Divide and Conquer

Divide and Conquer

- Divide: Decompose an instance of a problem into smaller instances of the same problem
- Conquer: Solve each subproblem (recursively)
- Recombine the subproblems' solutions into a solution to the original problem

Polynomial Multiplication

Problem: Given two polynomials $P(x), Q(x)$ of degree n, compute $R(x)=P(x) \cdot Q(x)$

Instance:

- The coefficients $p_{0}, p_{1}, \ldots, p_{n} \in \mathbb{Z}$ of $P(x)=\sum_{i=0}^{n} p_{i} x^{i}$.
- The coefficients $q_{0}, q_{1}, \ldots, q_{n} \in \mathbb{Z}$ of $Q(x)=\sum_{i=0}^{n} q_{i} x^{i}$.

Solution:

- The coefficients $r_{0}, r_{1}, \ldots, r_{2 n} \in \mathbb{Z}$ of

$$
R(x)=P(x) \cdot Q(x)=\sum_{i=0}^{2 n} r_{i} x^{i} .
$$

(Assume that arithmetic operations can be performed in $O(1)$ time).

Example

$$
\begin{gathered}
P(x)=1+2 x+3 x^{2} \\
Q(x)=3+0 x+5 x^{2} \\
R(x)=P(x) \cdot Q(x)=3+6 x+14 x^{2}+10 x^{3}+15 x^{4}
\end{gathered}
$$

How to compute $R(x)$ efficiently?

Intermission: A More General Problem

Given two binary operations \oplus, \otimes and two functions $f, g: \mathbb{Z} \rightarrow \mathbb{R}$, the (\oplus, \otimes)-discrete convolution of f and g is a function $(f * g): \mathcal{Z} \rightarrow \mathcal{R}$ defined as:

$$
(f * g)(n)=\bigoplus_{m=-\infty}^{+\infty}(f(n-m) \otimes g(m))
$$

Intermission: A More General Problem

Given two binary operations \oplus, \otimes and two functions $f, g: \mathbb{Z} \rightarrow \mathbb{R}$, the (\oplus, \otimes)-discrete convolution of f and g is a function $(f * g): \mathcal{Z} \rightarrow \mathcal{R}$ defined as:

$$
(f * g)(n)=\bigoplus_{m=-\infty}^{+\infty}(f(n-m) \otimes g(m))
$$

Consider the arrays P and Q associated with the polynomials $P(x)$ and $Q(x)$. Define $f(n)=p_{n}, g(n)=q_{n}$ (and 0 elsewhere). The $(+, \cdot)$ convolution of P and Q is:

$$
r_{n}=(f * g)(n)=\sum_{m=0}^{n} p_{n-m} q_{m}
$$

Back to Polynomials: A Trivial Solution

$$
r_{i}=\sum_{j=0}^{i} p_{i-j} q_{j}
$$

- For $i=0, \ldots, 2 n$:
- $r_{i} \leftarrow 0$
- For $j=\max \{0, i-n\}, \ldots, \min \{i, n\}$:
- $r_{i} \leftarrow r_{i}+p_{i-j} \cdot q_{j}$

Back to Polynomials: A Trivial Solution

$$
r_{i}=\sum_{j=0}^{i} p_{i-j} q_{j}
$$

- For $i=0, \ldots, 2 n$:
- $r_{i} \leftarrow 0$
- For $j=\max \{0, i-n\}, \ldots, \min \{i, n\}$:
- $r_{i} \leftarrow r_{i}+p_{i-j} \cdot q_{j}$

Time Complexity: $\Theta\left(n^{2}\right)$

Back to Polynomials: A Trivial Solution

$$
r_{i}=\sum_{j=0}^{i} p_{i-j} q_{j}
$$

- For $i=0, \ldots, 2 n$:
- $r_{i} \leftarrow 0$
- For $j=\max \{0, i-n\}, \ldots, \min \{i, n\}$:
- $r_{i} \leftarrow r_{i}+p_{i-j} \cdot q_{j}$

Time Complexity: $\Theta\left(n^{2}\right)$

Can we do better?

Divide and Conquer: First Attempt

- Write P as: $\quad P(x)=P^{\prime}(x)+P^{\prime \prime}(x) \cdot x^{\lfloor n / 2\rfloor}$, where:

$$
P^{\prime}(x)=\sum_{i=0}^{\lfloor n / 2\rfloor} p_{i} x^{i} \quad \text { and } \quad P^{\prime \prime}(x)=\sum_{i=1+\lfloor n / 2\rfloor}^{n} p_{i} x^{i-\lfloor n / 2\rfloor}
$$

Divide and Conquer: First Attempt

- Write P as: $\quad P(x)=P^{\prime}(x)+P^{\prime \prime}(x) \cdot x^{\lfloor n / 2\rfloor}$, where:

$$
P^{\prime}(x)=\sum_{i=0}^{\lfloor n / 2\rfloor} p_{i} x^{i} \quad \text { and } \quad P^{\prime \prime}(x)=\sum_{i=1+\lfloor n / 2\rfloor}^{n} p_{i} x^{i-\lfloor n / 2\rfloor}
$$

- Similarly, write Q as:

$$
Q(x)=Q^{\prime}(x)+Q^{\prime \prime}(x) \cdot x^{\lfloor n / 2\rfloor}
$$

Divide and Conquer: First Attempt

- Write P as: $\quad P(x)=P^{\prime}(x)+P^{\prime \prime}(x) \cdot x^{\lfloor n / 2\rfloor}$, where:

$$
P^{\prime}(x)=\sum_{i=0}^{\lfloor n / 2\rfloor} p_{i} x^{i} \quad \text { and } \quad P^{\prime \prime}(x)=\sum_{i=1+\lfloor n / 2\rfloor}^{n} p_{i} x^{i-\lfloor n / 2\rfloor}
$$

- Similarly, write Q as:

$$
Q(x)=Q^{\prime}(x)+Q^{\prime \prime}(x) \cdot x^{\lfloor n / 2\rfloor}
$$

$$
P(x) \cdot Q(x)=\left(P^{\prime}(x)+P^{\prime \prime}(x) \cdot x^{\lfloor n / 2\rfloor}\right) \cdot\left(Q^{\prime}(x)+Q^{\prime \prime}(x) \cdot x^{\lfloor n / 2\rfloor}\right)
$$

