Lazy Employee

An office empoyee takes L minutes to serve a customer. How slowly can he work?

- n customers arrive at distinct times $t_{1}, t_{2}, \ldots, t_{n} \in \mathbb{N}^{+}$
- All customers must leave by time T (closing time, $T>n$).
- The employee can only serve one customer at a time.
- The employee starts serving the next customer as soon as it finishes the current one. If no customer is available, he has to wait for one to arrive.

Goal: Maximize $L \in \mathbb{N}^{+}$.

Example

- 3 customers arrive at times $t_{1}=2, t_{2}=10, t_{3}=7$
- All customers must leave by time $T=16$

Example

- 3 customers arrive at times $t_{1}=2, t_{2}=10, t_{3}=7$
- All customers must leave by time $T=16$

$$
L=3
$$

Example

- 3 customers arrive at times $t_{1}=2, t_{2}=10, t_{3}=7$
- All customers must leave by time $T=16$

$$
L=4
$$

Example

- 3 customers arrive at times $t_{1}=2, t_{2}=10, t_{3}=7$
- All customers must leave by time $T=16$

$$
\begin{equation*}
L=5 \tag{1}
\end{equation*}
$$

Example

- 3 customers arrive at times $t_{1}=2, t_{2}=10, t_{3}=7$
- All customers must leave by time $T=16$

$$
L=4
$$

Solution: $L=4$

$$
0
$$

A simple solution

- For each possible value of $L=2, \ldots, T$
// Check whether all clients can be serverd
- While there are unserved clients
- Find and serve next client
- Stop at the first value of L for which clients can't be served
- Return L - 1

A simple solution

- For each possible value of $L=2, \ldots, T$
// Check whether all clients can be serverd
- While there are unserved clients
- Find and serve next client
- Stop at the first value of L for which clients can't be served
- Return L - 1

Time complexity: $O\left(T \cdot n^{2}\right)$

A simple solution

- For each possible value of $L=2, \ldots$, 东 $\lceil T / n\rceil \quad O(T / n)$
// Check whether all clients can be serverd
- While there are unserved clients
- Find and serve next client
- Stop at the first value of L for which clients can't be served
- Return L - 1

Time complexity: $O(T \cdot n)$

A simple solution

- Preprocessing: Sort t_{1}, \ldots, t_{n}
- For each possible value of $L=2, \ldots$, 次 $\lceil T / n\rceil \quad O(T / n)$
// Check whether all clients can be serverd
- While there are unserved clients
- Find and serve next client
- Stop at the first value of L for which clients can't be served
- Return L - 1

Time complexity: $O(T+n \log n)$

A simple solution

- Preprocessing: Sort t_{1}, \ldots, t_{n} $O(n \log n)$
$O(T / n)$
// Check whether all clients can be serverd
- While there are unserved clients
- Find and serve next client
- Stop at the first value of L for which clients can't be served
- Return L - 1

Trick/Technique: Sorting

Sorting can be a powerful preprocessing step.

A Possible Implementation

```
std::sort(arrival_times.begin(), arrival_times.end());
int L;
for(L=2; L<=1+T/n; L++)
{
    int time = 1; //Next available time
    for(const int t : arrival_times)
        time = std::max(time, t) + L;
    if(time > T)
        break;
}
std::cout << L-1 << "\n";
```


Solutions so far

Naive algorithm
$O\left(T \cdot n^{2}\right)$

Naive algorithm (better analysis) $O(T \cdot n)$

+ Preprocessing (sort arrival times) $\quad O(T+n \log n)$

A Key Observation

Definition: We say that L is feasible if it allows to serve all customers by time T.

Observation: The property of being feasible is monotone w.r.t. L.

$$
\begin{array}{lll}
\text { For } L>1 \text {, feasible }(L) & \Longrightarrow & \text { feasible }(L-1) \text {. } \\
\text { and } \neg \text { feasible }(L-1) & \Longrightarrow \neg \text { feasible }(L) \text {. }
\end{array}
$$

A Key Observation

Definition: We say that L is feasible if it allows to serve all customers by time T.

Observation: The property of being feasible is monotone w.r.t. L.

