More on Dynamic Programming




Drink as Much as Possible: A Variant

Robert still wants to drink as much a possible.

e Robert walks through the streets of King's Landing and
encounters n taverns t1,ts,...,t,, In order

e When Robert encounters a tavern t;, he can either stop for
a drink or continue walking.

e Tavern t; has w; € N liters of wine.

e |[f Robert drinks in tavern ¢; then he will be too
drunk to drink in tavern t; ;. He will be able
to drink again by the time he reaches ;.-

e Goal: Compute the maximum amount of
wine (in liters) Roberts can drink
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Definition: An independent set (IS) of a graph G = (V, E)
isaset Z CV such that V(u,v) e E, u€Zorv&T.
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Max-Weight Independent Set on Paths

Definition: An independent set (IS) of a graph G = (V, E)
isaset Z CV such that V(u,v) e E, u€Zorv&T.

i1 o i3

Linear- Time Dynamic Programming Algorithm

Sketch of the algorithm:
OPT|i] = Maximum-weight IS w.r.t. the subpath ¢1,...,;

OPT[0]=0 OPT[1] = w;

OPT[i] = max{w; + OPT[i — 2], OPT[i — 1]}
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Problem: Given a tree 1" with integer weights on its
vertices, compute the weight of a Max-Weight IS of T'.
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Max-Weight Independent Set on Trees

Given v € V(T), let T, be the subtree of T" rooted at v, and let
w(v) be the weight of v.

Subproblems:

e OPT™[v] = Weight of a maximum-weight IS of T}, with
the constraint that v must belong to the IS.

e OPT~ |v] = Weight of a maximum-weight IS of T}, with
the constraint that v must not belong to the IS.

e OPT[v] = max{OPT*[v],OPT~[v]}.



Max-Weight Independent Set on Trees

Given v € V(T), let T, be the subtree of T" rooted at v, and let
w(v) be the weight of v.

Subproblems:
e OPT™[v] = Weight of a maximum-weight IS of T}, with
the constraint that v must belong to the IS.

e OPT~ |v] = Weight of a maximum-weight IS of T}, with
the constraint that v must not belong to the IS.

e OPT[v] = max{OPT*[v],OPT~[v]}.

Base case: If v is a leaf in T, then:

e OPT*[v] = w(v), and
e OPT[v] = 0



Max-Weight Independent Set on Trees

Recursive formula(s):

Let C(v) be set of the children of v in T.

o OPT[v] = w(v) + Z OPT™ |ul.
ueC'(v)

o OPT [v] =) OPT[u]=>» max{OPT"[u],OPT [u]}.
ueC(v) ueC(v)
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Max-Weight Independent Set on Trees

Recursive formula(s):

Let C(v) be set of the children of v in T.

o OPT[v] = w(v) + Z OPT™ |ul.
ueC'(v)

o OPT [v] =) OPT[u]=>» max{OPT"[u],OPT [u]}.
ueC(v) ueC(v)

Optimal solution:

e OPT[r] = max{OPT"[r], OPT~[r]}, where r is the root
of T

Order of subproblems: 7
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In order of decreasing depth in T
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Order of Subproblems
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In DFS postoder



Time Complexity

e Suppose we can find a suitable order in O(n) time.

e The time spent on vertex v is: O(1 + |C(v)|)

e Overall time complexity, up to multiplicative constants:

Y (1+Cw))=n+ > [C)|=n+(n-1)=0(n)



A possible implementation with DFS

struct Node

{
int weight;
std: :vector<Node*> children;
s
std: :pair<int,int> dfs(Node* v)
{
int opt_plus = v->weight;
int opt_minus = O;
for(Node *u : v->children)
{
std: :pair<int,int> opt_u = dfs(u);
opt_plus += opt_u.second;
opt_minus += std::max(opt_u.first, opt_u.second);
}
return std::make_pair(opt_plus, opt_minus);
}

Node* root = load_tree(); //Read T. Return a pointer to its root.
std: :pair<int,int> opt = dfs(root);
std::cout << std::max(opt.first, opt.second) << "\n";



A Nasty Instance
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~ 10°% nodes



A Nasty Instance

What happens if the previous code is run on this tree?

~ 10°% nodes

\
\
\

$ ./max weight is < nasty_instance.in
$ Segmentation fault



A Nasty Instance
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~ 10°% nodes
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$ Segmentation fault '



A Nasty Instance

What happens if the previous code is run on this tree?

Solutions

e Non recursive DFS

~ 10° nodes | e Different order
(use BFS to construct levels)

e Explicitly manage DFS stack

\
\
\

$ ./max weight is < nasty_instance.in
$ Segmentation fault



Max-Weight Independent Set on Trees
+ Budget Constraints
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Input: A tree T with integer weights on its vertices, a budget
B e N.