Divide and Conquer: First Attempt

- Write P as: $\quad P(x)=P^{\prime}(x)+P^{\prime \prime}(x) \cdot x^{\lfloor n / 2\rfloor}$, where:

$$
P^{\prime}(x)=\sum_{i=0}^{\lfloor n / 2\rfloor} p_{i} x^{i} \quad \text { and } \quad P^{\prime \prime}(x)=\sum_{i=1+\lfloor n / 2\rfloor}^{n} p_{i} x^{i-\lfloor n / 2\rfloor}
$$

- Similarly, write Q as:

$$
Q(x)=Q^{\prime}(x)+Q^{\prime \prime}(x) \cdot x^{\lfloor n / 2\rfloor}
$$

$$
\begin{gathered}
P(x) \cdot Q(x)=\left(P^{\prime}(x)+P^{\prime \prime}(x) \cdot x^{\lfloor n / 2\rfloor}\right) \cdot\left(Q^{\prime}(x)+Q^{\prime \prime}(x) \cdot x^{\lfloor n / 2\rfloor}\right) \\
=P^{\prime}(x) Q^{\prime}(x)+\left(P^{\prime}(x) Q^{\prime \prime}(x)+P^{\prime \prime}(x) Q^{\prime}(x)\right) x^{\lfloor n / 2\rfloor}+P^{\prime \prime}(X) Q^{\prime \prime}(x) x^{2\lfloor n / 2\rfloor}
\end{gathered}
$$

Divide and Conquer: First Attempt

$P^{\prime}(x) Q^{\prime}(x)+\left(P^{\prime}(x) Q^{\prime \prime}(x)+P^{\prime \prime}(x) Q^{\prime}(x)\right) x^{\lfloor n / 2\rfloor}+P^{\prime \prime}(X) Q^{\prime \prime}(x) x^{2\lfloor n / 2\rfloor}$

The problem of computing the product of two polynomials of degree n is reduced to that of computing 4 products of polynomials of degree $\approx n / 2$.

Divide and Conquer: First Attempt

$P^{\prime}(x) Q^{\prime}(x)+\left(P^{\prime}(x) Q^{\prime \prime}(x)+P^{\prime \prime}(x) Q^{\prime}(x)\right) x^{\lfloor n / 2\rfloor}+P^{\prime \prime}(X) Q^{\prime \prime}(x) x^{2\lfloor n / 2\rfloor}$

The problem of computing the product of two polynomials of degree n is reduced to that of computing 4 products of polynomials of degree $\approx n / 2$.

Recurrence Equation:

$$
T(n)=4 T(n / 2)+O(n)
$$

$O(n)$ time is needed to decompose the polynomials and to recombine the 4 sub-products.

Divide and Conquer: First Attempt

$P^{\prime}(x) Q^{\prime}(x)+\left(P^{\prime}(x) Q^{\prime \prime}(x)+P^{\prime \prime}(x) Q^{\prime}(x)\right) x^{\lfloor n / 2\rfloor}+P^{\prime \prime}(X) Q^{\prime \prime}(x) x^{2\lfloor n / 2\rfloor}$

The problem of computing the product of two polynomials of degree n is reduced to that of computing 4 products of polynomials of degree $\approx n / 2$.

Recurrence Equation:

$$
T(n)=4 T(n / 2)+O(n)
$$

$O(n)$ time is needed to decompose the polynomials and to recombine the 4 sub-products.

Solution: $\quad \Theta\left(n^{2}\right)$

Divide and Conquer: First Attempt

$P^{\prime}(x) Q^{\prime}(x)+\left(P^{\prime}(x) Q^{\prime \prime}(x)+P^{\prime \prime}(x) Q^{\prime}(x)\right) x^{\lfloor n / 2\rfloor}+P^{\prime \prime}(X) Q^{\prime \prime}(x) x^{2\lfloor n / 2\rfloor}$

The problem of computing the product of two polynomials of degree n is reduced to that of computing 4 products of polynomials of degree $\approx n / 2$.

Solution: $\Theta\left(n^{2}\right)$

Divide and Conquer: Second Attempt

We want:

$$
P^{\prime}(x) Q^{\prime}(x)+\left(P^{\prime}(x) Q^{\prime \prime}(x)+P^{\prime \prime}(x) Q^{\prime}(x)\right) x^{\lfloor n / 2\rfloor}+P^{\prime \prime}(X) Q^{\prime \prime}(x) x^{2\lfloor n / 2\rfloor}
$$

Divide and Conquer: Second Attempt

We want:
$P^{\prime}(x) Q^{\prime}(x)+\left(P^{\prime}(x) Q^{\prime \prime}(x)+P^{\prime \prime}(x) Q^{\prime}(x)\right) x^{\lfloor n / 2\rfloor}+P^{\prime \prime}(X) Q^{\prime \prime}(x) x^{2\lfloor n / 2\rfloor}$

Define:

$$
\begin{aligned}
& U=P^{\prime}(x) Q^{\prime}(x) \quad V=P^{\prime \prime}(x) Q^{\prime \prime}(x) \\
& W=\left(P^{\prime}(x)+P^{\prime \prime}(x)\right)\left(Q^{\prime}(x)+Q^{\prime \prime}(x)\right)
\end{aligned}
$$

Divide and Conquer: Second Attempt

We want:

Define:

$$
\begin{aligned}
& U=P^{\prime}(x) Q^{\prime}(x) \quad V=P^{\prime \prime}(x) Q^{\prime \prime}(x) \\
& W=\left(P^{\prime}(x)+P^{\prime \prime}(x)\right)\left(Q^{\prime}(x)+Q^{\prime \prime}(x)\right)
\end{aligned}
$$

Divide and Conquer: Second Attempt

We want:

Define:

$$
\begin{aligned}
& U=P^{\prime}(x) Q^{\prime}(x) \quad V=P^{\prime \prime}(x) Q^{\prime \prime}(x) \\
& W=\left(P^{\prime}(x)+P^{\prime \prime}(x)\right)\left(Q^{\prime}(x)+Q^{\prime \prime}(x)\right)
\end{aligned}
$$

