
More on Dynamic Programming

Drink as Much as Possible: A Variant

Robert still wants to drink as much a possible.

• Robert walks through the streets of King’s Landing and
encounters n taverns t1, t2, . . . , tn, in order

• Tavern ti has wi ∈ N liters of wine.

• If Robert drinks in tavern ti then he will be too
drunk to drink in tavern ti+1. He will be able
to drink again by the time he reaches ti+2

• Goal: Compute the maximum amount of
wine (in liters) Roberts can drink

• When Robert encounters a tavern ti, he can either stop for
a drink or continue walking.

Max-Weight Independent Set on Paths

1 1 22 134

Definition: An independent set (IS) of a graph G = (V,E)
is a set I ⊆ V such that ∀(u, v) ∈ E, u ̸∈ I or v ̸∈ I .

t1 t2 t3 . . . tn

Max-Weight Independent Set on Paths

1 1 22 134

Definition: An independent set (IS) of a graph G = (V,E)
is a set I ⊆ V such that ∀(u, v) ∈ E, u ̸∈ I or v ̸∈ I .

t1 t2 t3 . . . tn

Max-Weight Independent Set on Paths

1 1 22 134

Linear-Time Dynamic Programming Algorithm

Definition: An independent set (IS) of a graph G = (V,E)
is a set I ⊆ V such that ∀(u, v) ∈ E, u ̸∈ I or v ̸∈ I .

t1 t2 t3 . . . tn

Max-Weight Independent Set on Paths

1 1 22 134

Linear-Time Dynamic Programming Algorithm

Definition: An independent set (IS) of a graph G = (V,E)
is a set I ⊆ V such that ∀(u, v) ∈ E, u ̸∈ I or v ̸∈ I .

OPT [i] = Maximum-weight IS w.r.t. the subpath t1, . . . , ti

OPT [0] = 0

OPT [i] = max{wi+OPT [i−2], OPT [i−1]}

OPT [1] = w1

t1 t2 t3 . . . tn

Sketch of the algorithm:

Max-Weight Independent Set on Trees

Max-Weight Independent Set on Trees

2

2 1 3

3

3

4

5

2

5

22

1

1

3

T

Problem: Given a tree T with integer weights on its
vertices, compute the weight of a Max-Weight IS of T .

Max-Weight Independent Set on Trees

2

2 1 3

3

3

4

5

2

5

22

1

1

3

T

Problem: Given a tree T with integer weights on its
vertices, compute the weight of a Max-Weight IS of T .

Max-Weight Independent Set on Trees

Subproblems:

• OPT+[v] = Weight of a maximum-weight IS of Tv with
the constraint that v must belong to the IS.

• OPT−[v] = Weight of a maximum-weight IS of Tv with
the constraint that v must not belong to the IS.

• OPT [v] = max{OPT+[v], OPT−[v]}.

Given v ∈ V (T), let Tv be the subtree of T rooted at v, and let
w(v) be the weight of v.

Max-Weight Independent Set on Trees

Subproblems:

• OPT+[v] = Weight of a maximum-weight IS of Tv with
the constraint that v must belong to the IS.

• OPT−[v] = Weight of a maximum-weight IS of Tv with
the constraint that v must not belong to the IS.

• OPT [v] = max{OPT+[v], OPT−[v]}.

Given v ∈ V (T), let Tv be the subtree of T rooted at v, and let
w(v) be the weight of v.

Base case: If v is a leaf in T , then:

• OPT+[v] = w(v), and
• OPT−[v] = 0

Recursive formula(s):

• OPT+[v] = w(v) +
X

u∈C(v)

OPT−[u].

• OPT−[v] =
X

u∈C(v)

OPT [u] =
X

u∈C(v)

max{OPT+[u], OPT−[u]}.

Let C(v) be set of the children of v in T .

Max-Weight Independent Set on Trees

Recursive formula(s):

• OPT+[v] = w(v) +
X

u∈C(v)

OPT−[u].