Proof sketch

Suppose w.l.o.g. that the $t_{i} \mathrm{~s}$ are sorted. For a given L, let c_{i}^{L} the time after serving the i customers arriving at times t_{1}, \ldots, t_{i}.
We prove by induction on $i=1, \ldots, n$, that $c_{i}^{L+1}>c_{i}^{L}$.
Base case ($i=1$):
$c_{1}^{L+1}=t_{1}+L+1>t_{1}+L=c_{1}^{L}$.
Induction step $(i>1)$:
$c_{i}^{L+1}=\max \left\{c_{i-1}^{L+1}, t_{i}\right\}+L+1>\max \left\{c_{i-1}^{L}, t_{i}\right\}+L=c_{i}^{L}$.

A Key Observation

Definition: We say that L is feasible if it allows to serve all customers by time T.

Observation: The property of being feasible is monotone w.r.t. L.

Trick/Technique: Binary Search

Use binary search to efficiently find the largest feasible value of a monotone property.

A Possible Implementation

```
//Returns the smallest index i in [min, max] such that
//p(i) is false.
//If no such index exists, returns max.
template<typename T>
    T binary_search(T min, T max, bool (*p)(T) )
{
    while(min < max)
    {
        if(T mid = (min+max)/2; p(mid))
        min = mid+1;
        else
        max = mid;
    }
    return max;
}
```

Time complexity: $O(\log (\max -\min))$

A Possible Implementation

```
bool feasible(int L)
{
    int time=1;
    for(const int t : arrival_times)
        time = std::max(time, t) + L;
    return time<=T;
}
std::sort(arrival_times.begin(), arrival_times.end());
std::cout << binary_search(2, T, feasible)-1 << "\n";
```


A Possible Implementation

```
bool feasible(int L)
{
    int time=1;
    for(const int t : arrival_times)
        time = std::max(time, t) + L;
    return time<=T;
}
std::sort(arrival_times.begin(), arrival_times.end());
std::cout << binary_search(2, T, feasible)-1 << "\n";
```

Time complexity: $O(n \log T)$

Solutions so far

Naive algorithm
$O\left(T \cdot n^{2}\right)$

Naive algorithm (better analysis) $O(T \cdot n)$

+ Preprocessing (sort arrival times) $\quad O(T+n \log n)$

Solutions so far

Naive algorithm
$O\left(T \cdot n^{2}\right)$

Naive algorithm (better analysis) $O(T \cdot n)$

+ Preprocessing (sort arrival times) $\quad O(T+n \log n)$
+ Binary Search for L
$O(n \log T)$

Solutions so far

Naive algorithm
$O\left(T \cdot n^{2}\right)$

Naive algorithm (better analysis) $O(T \cdot n)$

+ Preprocessing (sort arrival times) $\quad O(T+n \log n)$
+ Binary Search for L
$O(n \log T)$
$O(n \log T)$ is never worse than $O(T+n \log n)$

Solutions so far

Naive algorithm
$O\left(T \cdot n^{2}\right)$

Naive algorithm (better analysis) $O(T \cdot n)$

+ Preprocessing (sort arrival times) $\quad O(T+n \log n)$
+ Binary Search for L
$O(n \log T)$
$O(n \log T)$ is never worse than $O(T+n \log n)$
What if T is large (e.g., 2^{n}) but L is small?

Handling large values of L

What if T is large (e.g., 2^{n}) but L is small?

(not to scale)

Handling large values of L

What if T is large (e.g., 2^{n}) but L is small?

(not to scale)

Handling large values of L

What if T is large (e.g., 2^{n}) but L is small?

(not to scale)

Handling large values of L

What if T is large (e.g., 2^{n}) but L is small?

(not to scale)

Handling large values of L

What if T is large (e.g., 2^{n}) but L is small?

(not to scale)

Handling large values of L

What if T is large (e.g., 2^{n}) but L is small?

(not to scale)

Handling large values of L

What if T is large (e.g., 2^{n}) but L is small?