Divide and Conquer: Second Attempt

We want:

$$
{\underset{\downarrow}{\mid}}_{P^{\prime}(x) Q^{\prime}(x)}+\underbrace{\left(P^{\prime}(x) Q^{\prime \prime}(x)+P^{\prime \prime}(x) Q^{\prime}(x)\right.}_{\downarrow}) x^{\lfloor n / 2\rfloor}+P^{\prime \prime}(X) Q^{\prime \prime}(x) x^{2\lfloor n / 2\rfloor}
$$

Define:

$$
\begin{aligned}
& U=P^{\prime}(x) Q^{\prime}(x) \quad V=P^{\prime \prime}(x) Q^{\prime \prime}(x) \\
& W=\left(P^{\prime}(x)+P^{\prime \prime}(x)\right)\left(Q^{\prime}(x)+Q^{\prime \prime}(x)\right)
\end{aligned}
$$

Only requires 3 multiplications $\Longrightarrow 3$ subproblems of size $\sim n / 2$

Divide and Conquer: Second Attempt

- Divide:

$$
\begin{aligned}
& U=P^{\prime}(x) \cdot Q^{\prime}(x) \\
& V=P^{\prime \prime}(x) \cdot Q^{\prime \prime}(x) \\
& W=\left(P^{\prime}(x)+P^{\prime \prime}(x)\right) \cdot\left(Q^{\prime}(x)+Q^{\prime \prime}(x)\right)
\end{aligned}
$$

(subproblem 1)
(subproblem 2)
(subproblem 3)

- Conquer: Compute U, V, W recursively
- Recombine: $U+(W-U-V) x^{\lfloor n / 2\rfloor}+V x^{2\lfloor n / 2\rfloor}$

Divide and Conquer: Second Attempt

- Divide:

$$
\begin{array}{ll}
U=P^{\prime}(x) \cdot Q^{\prime}(x) & \text { (subproblem 1) } \\
V=P^{\prime \prime}(x) \cdot Q^{\prime \prime}(x) & \text { (subproblem 2) } \\
W=\left(P^{\prime}(x)+P^{\prime \prime}(x)\right) \cdot\left(Q^{\prime}(x)+Q^{\prime \prime}(x)\right) & (\text { subproblem 3) }
\end{array}
$$

- Conquer: Compute U, V, W recursively
- Recombine: $U+(W-U-V) x^{\lfloor n / 2\rfloor}+V x^{2\lfloor n / 2\rfloor}$

Reurrence Equation: $\quad T(n)=3 T(n / 2)+O(n)$

Divide and Conquer: Second Attempt

- Divide:

$$
\begin{array}{ll}
U=P^{\prime}(x) \cdot Q^{\prime}(x) & \text { (subproblem 1) } \\
V=P^{\prime \prime}(x) \cdot Q^{\prime \prime}(x) & \text { (subproblem 2) } \\
W=\left(P^{\prime}(x)+P^{\prime \prime}(x)\right) \cdot\left(Q^{\prime}(x)+Q^{\prime \prime}(x)\right) & (\text { subproblem 3) }
\end{array}
$$

- Conquer: Compute U, V, W recursively
- Recombine: $U+(W-U-V) x^{\lfloor n / 2\rfloor}+V x^{2\lfloor n / 2\rfloor}$

Reurrence Equation: $\quad T(n)=3 T(n / 2)+O(n)$

Solution: $\quad O\left(n^{\log _{2} 3}\right)=O\left(n^{1.585}\right)$

$$
O\left(n^{\log _{2} 3}\right)=O\left(n^{1.585}\right)
$$

Divide and Conquer: Second Attempt

- Divide:

$$
\begin{array}{ll}
U=P^{\prime}(x) \cdot Q^{\prime}(x) & \text { (subproblem 1) } \\
V=P^{\prime \prime}(x) \cdot Q^{\prime \prime}(x) & \text { (subproblem 2) } \\
W=\left(P^{\prime}(x)+P^{\prime \prime}(x)\right) \cdot\left(Q^{\prime}(x)+Q^{\prime \prime}(x)\right) & (\text { subproblem 3) }
\end{array}
$$

- Conquer: Compute U, V, W recursively
- Recombine: $U+(W-U-V) x^{\lfloor n / 2\rfloor}+V x^{2\lfloor n / 2\rfloor}$

Trick/Technique: Divide and Conquer

Decompose an instance into smaller instances of the same problem.
Solve recursively and recombine the solutions.

Recursion \& Memoization

Fibonacci Numbers

Definition: $F_{0}=0, F_{1}=1$, and $F_{i}=F_{i-1}+F_{i-2}$ for $i>1$
Problem: Given $n \in \mathbb{N}$, compute F_{n}

A trivial recursive solution:

```
int fibonacci(int n)
{
    if(n<=1)
        return n;
    return fibonacci(n-1) + fibonacci(n-2);
}
```

Computational complexity?

Fibonacci Numbers: Time Complexity

Fibonacci Numbers: Time Complexity

Fibonacci Numbers: Time Complexity

Time $=\Theta(1) \cdot \#$ Nodes $=\Theta(\#$ Leaves $)=\Theta\left(F_{n}\right)$

Fibonacci Numbers: Time Complexity

$$
F_{n}=\left\lfloor\frac{4^{n}}{\sqrt{5}}\right\rceil
$$

Time $=\Theta(1) \cdot \#$ Nodes $=\Theta(\#$ Leaves $)=\Theta\left(F_{n}\right)=\Theta\left(\varphi^{n}\right)$

Fibonacci Numbers: Time Complexity

$$
F_{n}=\left\lfloor\frac{q^{n}}{\sqrt{5}}\right\rceil
$$

Time $=\Theta(1) \cdot \#$ Nodes $=\Theta(\#$ Leaves $)=\Theta\left(F_{n}\right)=\Theta\left(\varphi^{n}\right)$

Fibonacci Numbers: Time Complexity

$$
F_{n}=\left\lfloor\frac{\varphi^{n}}{\sqrt{5}}\right\rceil
$$

Time $=\Theta(1) \cdot \#$ Nodes $=\Theta(\#$ Leaves $)=\Theta\left(F_{n}\right)=\Theta\left(\varphi^{n}\right)$

