
A Sample Exercise
• Alice and Bob are fighting over who gets the last slice of
pizza.

• Design an algorithm that, given n and the outcomes of the
coin flips, decides who gets the last pizza slice.

• They decide to settle the dispute by playing n = 2k + 1,
k ∈ N rounds of Heads of Tails.

• Alice (resp. Bob) wins if the majority of the coin flips land
on Heads (resp. Tails).



A Sample Exercise
Input. The input consists of T instances, or test cases of the
previous problem. The first line of the input contains the integer
T . Each of the following lines represents a test cases and consists
of the number n and of a string s of n characters, where the i-
th character of s is H if the i-th coin landed on heads and T
otherwise.

Output. The output consists of T lines, one per test case, each
containing a single character. In particular the i-th line should
be “A” if alice won the i-th instance, and “B” otherwise.



A Sample Exercise
Example

3

1 H

5 HHTHT

3 TTH

Input: example.in

Output: example.out

A

A

B

Notes
A reasonable implementation should not require more than 1
second for each input file.



A Possible Solution

#include<cstdlib>

#include<string>

#include<iostream>

int main()

{

int T;

std::cin >> T;

while(T--)

solve_testcase();

return EXIT_SUCCESS;

}



A Possible Solution

void solve_testcase()

{

int n;

std::string s;

std::cin >> n >> s;

int number_of_H = 0;

for(const char c : s)

if(c == ’H’)

number_of_H++;

std::cout << ((number_of_H>n/2)?"A":"B") << "\n";

}



Compiling

g++ -std=c++17 -Wall -pedantic -O3 solution.cpp -o solution



Compiling

g++ -std=c++17 -Wall -pedantic -O3 solution.cpp -o solution

• We will use C++17



Compiling

g++ -std=c++17 -Wall -pedantic -O3 solution.cpp -o solution

• We will use C++17

• Enable “all” warnings



Compiling

g++ -std=c++17 -Wall -pedantic -O3 solution.cpp -o solution

• We will use C++17

• Enable “all” warnings

• Strict compliance to the standard



Compiling

g++ -std=c++17 -Wall -pedantic -O3 solution.cpp -o solution

• We will use C++17

• Enable “all” warnings

• Strict compliance to the standard

• Optimize



Compiling

g++ -std=c++17 -Wall -pedantic -O3 solution.cpp -o solution

• We will use C++17

• Enable “all” warnings

• Strict compliance to the standard

• Optimize

• Source file



Compiling

g++ -std=c++17 -Wall -pedantic -O3 solution.cpp -o solution

• We will use C++17

• Enable “all” warnings

• Strict compliance to the standard

• Optimize

• Binary

• Source file



Checking the solution
$ ./solution < example.in > solution.out



Checking the solution
$ ./solution < example.in > solution.out

• Redirect stdin from example.in



Checking the solution
$ ./solution < example.in > solution.out

• Redirect stdin from example.in

• Redirect stdout to solution.out



Checking the solution
$ ./solution < example.in > solution.out

$ diff -bBZ solution.out example.out

$

• Redirect stdin from example.in

• Redirect stdout to solution.out

• Ignore white space



Checking the solution
$ ./solution < example.in > solution.out

$ diff -bBZ solution.out example.out

$

• Redirect stdin from example.in

• Redirect stdout to solution.out

• No output = files are identical.

• Ignore white space



Timing your solution

$ time ./solution < example.in > solution.out

real 0m0.005s

user 0m0.000s

sys 0m0.005s



Timing your solution

$ time ./solution < example.in > solution.out

real 0m0.005s

user 0m0.000s

sys 0m0.005s

Everything in a single command

$ (time ./solution < example.in) | diff -bBZ - example.out



Tips
• Use the assert() macro in the cassert header.

• Test the assumptions you are making in your program.

• Perform sanity checks of your intermediate results.

#include<cassert>

void solve_testcase()

{

int n;

std::string s;

std::cin >> n >> s;

assert(s.size() == n);

[...]



Tips
• Use the assert() macro in the cassert header.

• Test the assumptions you are making in your program.

• Perform sanity checks of your intermediate results.

• Beware: checking assertions can take time.

• Disable assertions by defining the NDEBUG macro.

g++ -std=c++17 -Wall -pedantic -O3 -DNDEBUG solution.cpp -o solution



Tips
• Use the assert() macro in the cassert header.

• Test the assumptions you are making in your program.

• Perform sanity checks of your intermediate results.

• Beware: checking assertions can take time.

• Disable assertions by defining the NDEBUG macro.

g++ -std=c++17 -Wall -pedantic -O3 -DNDEBUG solution.cpp -o solution

• If your program requires heavy I/O, this might help

std::ios_base::sync_with_stdio(false);


