1
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For any (G1, G2) ∈ L and any (possibly cheating) verifier V ∗, we need to come up with a simulator
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V ∗ for the interaction between P and V ∗

It is easy to come up with a simulator for the interaction between P and the honest verifier V

• Choose eb u.a.r. in {1, 2}
• Pick a random permutation ψ : V → V

• Pretend to “send” ψ(Geb) from the prover to the verifier

• Pretend to “send” ψ from the prover to the verifier

• The view consists of all the simulated messages sent from the
prover to the verifier and of the value b

Simulator MP
V (x):

How do we handle
cheating verifiers?

• (The verifier “chooses” b = eb)
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Idea: the only thing that a cheating verifier can do is to choose the value of b (as a function of G′)

If the chosen value b happens to be eb, then the previous strategy works

• Choose eb u.a.r. in {1, 2}
• Pick a random permutation ψ : V → V

• If eb ̸= b: halt the simulator and fail

• The view consists of all the simulated messages sent from the
prover to the verifier and of all the random bits used by simulated
execution of V ∗(x)

Simulator MP
V ∗(x):

• Simulate the verifier V ∗(x) and send G′ = ψ(Geb) to it

• “Receive” the bit b that the simulated verifier sends to the prover

• Pretend to “send” ψ from the prover to the verifier, and continue
the simulation of V ∗(x)

What’s the failure
probability?

Assume that b ∈ {1, 2}
(can be handled)
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If G1 and G2 are isomorphic then, after interacting with the prover, the verifier will be convinced that:

• There exists an isomorphism ψ between G1 and G2 (i.e., there exists a witness for x ∈ L)

• The prover must know ϕ (i.e., the prover knows a witness w for x)

In general, a Zero-Knowledge proof system for a language L ∈ NP only needs to convince the verifier of
the existence of a witness

If the proof additionally convinces the verifier that the prover must know a witness, then it is called a
zero-knowledge proof-of-knowledge
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Zero-Knowledge Proof Systems for all NP

We know that any language L ∈ NP admits an interactive proof system (and it is trivial)

Does every language L ∈ NP also admit an interactive zero-knowledge proof system?

• If PRGs exists then yes, for a notion of zero-knowledge known as computational zero-knowledge

• The proof system is no longer trivial

Roadmap:

• Design a CZK proof system for the graph 3-coloring language G3C, which is NP-complete

• To obtain a CZK proof system for L, the prover and the verifier can first reduce the instance x of L
to an instance x′ = f(x) of G3C and then use the CZK proof for G3C

• Since L ∈ NP, L ≤p G3C and hence there is a polynomial-time reduction f from L to G3C

x ∈ L ⇐⇒ f(x) ∈ G3C

• Define computational zero-knowledge (CZK)

• We will make use of a commitment scheme
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Definition: An interactive proof system (P, V ) for a language L is computational zero-knowledge
if for every probabilistic polynomial-time verifier V ∗ there exists a probabilistic polynomial-time
algorithm M∗ such that the following two random variables are computationally indistinguishable
for every x ∈ L:

• viewP
V ∗(x)

• M∗(x)

Computational Zero-Knowledge

Idea: If we consider a computation to be feasible if it can be performed in polynomial time, then we
do not need to perfectly simulate the view of V ∗

It suffices for the output distribution of the simulator M∗(x) to be computationally indistinguishable
from viewP

V ∗

Intuition: Whatever can be efficiently computed after interacting with P on input x ∈ L can also be
efficiently computed from x (without any interaction)

BPP ⊆ PZK ⊆ CZK ⊆ IP

We define CZK (resp. PZK) as the class of all languages that admit a computational (resp. perfect)
zero-knowledge proof system

We can also allow the simulator to fail as in the case of perfect
zero-knowledge
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Graph 3-Coloring

Let G = (V,E) be a graph

A k-coloring of G is a function c : V → {1, 2, . . . , k} such that each edge (u, v) ∈ E has endpoints of
the different “colors” (i.e., c(u) ̸= c(v))

G3C is the set of all graphs G that admit a 3-coloring
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Commitment schemes (Informal)

A commitment scheme is an interactive protocol that works in two phases, called commit and
reveal, and allows a party, called sender, to:

• Commit itself to a value m

• At a later time, “open” the commitment to reveal m

and satisfies the following properties:

• Hiding: At the end of the commit phase, the other party, called the receiver, does not gain any
information about the sender’s value.

• Binding: Given the transcript of the interaction in the commit phase, there exists at most one value
that the receiver can accept as a legal “opening” of the commitment

Even if the sender cheats by deviating from the protocol!