Fibonacci Numbers: Time Complexity

$$
F_{n}=\left\lfloor\frac{m^{n}}{\sqrt{5}}\right\rceil
$$

Time $=\Theta(1) \cdot \#$ Nodes $=\Theta(\#$ Leaves $)=\Theta\left(F_{n}\right)=\Theta\left(\varphi^{n}\right)$

Fibonacci Numbers: Time Complexity

$$
F_{n}=\left\lfloor\left.\frac{p^{n}}{\sqrt{5}} \right\rvert\,\right.
$$

Time $=\Theta(1) \cdot \#$ Nodes $=\Theta(\#$ Leaves $)=\Theta\left(F_{n}\right)=\Theta\left(\varphi^{n}\right)$

Fibonacci Numbers: Memoization

Idea: Do not recompute duplicate values:

- Store values in memory
- If value is in memory, recall it
- Otherwise, compute and store it

Fibonacci Numbers: Memoization

Idea: Do not recompute duplicate values:

- Store values in memory
- If value is in memory, recall it
- Otherwise, compute and store it

```
std::vector<int> memo(n+1, 0);
int fibonacci(int n)
{
    if(n<=1) return n;
    if(memo[n]) return memo[n];
    memo[n] = fibonacci(n-1) + fibonacci(n-2);
    return memo[n];
}
```


Time Complexity with Memoization

Time Complexity with Memoization

Time $=\Theta(1) \cdot \#$ Green Nodes $=\Theta(n)$

The Memoization Recipe

- Design a recursive algorithm for the problem
- Add memoization (easy)

The Memoization Recipe

- Design a recursive algorithm for the problem
- Add memoization (easy)
- Bound computational complexity
- How many subproblems (possible recursive calls)?
- How long does a call take?

The Memoization Recipe

- Design a recursive algorithm for the problem
- Add memoization (easy)
- Bound computational complexity
- How many subproblems (possible recursive calls)?
- How long does a call take?

Trick/Technique: Memoization

Avoid recomputing solutions to duplicate subproblems by storing results in memory.

Memoization: Pitfalls

$$
\text { Let } G_{-1}=G_{0}=1, \text { and } G_{i}=\left\{\begin{array}{ll}
2 G_{i-1} & \text { if } i \text { is even } \\
G_{i-2}+3 & \text { if } i \text { is odd }
\end{array} \text {, for } i \geq 1\right. \text {. }
$$

std: :vector<int> memo $(\mathrm{n}+1,0)$;
int $g(i n t n)$
\{
if (memo [n]) return memo[n];
if ($n<=0$) return 1;
memo[n] $=(\mathrm{i} \% 2) ?(\mathrm{~g}(\mathrm{n}-2)+3):(2 * g(\mathrm{n}-1))$; return memo[n];

Does this code work?

Memoization: Pitfalls

$$
\text { Let } G_{-1}=G_{0}=1, \text { and } G_{i}=\left\{\begin{array}{ll}
2 G_{i-1} & \text { if } i \text { is even } \\
G_{i-2}+3 & \text { if } i \text { is odd }
\end{array} \text {, for } i \geq 1\right. \text {. }
$$

std: :vector<int> memo $(\mathrm{n}+1,0)$;

```
int g(int n)
{
    if(memo[n]) return memo[n];
```

 if (\(\mathrm{n}<=0\)) return 1;
 memo[n] $=(i \% 2) ?(g(n-2)+3):(2 * g(n-1))$;
return memo[n];
\}

Does this code work?

Memoization: Pitfalls

$$
\text { Let } G_{-1}=G_{0}=1, \text { and } G_{i}=\left\{\begin{array}{ll}
2 G_{i-1} & \text { if } i \text { is even } \\
G_{i-2}+3 & \text { if } i \text { is odd }
\end{array} \text {, for } i \geq 1\right. \text {. }
$$

std: :vector<int> memo $(\mathrm{n}+1,0)$;

```
int g(int n)
{
    if(memo[n]) return memo[n];
```

 if (\(n<=0\)) return 1;
 memo[n] $=(i \% 2) ?(g(n-2)+3):(2 * g(n-1))$;
return memo[n];
\}

Does this code work? No! n can be -1 !

Memoization: Pitfalls

$$
\text { Let } G_{-1}=G_{0}=1, \text { and } G_{i}=\left\{\begin{array}{ll}
2 G_{i-1} & \text { if } i \text { is even } \\
G_{i-2}+3 & \text { if } i \text { is odd }
\end{array} \text {, for } i \geq 1\right. \text {. }
$$

```
std::vector<int> memo(n+1, 0);
```

```
int g(int n)
{
    if(memo[n]) return memo[n];
```

 if (\(n<=0\)) return 1;
 memo[n] \(=(\mathrm{i} \% 2) ?(\mathrm{~g}(\mathrm{n}-2)+3):(2 * g(\mathrm{n}-1))\);
 return memo[n];
\}

Does this code work?
No! n can be -1 !
Solution: check base cases before the memo table.

Memoization: Pitfalls

$$
G_{0}=0, G_{1}=1, \text { and } G_{i}=\left(G_{i-1}+G_{i-2}+1\right) \bmod 2, \text { for } i \geq 1
$$

std: :vector<int> memo $(\mathrm{n}+1,0)$;
int $g(i n t n)$
\{
if ($\mathrm{n}<=1$) return n ;
if(memo[n]) return memo[n];
$\operatorname{memo}[\mathrm{n}]=(\mathrm{g}(\mathrm{n}-1)+\mathrm{g}(\mathrm{n}-2)+1) \% 2$; return memo[n];
\}

Too slow! Why?

Memoization: Pitfalls

$$
G_{0}=0, G_{1}=1, \text { and } G_{i}=\left(G_{i-1}+G_{i-2}+1\right) \bmod 2, \text { for } i \geq 1
$$

```
std::vector<int> memo(n+1, 0);
```

int $g($ int $n)$
\{
if ($\mathrm{n}<=1$) return n ;
if (memo [n]) return memo[n];
$\operatorname{memo}[\mathrm{n}]=(\mathrm{g}(\mathrm{n}-1)+\mathrm{g}(\mathrm{n}-2)+1) \% 2$;
return memo[n];
\}

Too slow! Why?