• OPT−[v] =
X

u∈C(v)

OPT [u] =
X

u∈C(v)

max{OPT+[u], OPT−[u]}.

Let C(v) be set of the children of v in T .

Optimal solution:

Max-Weight Independent Set on Trees

• OPT [r] = max{OPT+[r], OPT−[r]}, where r is the root
of T

Recursive formula(s):

• OPT+[v] = w(v) +
X

u∈C(v)

OPT−[u].

• OPT−[v] =
X

u∈C(v)

OPT [u] =
X

u∈C(v)

max{OPT+[u], OPT−[u]}.

Let C(v) be set of the children of v in T .

Optimal solution:

Max-Weight Independent Set on Trees

Order of subproblems: ?

• OPT [r] = max{OPT+[r], OPT−[r]}, where r is the root
of T

2

T

Order of Subproblems

5

2

4 1 3

2 1 3

2
32

3

1 5

2

T

Order of Subproblems

5

2

4 1 3

2 1 3

2
32

3

1 5

2

T

Order of Subproblems

5

2

4 1 3

2 1 3

2
32

3

1 5

2

T

Order of Subproblems

5

2

4 1 3

2 1 3

2
32

3

1 5

2

T

Order of Subproblems

5

2

4 1 3

2 1 3

2
32

3

1 5

2

T

Order of Subproblems

5

2

4 1 3

2 1 3

2
32

3

1 5

In order of decreasing depth in T

2

T

Order of Subproblems

5

2

4 1 3

2 1 3

2
32

3

1 5

2

T

Order of Subproblems

5

2

4 1 3

2 1 3

2
32

3

1 5

2

T

Order of Subproblems

5

2

4 1 3

2 1 3

2
32

3

1 5

2

T

Order of Subproblems

5

2

4 1 3

2 1 3

2
32

3

1 5

2

T

Order of Subproblems

In order of increasing subtree heights

5

2

4 1 3

2 1 3

2
32

3

1 5

2

T

Order of Subproblems

5

2

4 1 3

2 1 3

2
32

3

1 5

2

T

Order of Subproblems

5

2

4 1 3

2 1 3

2
32

3

1 5

2

T

Order of Subproblems

5

2

4 1 3

2 1 3

2
32

3

1 5

2

T

Order of Subproblems

5

2

4 1 3

2 1 3

2
32

3

1 5

2

T

Order of Subproblems

5

2

4 1 3

2 1 3

2
32

3

1 5

2

T

Order of Subproblems

5

2

4 1 3

2 1 3

2
32

3

1 5

2

T

Order of Subproblems

5

2

4 1 3

2 1 3

2
32

3

1 5

2

T

Order of Subproblems

5

2

4 1 3

2 1 3

2
32

3

1 5

2

T

Order of Subproblems

5

2

4 1 3

2 1 3

2
32

3

1 5

2

T

Order of Subproblems

5

2

4 1 3

2 1 3

2
32

3

1 5

2

T

Order of Subproblems

5

2

4 1 3

2 1 3

2
32

3

1 5

2

T

Order of Subproblems

5

2

4 1 3

2 1 3

2
32

3

1 5

2

T

Order of Subproblems

5

2

4 1 3

2 1 3

2
32

3

1 5

2

T

Order of Subproblems

5

2

4 1 3

2 1 3

2
32

3

1 5

In DFS postoder

Time Complexity

• Suppose we can find a suitable order in O(n) time.