Output: The maximum weight of an independent set S of T’
such that |S| < B.
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Budgeted Max-Weight IS on Trees

Input: A tree T with integer weights on its vertices, a budget
B e N.

Output: The maximum weight of an independent set S of T’
such that |S| < B.

O B
(2) @ (©






Budgeted Max-Weight IS on Trees

Subproblem definition:

OPT"[v,b] = Maximum Weight of an IS of T, that
contains v and has size at most b.

OPT~|v,b] = Maximum Weight of an IS of T, that does
not contain v and has size at most b.

Base cases: v is a leaf of T'.

/

OPT v, b] = «

\

OPT~[v,b] = 0

w(v)

— OO

ito>1

fO=0 a—

Constrains can't be
satisfied!




Max-Weight IS on Trees w. Budget

Recursive Formula:

e Let's consider OPT v, b].
e If b =0, then OPT*[v,b] = —oc.

o If b > 0, we need to “distribute” b — 1 units of budget
among C'(v) = {uy,ug,...,ux}

e We want to choose b1, b9, ...,br € N such that
b1 + ---+ b < b—1 and they maximize:

OPT_[ul, bl] -+ OPT_[UQ, bg] + -+ OPT_[uk, bk]



Max-Weight IS on Trees w. Budget

Recursive Formula (First Attempt):

e "“Guess” the correct combination of by, bs, ..., bg:
OPT [v.bl = w max OPT™ |u;
v, 9) (v) + b1,b2,....bk EN Z 2L

bi+---+bp<b—1 =1
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Max-Weight IS on Trees w. Budget

Recursive Formula (First Attempt):

e "“Guess” the correct combination of by, bs, ..., bg:
OPT [v.bl = w max OPT™ |u;
[ 7 ] ( ) bl b27 7bk€N Z Z,

bi+---+bp<b—1 =1

Will this work? Yes!

How long will this take?
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Stars and Bars!

e How many possible choices of b1,bs,...,br € N such
that by + -+ b, = x7

e How many different ways to arrange x stars and k£ — 1
bars?

** | *xk | | Axk%k
N~ N — N\~ . - /
b1=2 ba=3 bz=0 by=4

= () =2



Stars and Bars!

e How many possible choices of b1,bs,...,br € N such
that by + -+ b, = x7

Too slow!




Recursive Formula: Second Attempt

Let's consider a more abstract problem.

o Input: f1,...,fr :N—Rand B € N.

e Output: z;,...,2; € N such that > . z; < B and
>, fi(x;) is maximized.

(Assume that each f; can be evaluated in constant time).
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Recursive Formula: Second Attempt

Let's consider a more abstract problem.

o Input: f1,...,fr :N—Rand B € N.

e Output: z;,...,2; € N such that > . z; < B and
>, fi(x;) is maximized.

(Assume that each f; can be evaluated in constant time).

How do we solve this problem?

Dynamic Programming]!



Distributing Budget Optimally

Subproblem Idea

D|j,b] = Best way to distribute b units of budget among the
first 5 functions.

More Formally:

Base Case: If j =1, explictly check the b+ 1 possible
choices.

DI1,b] = max{ f1(0), f1(1), f1(2),..., f1(b)}



Distributing Budget Optimally

Recursive Formula

“Guess” how much budget b" will be assigned to f;.

Dl b= max {D[j—1,b— b1+ f;(0)}

At most O(B) choices.

Time Complexity: k(B+1)-O(B)=0(kB?)

(Value of the) Optimal Solution: Dk, B]



Back to the Original Problem

Input: A tree T with integer weights on its vertices, a budget
B e N.

Output: The maximum weight of an independent set S of T’
such that |S| < B.

O B
(2) @ (©



Max-Weight IS on Trees w. Budget

Base cases: v is a leaf of T'.

/

w(v) ifb>1
|~ if b =20
OPT~|[v,b] =0

OPT*[v,b] = 4

Recursive formula for OPT " [v, b]

o Let C(v) ={uy,...,ur}.

o Compute D|k,b— 1] for fi(x) = OPT ™ [u;, ).

OPT"[v,b] = w(v) + D[k, b — 1]



Max-Weight IS on Trees w. Budget

Base cases: v is a leaf of T'.

/

w(v) ifb>1
|~ if b =20
OPT~|[v,b] =0

OPT*[v,b] = 4

Nested DP!

Recursive formula for OPT " [v, b]

o Let C(v) ={uy,...,ur}.

o Compute D|k,b— 1] for fi(x) = OPT ™ [u;, ).

OPT"[v,b] = w(v) + D[k, b — 1]



Max-Weight IS on Trees w. Budget

Base cases: v is a leaf of T'.