Memoization: Pitfalls

$$
G_{0}=0, G_{1}=1, \text { and } G_{i}=\left(G_{i-1}+G_{i-2}+1\right) \bmod 2, \text { for } i \geq 1
$$

```
std::vector<int> memo(n+1, 0);
int g(int n)
{
    if(n<=1) return n;
    if(memo[n]) return memo[n];
    memo[n] = (g(n-1) + g(n-2) + 1) % 2;
    return memo[n];
}
```

Too slow! Why?
0 is a possible value of G_{i} !

Memoization: Pitfalls

Memoization: Pitfalls

Dynamic Programming

Dynamic Programming

I spent the Fall quarter (of 1950) at RAND. [...] We had a very interesting gentleman in Washington named Wilson. He was Secretary of Defense, and he actually had a pathological fear and hatred of the word research. [...] he would get violent if people used the term research in his presence. [...] The RAND Corporation was employed by the Air Force, and the Air Force had Wilson as its boss, essentially. Hence, I felt I had to do something to shield Wilson and the Air Force from the fact that I was really doing mathematics inside the RAND Corporation. [...] I decided therefore to use the word "programming". I wanted to get across the idea that this was dynamic, this was multistage, this was time-varying. [...] Let's take a word that has an absolutely precise meaning, namely dynamic, in the classical physical sense. It also has a very interesting property as an adjective, and that is it's impossible to use the word dynamic in a pejorative sense. [...] Thus, I thought dynamic programming was a good name. It was something not even a Congressman could object to.

Richard E. Bellman, Eye of the Hurricane: An Autobiography

Dynamic Programming: Idea

- Decompose a problem into a series of "overlapping" subproblems
- The solutions to the "smallest" subproblems are trivially known
- The optimal solution to a subproblem can be reconstructed from the optimal solutions of "smaller" subproblems
- Systematically solve subproblems in a suitable order (from the "smaller" to the "larger" ones)
- Eventually, either the solution to the original problem is explicitly computed or it can be reconstructed from the subproblem's solutions

Dynamic Programming: Idea

- Decompose a problem into a series of "overlapping" subproblems (hard)
- The solutions to the "smallest" subproblems are trivially known (easy)
- The optimal solution to a subproblem can be reconstructed from the optimal solutions of "smaller" subproblems (hard)
- Systematically solve subproblems in a suitable order (from the "smaller" to the "larger" ones) (easy)
- Eventually, either the solution to the original problem is explicitly computed or it can be reconstructed from the subproblem's solutions (easy)

Fibonacci, Revisited

- i-th subproblem: Compute the value of F_{i}
- Base cases: $i=0, i=1$.
- Compute F_{i} in increasing order of $i: \quad F_{i}=F_{i-1}+F_{i-2}$
- Both F_{i-1} and F_{i-2} are already known when F_{i} is considered.
- Solution: F_{n}

```
std::vector<int> F(n+1);
F[0]=0; F[1]=1;
for(int i=2; i<=n; i++)
    F[i] = F[i-1] + F[i-2];
return F[n];
```


Fibonacci, Revisited

Trick to reduce space:

- Once we compute F_{i}, the values F_{0}, \ldots, F_{i-2} will not be used anymore.
- Keep track of just two values x_{0}, x_{1}.
- At the end of iteration $i, F_{i}=x_{i \bmod 2}$ and

$$
F_{i-1}=x_{(i-1) \bmod 2}
$$

```
int x[2] = {0, 1};
for(int i=2; i<=n; i++)
    x[i%2] = x[(i-1)%2] + x[(i-2)%2];
return x[n%2];
```


Fibonacci, Revisited

Trick to reduce space:

- Once we compute F_{i}, the values F_{0}, \ldots, F_{i-2} will not be used anymore.
- Keep track of just two values x_{0}, x_{1}.
- At the end of iteration $i, F_{i}=x_{i \bmod 2}$ and $F_{i-1}=x_{(i-1) \bmod 2}$.

```
int x[2] = {0, 1};
for(int }1=2; i<=n; i++
    x[i%2] = x[(i-1)%2] + x[(i-2)%2];
return x[n%2];
    Fi-1
```


Drink as much as possible

Robert wants to drink as much a possible.

- Robert walks through the streets of King's Landing and encounters n taverns $t_{1}, t_{2}, \ldots, t_{n}$, in order
- When Robert encounters a tavern t_{i}, he can either stop for a drink or continue walking
- The wine served in tavern t_{i} has strength $s_{i} \in \mathbb{N}$ (the higher, the stronger)
- The strength of robert's drinks must increase over time
- Goal: Compute the maximum number of drinking stops of Robert

Example

Example

Solution: 6

Example

Solution: 6

This is a classic problem known as: Longest Increasing Subsequence (LIS)

A DP Algorithm: First Attempt

- Subproblem definition

$$
O P T[i]=\text { Length of the LIS in } S[1], \ldots, S[i]
$$

A DP Algorithm: First Attempt

- Subproblem definition

$$
O P T[i]=\text { Length of the LIS in } S[1], \ldots, S[i]
$$

- Base cases

$$
O P T[1]=1
$$

A DP Algorithm: First Attempt

- Subproblem definition

$$
O P T[i]=\text { Length of the LIS in } S[1], \ldots, S[i]
$$

- Base cases

$$
O P T[1]=1
$$

- Solution:

$$
O P T[n]
$$

A DP Algorithm: First Attempt

- Subproblem definition

$$
O P T[i]=\text { Length of the LIS in } S[1], \ldots, S[i]
$$

- Base cases

$$
O P T[1]=1
$$

- Solution:

$$
O P T[n]
$$

- Recursive formula

A DP Algorithm: Second Attempt

Tip: Sometimes adding constraints to subproblems helps!