(not to scale)

Exponential Search

Idea: Check $U=1,2,4,8, \ldots$, until feasible (U) is false.

$$
\Longrightarrow U \in(L, 2 L] .
$$

Exponential Search

Idea: Check $U=1,2,4,8, \ldots$, until feasible (U) is false.

$$
\Longrightarrow U \in(L, 2 L]
$$

Exponential Search

Idea: Check $U=1,2,4,8, \ldots$, until feasible (U) is false.

$$
\Longrightarrow U \in(L, 2 L] .
$$

Exponential Search

Idea: Check $U=1,2,4,8, \ldots$, until feasible (U) is false.

$$
\Longrightarrow U \in(L, 2 L]
$$

Exponential Search

Idea: Check $U=1,2,4,8, \ldots$, until feasible (U) is false.

$$
\Longrightarrow U \in(L, 2 L] .
$$

Exponential Search

Idea: Check $U=1,2,4,8, \ldots$, until feasible (U) is false.

$$
\Longrightarrow U \in(L, 2 L] .
$$

Exponential Search

Idea: Check $U=1,2,4,8, \ldots$, until feasible (U) is false.

$$
\Longrightarrow U \in(L, 2 L] .
$$

Trick/Technique: Exponential Search

Use exponential search to efficiently find an upper bound for applying binary search.

Exponential Search

Idea: Check $U=1,2,4,8, \ldots$, until feasible (U) is false.

$$
\Longrightarrow U \in(L, 2 L] .
$$

Trick/Technique: Exponential Search

Use exponential search to efficiently find an upper bound for applying binary search.

Exponential Search

Idea: Check $U=1,2,4,8, \ldots$, until feasible (U) is false.

$$
\Longrightarrow U \in(L, 2 L] .
$$

Trick/Technique: Exponential Search

Use exponential search to efficiently find an upper bound for applying binary search.

Exponential Search

Idea: Check $U=1,2,4,8, \ldots$, until feasible (U) is false.

$$
\Longrightarrow U \in(L, 2 L] .
$$

Trick/Technique: Exponential Search

Use exponential search to efficiently find an upper bound for applying binary search.

A Possible Implementation

```
//If p(min) is false returns min
//Otherwise returns an index min+i in (min, max] such that
//p(min+i) is false and p(min+i/2) is true.
//If no such index exists, returns max.
template<typename T>
    T exponential_search(T min, T max, bool (*p)(T) )
{
    if(!p(min))
    return min;
    for(T i=1; min+i<max; i*=2)
        if(!p(min+i))
        return min+i;
    return max;
}
```

Time complexity: $O(\log (\max -\min))$

A Possible Implementation

```
std::sort(arrival_times.begin(), arrival_times.end());
int U = exponential_search(2, T, feasible);
std::cout << binary_search(U/2, U, feasible) - 1;
```

Time complexity: $O(n \log n+n \log L)$

Solutions so far

Naive algorithm
$O\left(T \cdot n^{2}\right)$

Naive algorithm (better analysis) $O(T \cdot n)$

+ Preprocessing (sort arrival times) $\quad O(T+n \log n)$
+ Binary Search for L
$O(n \log T)$

Solutions so far

Naive algorithm
$O\left(T \cdot n^{2}\right)$

Naive algorithm (better analysis) $O(T \cdot n)$

+ Preprocessing (sort arrival times) $\quad O(T+n \log n)$
+ Binary Search for L
$O(n \log T)$
+ Exponential search
$O(n \log n+n \log L)$

Solutions so far

Naive algorithm
$O\left(T \cdot n^{2}\right)$

Naive algorithm (better analysis) $O(T \cdot n)$

+ Preprocessing (sort arrival times) $\quad O(T+n \log n)$
+ Binary Search for L
$O(n \log T)$
+ Exponential search
$O(n \log n+n \log L)$
$O(n \log n+n \log L)$ is never worse than $O(n \log T)$

Trick/Technique: Sorting

Sorting can be a powerful preprocessing step.

Trick/Technique: Sorting

Sorting can be a powerful preprocessing step.

Trick/Technique: Binary Search

Use binary search to efficiently find the largest feasible value of a monotone property.

Trick/Technique: Sorting

Sorting can be a powerful preprocessing step.

Trick/Technique: Binary Search

Use binary search to efficiently find the largest feasible value of a monotone property.

Trick/Technique: Exponential Search
Use exponential search to efficiently find an upper bound for applying binary search.