/

ifb>1
OPT+, b = {00 1T0=
|~ it b=0
OPT~|[v,b] =0
Recursive formula for OPT " |v, b] Nested DP!

o Let C(v) ={uq,...,ur}.

e Compute D|k,b] for
fi(x) = max{OPT " [u;, x], OPT " [u;, x|}

OPT~[v,b] = DIk, b




Edit Distance




Edit Distance

mars
“Next NASA mission is going to land on toest”

Autocorrect / Spell checking
Unix diff

Bioinformatics (DNA alignment)
Plagiarism detection

Speech recognition




Edit Distance

Input: Two strings S = s182...8,, and T = t1ty...1,,.

Output: The edit distance between S and T

Definition: The edit distance between S and 1’ is the
minimum number of edits required to turn S into 1', where an
edit is one of:

e Insertion: Inserting a new character at some position of S.
MARS — MARKS

e Deletion: Removing one of the characters in §.
MARS — MAS

e Substitution: Replacing one character of S with another.

MARS — CARS



A Dynamic Programming Algorithm

Subproblem definition. For 0 <:<nand 0 <j <m:

OPT]Ji, j] = Edit distance between S(9) = s;,....s; and
TU) =ty,...,t;.

Note: SO = T = ¢, where ¢ is the empty string.

Base case:

OPT|0,0] = Minum number of operations needed to
transform SO = ¢ into T(0) = ¢.

OPTI[0,0] = 0



A Dynamic Programming Algorithm

Recursive formula

If 2,5 > 0:
1+ OPT[i —1,7] (deletion)
OPT|i,j] =min < 1+ OPT[i,j — 1] (insertion)
Lisi2e5) + OPT|i—1,5 —1] (substitution)
lf :=0o0r 3 =0:
1+ OPT[0,j —1] ifi=0
OPT|i, j| = < [,7] | I Z. = max{i, j |
1+OPT[i—1,0] ifj=0
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Example

MARS — TOAST

i\J

Time: O(nm)

Edit distance: 4



A Possible Implementation

int edit_distance(std::string &s, std::string &t)
{

std: :array<std::array<int, t.size()+1>, s.size()+1> OPT;

for(int i=0; i<=s.size(); i++) OPT[i] [0]
for(int j=1; j<=t.size(); j++) OPT[O] [j]

i;

Js

for(int i=1; i<=s.size(); i++)
for(int j=1; j<=t.size(); j++)
OPT[i] [j] = std::min({OPT[i-1][jl+1, OPT[i] [j-1]+1,
OPT[i-1][j-1]1 + ((s[il==t[jl)70:1)1});

return OPT[s.size()] [t.size()];



Reconstructing Solutions

e Option 1: Retrace optimal choices backwards.
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Reconstructing Solutions

e Option 1: Retrace optimal choices backwards.

s | TIO|A|S|T
elo 1213|145
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Reconstructing Solutions

e Option 1: Retrace optimal choices backwards.

s | TIO|A|S|T
elo 1|2 |3]|4]|5
M 1\14—2 31415
Al 2] 2 2\2 3| 4
R|1 3|33 +3 3| 4
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Reconstructing Solutions

e Option 1: Retrace optimal choices backwards.

s | TIO|A|S|T
elo 1|2 |3]|4]|5
M 1\14—2 31415
Al 2] 2 2\2 3| 4
R|1 3|33 +3 3| 4
S| 4|44 4\3T4

int i=s.size(), j=t.size();
while(i!=0 [| j!=0)
{
//Do something
if (i>0 && OPT[i][j]1==0PT[i-1]1[jl+1) i--; //Deletion
else if(j>0 && OPT[i] [j1==0PT[i] [j-1]+1) j--; //Insertion
else { i--; j--; } //Substitution



Reconstructing Solutions

e Option 1: Retrace optimal choices backwards.

s | TIO|A|S|T
elo 12|13 ]14]|5
M 1\1—’2 31415
Al 2] 2 2\2 3| 4
R|1 3|33 *3 3| 4
S| 4|44 4\3T4




Reconstructing Solutions

e Option 1: Retrace optimal choices backwards.

e | TIOJA|S|T

el o | 1123 ]|4]5
KT

M| 1 [ 123|415

Al 21| 2 2\2 3| 4

R 313|333 ]| 4

S|4 |41 4 4\3 4

e Change Mto T

o Insert O
e (Leave A unchanged)

o Delete R
e (Leave S unchanged)

o Insert T

TO
TOA
TOA
TOAS
TOAST



Reconstructing Solutions

e Option 2: Esplicitly store (any of) the optimal choice(s)
for each subproblem while filling the table.

0
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Reconstructing Solutions

e Option 2: Esplicitly store (any of) the optimal choice(s)
for each subproblem while filling the table.

0 1 2 3 4 5

iNj|l e | T|O|A]| S| T

0| € 0 1 2 3 4 D
1l M| 1 121314 |5
2( A | 2 | 2 | 2 | 2| 3| 4
3l R | 3 | 3 | 3 *3 3 | 4
4(S | 4| 4| 4| 4| 394