A DP Algorithm: Second Attempt

Tip: Sometimes adding constraints to subproblems helps!

$$
O P T[i]=\text { Length of the LIS that ends with } S[i]
$$

A DP Algorithm: Second Attempt

Tip: Sometimes adding constraints to subproblems helps!
$O P T[i]=$ Length of the LIS that ends with $S[i]$

S	4	1	8	3	4	8	2	7	5	6	9	8
	1	2	3	4	5	6	7	8	9	10	$11 \quad 12$	
OPT	1	1	2	2	3	4	2	4				

A DP Algorithm: Second Attempt

Tip: Sometimes adding constraints to subproblems helps!
$O P T[i]=$ Length of the LIS that ends with $S[i]$

S	4	1	8	3	4	8	2	7	5	6	9	8
	1	2	3	4	5	6	7	8	9	10	$11 \quad 12$	
OPT	1	1	2	2	3	4	2	4				

A DP Algorithm: Second Attempt

Tip: Sometimes adding constraints to subproblems helps!
$O P T[i]=$ Length of the LIS that ends with $S[i]$

A DP Algorithm: Second Attempt

Tip: Sometimes adding constraints to subproblems helps!
$O P T[i]=$ Length of the LIS that ends with $S[i]$

Possible lengths: 3

A DP Algorithm: Second Attempt

Tip: Sometimes adding constraints to subproblems helps!
$O P T[i]=$ Length of the LIS that ends with $S[i]$

Possible lengths: 3

A DP Algorithm: Second Attempt

Tip: Sometimes adding constraints to subproblems helps!
$O P T[i]=$ Length of the LIS that ends with $S[i]$

Possible lengths: 34

A DP Algorithm: Second Attempt

Tip: Sometimes adding constraints to subproblems helps!
$O P T[i]=$ Length of the LIS that ends with $S[i]$

Possible lengths: 343

A DP Algorithm: Second Attempt

Tip: Sometimes adding constraints to subproblems helps!
$O P T[i]=$ Length of the LIS that ends with $S[i]$

Possible lengths: $\begin{array}{llllll}3 & 4 & 3 & 2 & 2\end{array}$

A DP Algorithm: Second Attempt

Tip: Sometimes adding constraints to subproblems helps!
$O P T[i]=$ Length of the LIS that ends with $S[i]$

Possible lengths: $\begin{array}{lllllll}3 & 4 & 3 & 2 & 2 & 1\end{array}$
Sequence containing only $S[i]$

A DP Algorithm: Second Attempt

Tip: Sometimes adding constraints to subproblems helps!
$O P T[i]=$ Length of the LIS that ends with $S[i]$

Possible lengths: $\begin{array}{lllllll}3 & 4 & 3 & 2 & 2 & 1\end{array}$
$O P T[9]=4$
Sequence containing only $S[i]$

The Dynamic Proramming Algorithm

- Subproblem definition

$$
O P T[i]=\text { Length of the LIS that ends with } S[i]
$$

- Base cases

$$
O P T[1]=1
$$

- Recursive formula

$$
O P T[i]=\max \left\{1,1+\max _{\substack{j=1, \ldots, i-1 \\ S[j]<S[i]}} O P T[j]\right\}
$$

- Subproblems' order

$$
O P T[1], O P T[2], \ldots, O P T[n]
$$

- Solution:

$$
\max _{i=1, \ldots, n} O P T[i]
$$

Time Complexity

- $O(n)$ subproblems
- Base cases are handled in constant time
- $O P T[i]$ is computed in time $\Theta(i)$

$$
O P T[i]=\max \left\{1,1+\max _{\substack{j=1, \ldots, i-1 \\ S[j]<S[i]}} O P T[j]\right\}
$$

Time Complexity

- $O(n)$ subproblems
- Base cases are handled in constant time
- $O P T[i]$ is computed in time $\Theta(i)$

$$
O P T[i]=\max \left\{1,1+\max _{\substack{j=1, \ldots, i-1 \\ S[j]<S[i]}} O P T[j]\right\}
$$

Overall time: $O\left(\sum_{i=1}^{n} i\right)=O\left(n^{2}\right)$.

A possible implementation (DP)

 std::vector<int> OPT(n+1); OPT [1] =1;for (int $i=2 ; i<=n ; i++$)
\{
OPT [i]=1;
for (int $j=1 ; ~ j<i ; ~ j++)$
if (S[j] < S[i])
OPT[i] = std::max(OPT[i], 1+OPT[j]);
\}
return std::max_element(OPT.begin()+1, OPT.end());

A possible implementation (Memo)

std::vector<int> memo($\mathrm{n}+1,0$);
int LIS(std::vector \&S, int i)
\{
if (i==1) return 1;
if (memo [i]) return memo [i];
int $\mathrm{r}=1$;
for (int $j=1$; $j<i$; ${ }^{j++)}$
if (S[j]<S[i])
r=std::max(r, 1+LIS(S, j));
return memo[i]=r;

Memoization vs. DP

\checkmark Top-Down approach (more intuitive)
\checkmark Easier to index subproblems by other objects (e.g., sets).
\checkmark Only computes necessary subproblems
X Function calls overhead
X Call stack (recusion depth)
is bounded
x Time complexity is harder to analyze

X Bottom-Up approach (harder to grasp)
x Need to index subproblems with integers

X Always computes all subproblems
\checkmark No recursion. Less overhead. More cache efficient.
\checkmark Short and clean code
\checkmark Time complexity analysis is easy (/ier)

Another DP Algorithm for LIS

- Subproblem definition
$O P T[i, \ell]=$ Index j of the smallest element $S[j]$ with $j \leq i$ that ends an increasing subsequence of length ℓ, or \perp if no such subsequence exists

	1	2	3	4	5	6	7	8	9	10	11		12
S	4	1	8	3	4	8	2	7	5	6	9		8

Another DP Algorithm for LIS

- Subproblem definition
$O P T[i, \ell]=$ Index j of the smallest element $S[j]$ with $j \leq i$ that ends an increasing subsequence of length ℓ, or \perp if no such subsequence exists

$$
O P T[8,2]=
$$

Another DP Algorithm for LIS

- Subproblem definition
$O P T[i, \ell]=$ Index j of the smallest element $S[j]$ with $j \leq i$ that ends an increasing subsequence of length ℓ, or \perp if no such subsequence exists

$$
O P T[8,2]=7
$$

Another DP Algorithm for LIS

- Subproblem definition
$O P T[i, \ell]=$ Index j of the smallest element $S[j]$ with $j \leq i$ that ends an increasing subsequence of length ℓ, or \perp if no such subsequence exists