• Viability: if both parties follow the protocol, then after the reveal phase, the receiver learns m

Even if the receiver cheats by deviating from the protocol!
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Commitment schemes (Formal)

A bit-commitment scheme is a pair of probabilistic polynomial-time interactive algorithms (S,R)
where both S and R take 1n as a common input, S takes a bit b ∈ {0, 1} as a private input, and the
following properties are satisfied:

• Hiding: For every probabilistic polynomial-time algorithm R∗, the output of (S(0), R∗)(1n) is
computationally indistinguishalbe from that of (S(1), R∗)(1n)

• Binding:

Let (r,m) be the view of R, where r are the random coins used by R and m is a transcript of the
messages received from the sender.

For σ ∈ {0, 1}, we say that (r,m) is a possible σ-commitment if it can be the view of R when S
commits to σ. More precisely: there are some random bits s such that m are the messages received
by R(1n) using random bits r in the interaction with S(1n,σ) using random bits s

(r,m) is ambiguous if its both a possible 0-commitment and a possible 1-commitment

We require that for all but a negligible fraction of the strings r ∈ {0, 1}poly(n), there exists no m
such that (r,m) is ambiguous
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There is a canonical way to open the commitment:

• The sender sends to the receiver the secret value b and sequence s of the random bits it used
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random bits s and checks that the messages “sent” by the simulated S match those in m
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Commitment schemes

The viability requirement is implicitly enforced by the formalization of the binding condition

There is a canonical way to open the commitment:

• The sender sends to the receiver the secret value b and sequence s of the random bits it used
in the commitment phase

• The receiver simulates the interaction between itself (with random bits r) and S(1n, b) with
random bits s and checks that the messages “sent” by the simulated S match those in m

Observation: if we have a bit-commitement scheme then we can build a commitment scheme
for any binary string by committing each bit separately

The above commitment schemes are:

• Perfectly binding: except that for a negligible probability, the sender is bound to the
committed value (regardless of its computational power)

• Computationally hiding: the committed value is hidden from a computationally bounded
receiver. (A computationally unbounded receiver can bruteforce s)

(the commitment scheme based on hash functions does not suit our needs since it is not perfectly binding)
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Commit phase:

• The receiver chooses r u.a.r. from {0, 1}3n
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• The sender commits to b by selecting s u.a.r. from {0, 1}n
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and sends it to the sender
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and sending α = G(s) if b = 0 and α = G(s)⊕ r otherwise

(Canonical) Reveal Phase:

• The sender reveals b and s

• The receiver accepts iff
b = 0 and G(s) = α, or
b = 1 and G(s)⊕ r = α

Hiding:

Commitment schemes from PRGs

Let U be a uniform random variable over {0, 1}3n and let ∼∼∼ denote computational indistinguishability

G(s) ∼∼∼ U ≡ U ⊕ r ∼∼∼ G(s)⊕ r| {z }
G is a PRG

| {z }
G is a PRG

U is uniformz }| {For any r ∈ {0, 1}3n:

Therefore, G(s) and G(s)⊕ r are computationally indistinguishable

=⇒ For any polynomial-time algorithm R∗, the output distributions of R∗(1n, G(s)) and
R∗(1n, G(s)⊕ r) are computationally indistinguishable
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Commit phase:

• The receiver chooses r u.a.r. from {0, 1}3n
and sends it to the sender

• The sender commits to b by selecting s u.a.r. from {0, 1}n
and sending α = G(s) if b = 0 and α = G(s)⊕ r otherwise

(Canonical) Reveal Phase:

• The sender reveals b and s

• The receiver accepts iff
b = 0 and G(s) = α, or
b = 1 and G(s)⊕ r = α

Commitment schemes from PRGs

• We say that r ∈ {0, 1}3n yields a collision if there are s1, s2 ∈ {0, 1}n such that G(s1) = G(s2)⊕ r

• For any pair s1, s2 there is exactly one string r that yields a collision (namely r = G(s1)⊕G(s2))

• If r does not yield a collision, then (r,α) is not ambiguous (regardless of α)

• The number of strings r that yield a collision is at most |{0, 1}n × {0, 1}n| = 22n

• The number possible strings r is 23n

• The fraction of strings r that can result in ambiguous (r,α) is at most 22n

23n = 1
2n , which is negligible

Binding:
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The prover knows a 3-coloring c of G

Common input: G = (V,E)

• The prover picks a random permutation π of {1, 2, 3} and constructs the 3-coloring c′ = π ◦ c
• For each vertex v, the prover uses a commitment scheme to commit to c′(v)

• The verifier picks an edge (u∗, v∗) u.a.r. in E and sends (u∗, v∗) to the prover

• The prover opens the commitments for u and v and reveals c′(u∗) and c′(v∗)