$\left.$| |
| :---: | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | | | | | | | | | | | | \right\rvert\, | 12 |
| :---: | :---: | | 4 |
| :---: |

$$
O P T[8,2]=7 \quad O P T[8,3]=
$$

Another DP Algorithm for LIS

- Subproblem definition
$O P T[i, \ell]=$ Index j of the smallest element $S[j]$ with $j \leq i$ that ends an increasing subsequence of length ℓ, or \perp if no such subsequence exists

$\left.$| |
| :---: | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | | | | | | | | | | | | \right\rvert\, | 12 |
| :---: | :---: | 4

$$
O P T[8,2]=7 \quad O P T[8,3]=5
$$

Another DP Algorithm for LIS

- Subproblem definition
$O P T[i, \ell]=$ Index j of the smallest element $S[j]$ with $j \leq i$ that ends an increasing subsequence of length ℓ, or \perp if no such subsequence exists

$\left.$| |
| :---: | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | | | | | | | | | | | | \right\rvert\, | 12 |
| :---: | :---: | 4

$$
O P T[8,2]=7 \quad O P T[8,3]=5
$$

$$
O P T[8,5]=
$$

Another DP Algorithm for LIS

- Subproblem definition
$O P T[i, \ell]=$ Index j of the smallest element $S[j]$ with $j \leq i$ that ends an increasing subsequence of length ℓ, or \perp if no such subsequence exists

$\left.$| |
| :---: | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | | | | | | | | | | | | \right\rvert\, | 12 |
| :---: | :---: | 4

$$
\begin{gathered}
O P T[8,2]=7 \quad O P T[8,3]=5 \\
O P T[8,5]=\perp
\end{gathered}
$$

Computing $O P T[i, \ell]$

- If $O P T[i-1, \ell-1]=\perp$:

$$
O P T[i, \ell]=\perp \quad(=O P T[i-1, \ell])
$$

Computing $O P T[i, \ell]$

- If $O P T[i-1, \ell-1]=\perp$:

$$
O P T[i, \ell]=\perp \quad(=O P T[i-1, \ell])
$$

- If $S[i] \leq S[O P T[i-1, \ell-1]]$

$$
O P T[i, \ell]=O P T[i-1, \ell]
$$

Computing $O P T[i, \ell]$

- If $O P T[i-1, \ell-1]=\perp$:

$$
O P T[i, \ell]=\perp \quad(=O P T[i-1, \ell])
$$

- If $S[i] \leq S[O P T[i-1, \ell-1]]$

$$
O P T[i, \ell]=O P T[i-1, \ell]
$$

The above two cases can be merged into a single case.

Computing $O P T[i, \ell]$

- If $O P T[i-1, \ell-1]=\perp$ or $S[i] \leq S[O P T[i-1, \ell-1]]$

$$
O P T[i, \ell]=O P T[i-1, \ell]
$$

Computing $O P T[i, \ell]$

- If $O P T[i-1, \ell-1]=\perp$ or $S[i] \leq S[O P T[i-1, \ell-1]]$

$$
O P T[i, \ell]=O P T[i-1, \ell]
$$

- If $O P T[i-1, \ell-1] \neq \perp$ and $S[i]>S[O P T[i-1, \ell-1]]$

$$
O P T[i, \ell]= \begin{cases}i & \text { if } O P T[i-1, \ell]=\perp \text { or } \\ & S[i] \leq S[O P T[i-1, \ell]]\end{cases}
$$

$O P T[i-1, \ell]$ otherwise

Computing $O P T[i, \ell]$

- If $O P T[i-1, \ell-1]=\perp$ or $S[i] \leq S[O P T[i-1, \ell-1]]$

$$
O P T[i, \ell]=O P T[i-1, \ell]
$$

- If $O P T[i-1, \ell-1] \neq \perp$ and $S[i]>S[O P T[i-1, \ell-1]]$

$$
O P T[i, \ell]= \begin{cases}i & \text { if } O P T[i-1, \ell]=\perp \text { or } \\ & S[i] \leq S[O P T[i-1, \ell]]\end{cases}
$$

$\operatorname{OPT}[i-1, \ell]$ otherwise

- Solution:

$$
\max \{\ell=1, \ldots, n \mid O P T[n, \ell] \neq \perp\}
$$

Base Cases / Order of Subproblems

Time Complexity

- $O\left(n^{2}\right)$ subproblems
- $O(1)$ time per subproblem

Time Complexity

- $O\left(n^{2}\right)$ subproblems
- $O(1)$ time per subproblem

Can we do better?

Some Properties

Lemma: Given $i>1$, let ℓ^{*} be the length of a LIS L of $S[1], \ldots, S[i]$ that ends with $S[i]$.

1) $O P T\left[i, \ell^{*}\right]=i$.
2) For $\ell \neq \ell^{*}: O P T[i, \ell]=O P T[i-1, \ell]$.

Some Properties

Lemma: Given $i>1$, let ℓ^{*} be the length of a LIS L of $S[1], \ldots, S[i]$ that ends with $S[i]$.

1) $O P T\left[i, \ell^{*}\right]=i$.
2) For $\ell \neq \ell^{*}: O P T[i, \ell]=O P T[i-1, \ell]$.

Proof of 1 (sketch):
(Case $\ell^{*} \geq 2$)

- $j=$ index of the one-to-last element of L
- $S[i]>S[j] \geq S\left[O P T\left[i-1, \ell^{*}-1\right]\right]$

Some Properties

Lemma: Given $i>1$, let ℓ^{*} be the length of a LIS L of $S[1], \ldots, S[i]$ that ends with $S[i]$.

1) $O P T\left[i, \ell^{*}\right]=i$.
2) For $\ell \neq \ell^{*}: O P T[i, \ell]=O P T[i-1, \ell]$.

Proof of 1 (sketch):
$O P T\left[i, \ell^{*}\right]=\left\{\begin{array}{lc}i & \text { if } O P T\left[i-1, \ell^{*}\right]=\perp \text { or } \\ & S[i] \leq S\left[O P T\left[i-1, \ell^{*}\right]\right]\end{array}\right.$
$O P T\left[i-1, \ell^{*}\right]$ otherwise

- If $O P T\left[i, \ell^{*}\right] \neq i$ then:

$$
O P T\left[i-1, \ell^{*}\right] \neq \perp \text { and } S[i]>S\left[O P T\left[i-1, \ell^{*}\right]\right]
$$

- Contradiction: wrong choice of ℓ^{*} !

Some Properties

Lemma: Given $i>1$, let ℓ^{*} be the length of a LIS L of $S[1], \ldots, S[i]$ that ends with $S[i]$.

1) $O P T\left[i, \ell^{*}\right]=i$.
2) For $\ell \neq \ell^{*}: O P T[i, \ell]=O P T[i-1, \ell]$.

Proof of 2: Trivially true if $\ell>\ell^{*}$. Consider $\ell<\ell^{*}$:
j
i

- The ℓ-th term in the IS of length ℓ^{*} ending in $O P T\left[i, \ell^{*}\right]=i$ appears in some position $j<i$.
- $S[j]<S[i] \Longrightarrow O P T[i, \ell] \neq i$

A possible implementation

Observation 2: After the i-th iteration, all values
$O P T[1, \ell], \ldots, O P T[i-1, \ell]$ will never be used anymore!

A possible implementation

Observation 2: After the i-th iteration, all values
$O P T[1, \ell], \ldots, O P T[i-1, \ell]$ will never be used anymore!
Idea: only keep track of $O P T[\ell]:=O P T[i, \ell]$, where i is the current iteration.

A possible implementation

Observation 2: After the i-th iteration, all values
$O P T[1, \ell], \ldots, O P T[i-1, \ell]$ will never be used anymore!
Idea: only keep track of $O P T[\ell]:=O P T[i, \ell]$, where i is the current iteration.

- $O P T[1]=1, O P T[2]=\cdots=O P T[n]=\perp$
- For $i=2, \ldots, n$:
- $\ell^{*} \leftarrow 1 \quad / /$ Find ℓ^{*}
- For $\ell=1, \ldots, i-1$:
- If $O P T[\ell] \neq \perp$ and $S[O P T[\ell]]<S[i]$:
- $\ell^{*}=\ell+1$
- $O P T\left[\ell^{*}\right]=i$
- Return $\max \{\ell=1, \ldots, n \mid O P T[\ell] \neq \perp\}$

A possible implementation

Observation 2: After the i-th iteration, all values
$O P T[1, \ell], \ldots, O P T[i-1, \ell]$ will never be used anymore!
Idea: only keep track of $O P T[\ell]:=O P T[i, \ell]$, where i is the current iteration.

- $O P T[1]=1, O P T[2]=\cdots=O P T[n]=\perp$
- For $i=2, \ldots, n$:
- $\ell^{*} \leftarrow 1$
// Find ℓ^{*}
- For $\ell=1, \ldots, i-1$:
- If $O P T[\ell] \neq \perp$ and $S[O P T[\ell]]<S[i]$:
- $\ell^{*}=\ell+1$
- $O P T\left[\ell^{*}\right]=i$
- Return $\max \{\ell=1, \ldots, n \mid O P T[\ell] \neq \perp\}$

A possible implementation

Observation 2: After the i-th iteration, all values
$O P T[1, \ell], \ldots, O P T[i-1, \ell]$ will never be used anymore!
Idea: only keep track of $O P T[\ell]:=O P T[i, \ell]$, where i is the current iteration.

- Return $\max \{\ell=1, \ldots, n \mid O P T[\ell] \neq \perp\}$

A possible implementation

Observation 3: $S[O P T[\ell]]$ is monotonically increasing w.r.t. ℓ (until $O P T[\ell]=\perp$).

A possible implementation

Observation 3: $S[O P T[\ell]]$ is monotonically increasing w.r.t. ℓ (until $O P T[\ell]=\perp$).
Idea: use binary search to find ℓ^{*} !

A possible implementation

Observation 3: $S[O P T[\ell]]$ is monotonically increasing w.r.t. ℓ (until $O P T[\ell]=\perp$).
Idea: use binary search to find ℓ^{*} !

- $O P T[1]=1, O P T[2]=\cdots=O P T[n]=\perp$
- For $i=2, \ldots, n$:
- $\ell^{*} \leftarrow 1$
- For $\ell=1, \ldots, i-1$:
- If $O P T[\ell] \neq \perp$ and $S[O P T[\ell]]<S[i]:$
- $\ell^{*}=\ell+1$
- $O P T\left[\ell^{*}\right]=i$
- Return $\max \{\ell=1, \ldots, n \mid O P T[\ell] \neq \perp\}$

A possible implementation

Observation 3: $S[O P T[\ell]]$ is monotonically increasing w.r.t. ℓ (until $O P T[\ell]=\perp$).
Idea: use binary search to find ℓ^{*} !

- $O P T[1]=1, O P T[2]=\cdots=O P T[n]=\perp$
- For $i=2, \ldots, n$:
- Binary search for largest value ℓ such that $O P T[\ell] \neq \perp$ and $S[O P T[\ell]]<S[i]$, if any.
- $\ell^{*} \leftarrow \ell+1$, if ℓ exists, otherwise 1
- $O P T\left[\ell^{*}\right]=i$
- Return $\max \{\ell=1, \ldots, n \mid O P T[\ell] \neq \perp\}$

Total time: $O(n \log n)$

Recap

Trick/Technique: Divide and Conquer

Decompose an instance into smaller instances of the same problem.
Solve recursively and recombine the solutions.

Trick/Technique: Divide and Conquer

Decompose an instance into smaller instances of the same problem.
Solve recursively and recombine the solutions.

Trick/Technique: Memoization

Avoid recomputing solutions to duplicate subproblems by storing results in memory.

Trick/Technique: Divide and Conquer

Decompose an instance into smaller instances of the same problem.
Solve recursively and recombine the solutions.

Trick/Technique: Memoization

Avoid recomputing solutions to duplicate subproblems by storing results in memory.

Trick/Technique: Dynamic Programming

Define overlapping subproblems (possibly w/additional constraints). Systematically solve subproblems using an order that allows previous solutions to be recombined. Compute solution to the original problem from the subproblems' solutions.