• The verifier accepts iff c′(u∗) ̸= c′(v∗)

(commit to two bits for each vertex according to some encoding, e.g., 01 → 1, 10 → 2, {00, 11} → 3)
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Completeness:

• When c is a 3 coloring of G, c(u∗) ̸= c(v∗) =⇒ c′(u∗) ̸= c′(v∗) and the verifier accepts

Pr[the verifier accepts] = 1
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• Consider a (possibly cheating) prover B and let c′′ be the coloring resulting from its commitments
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• When this happens, the only valid way to open the commitments for u∗ and v∗ is that of revealing
c′′(u∗) and c′′(v∗)
(except for the negligible probability that the commitment of u∗ or v∗ was ambiguous)

Pr[the verifier accepts] = 1

Pr[the verifier accepts] ≤ 1− 1
|E| + ε(n) for some negligible ε(n)

A CZK Proof System for Graph 3-Coloring

The gap between the probabilities is 1
|E| − ε(n) ≥ 1

n2 (for sufficiently large n)

Use probability amplification



A CZK Proof System for Graph 3-Coloring

Zero-Knowledge:

It is easy to come up with a simulator for the interaction between P and the honest verifier V

• Choose (u∗, v∗) u.a.r. in E

• Choose two random distinct colors c′(u∗), c′(v∗) ∈ {1, 2, 3} and a color c′(z) ∈ {1, 2, 3} for each
z ∈ V \ {u∗, v∗} independently and u.a.r.

Simulator MP
V (x):
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• Choose two random distinct colors c′(u∗), c′(v∗) ∈ {1, 2, 3} and a color c′(z) ∈ {1, 2, 3} for each
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How do we handle a cheating verifier V ∗?

• Open the commitments of u∗ and v∗ to reveal c′(u∗) and c′(v∗)

• The view consists of:

— All the simulated messages sent from the prover as part of the commitment and reveal phases
of the commitment scheme

— All the random bits used by the verifier in the commitment phase of the commitment scheme

— (the random bits used to choose) the edge (u∗, v∗)
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• Choose (eu, ev) u.a.r. in E

• Choose two random distinct colors c′(eu), c′(ev) ∈ {1, 2, 3} and a color c′(z) ∈ {1, 2, 3} for each
z ∈ V \ {eu, ev} independently and u.a.r.

Simulator MP
V ∗(x):
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• Choose two random distinct colors c′(eu), c′(ev) ∈ {1, 2, 3} and a color c′(z) ∈ {1, 2, 3} for each
z ∈ V \ {eu, ev} independently and u.a.r.
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• The view consists of:

— All the simulated messages sent from the prover as part of the commitment and reveal phases
of the commitment scheme

— All the random bits used by the simulated execution of V ∗(x)

• Simulate the verifier V ∗(x) and the commitments of the prover to c′(z) for all z ∈ V

• If (u∗, v∗) ̸= (eu, ev): halt the simulator and fail
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Probability of failure? At most 1− 1
|E| Run the simulator until it succeeds. Expected polynomial time
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proof system
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What about languages outside NP?

An example language that is in IP but might not be in NP is graph non-isomorphism

Can we transform the previous interactive proof system into a zero-knowledge proof system?

• The verifier chooses b u.a.r. in {1, 2}
• The verifier picks a random permutation π : V → V and sends G′ = π(Gb) to the prover

• The prover checks whether G′ is isomorphic to G1. If so it replies with b′ = 1, otherwise it replies
with b′ = 2.

Common input: x = (G1, G2) where G1 = (V,E1), G2 = (V,E2), and V = {1, . . . , n}

• If b′ = b, the verifier accepts. Otherwise it rejects

This is not a zero-knowledge protocol.
Why?

A cheating verifier interacting with an honest prover can
learn whether an arbitrary graph G′ is isomorphic to G1
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• The verifier chooses b u.a.r. in {1, 2}
• The verifier picks a random permutation π : V → V and sends G′ = π(Gb) to the prover

• The prover checks whether G′ is isomorphic to G1. If so it replies with b′ = 1, otherwise it replies
with b′ = 2.

Common input: x = (G1, G2) where G1 = (V,E1), G2 = (V,E2), and V = {1, . . . , n}

• If b′ = b, the verifier accepts. Otherwise it rejects

• CZK = PSPACE

• The verifier and the prover engage in a perfect zero-knowledge proof-of-knowledge interactive
protocol (with reversed roles).
The verifier convices the prover that he knows a b such that G′ is isomorphic to Gb

If PRGs exist:

• It turns out that IP = PSPACE =⇒ any language that admits an interactive proof system also
admits a (computational) zero-knowledge proof system

This implies that CZK might be larger than NP How big is CZK?
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