• The time spent on vertex v is: O(1 + |C(v)|)

• Overall time complexity, up to multiplicative constants:

X

v∈V (T)

(1 + |C(v)|) = n+
X

v∈V (T)

|C(v)| = n+ (n− 1) = O(n)

A possible implementation with DFS
struct Node
{

int weight;
std::vector<Node*> children;

};

std::pair<int,int> dfs(Node* v)
{

int opt_plus = v->weight;
int opt_minus = 0;
for(Node *u : v->children)
{

std::pair<int,int> opt_u = dfs(u);
opt_plus += opt_u.second;
opt_minus += std::max(opt_u.first, opt_u.second);

}

return std::make_pair(opt_plus, opt_minus);
}

Node* root = load_tree(); //Read T. Return a pointer to its root.
std::pair<int,int> opt = dfs(root);
std::cout << std::max(opt.first, opt.second) << "\n";

A Nasty Instance

What happens if the previous code is run on this tree?

≈ 106 nodes

A Nasty Instance

What happens if the previous code is run on this tree?

≈ 106 nodes

$./max weight is < nasty instance.in

$ Segmentation fault

A Nasty Instance

What happens if the previous code is run on this tree?

≈ 106 nodes

$./max weight is < nasty instance.in

$ Segmentation fault
Why?

A Nasty Instance

What happens if the previous code is run on this tree?

$./max weight is < nasty instance.in

$ Segmentation fault

≈ 106 nodes

Solutions

• Non recursive DFS

• Different order
(use BFS to construct levels)

• Explicitly manage DFS stack

Max-Weight Independent Set on Trees

+ Budget Constraints

Input: A tree T with integer weights on its vertices, a budget
B ∈ N.

Output: The maximum weight of an independent set S of T
such that |S| ≤ B.

2

2

B = 1
6

0 1

4 4

32

Budgeted Max-Weight IS on Trees

Input: A tree T with integer weights on its vertices, a budget
B ∈ N.

Output: The maximum weight of an independent set S of T
such that |S| ≤ B.

2

2

B = 2
6

0 1

4 4

32

Budgeted Max-Weight IS on Trees

Input: A tree T with integer weights on its vertices, a budget
B ∈ N.

Output: The maximum weight of an independent set S of T
such that |S| ≤ B.

2

2

B = 3
6

0 1

4 4

32

Budgeted Max-Weight IS on Trees

Input: A tree T with integer weights on its vertices, a budget
B ∈ N.

Output: The maximum weight of an independent set S of T
such that |S| ≤ B.

2

2

6

0

B = 4

1

4 4

32

Budgeted Max-Weight IS on Trees

Input: A tree T with integer weights on its vertices, a budget
B ∈ N.

Output: The maximum weight of an independent set S of T
such that |S| ≤ B.

2

2

6

0 1

B = 5

4 4

32

Budgeted Max-Weight IS on Trees

Input: A tree T with integer weights on its vertices, a budget
B ∈ N.

Output: The maximum weight of an independent set S of T
such that |S| ≤ B.

2

2

6

0 1

B = 5

4 4

32

Budgeted Max-Weight IS on TreesBudgeted Max-Weight IS on Trees

Budgeted Max-Weight IS on Trees

Subproblem definition:

OPT+[v, b] = Maximum Weight of an IS of Tv that
contains v and has size at most b.

Base cases: v is a leaf of T .

OPT+[v, b] =

(
w(v) if b ≥ 1

−∞ if b = 0

OPT−[v, b] = Maximum Weight of an IS of Tv that does
not contain v and has size at most b.

OPT−[v, b] = 0

Constrains can’t be
satisfied!

Max-Weight IS on Trees w. Budget

Recursive Formula:

• Let’s consider OPT+[v, b].

• If b = 0, then OPT+[v, b] = −∞.

• If b > 0, we need to “distribute” b− 1 units of budget
among C(v) = {u1, u2, . . . , uk}

• We want to choose b1, b2, . . . , bk ∈ N such that
b1 + · · ·+ bk ≤ b− 1 and they maximize:

OPT−[u1, b1] +OPT−[u2, b2] + · · ·+OPT−[uk, bk]

Max-Weight IS on Trees w. Budget

Recursive Formula (First Attempt):

• “Guess” the correct combination of b1, b2, . . . , bk:

OPT+[v, b] = w(v) + max
b1,b2,...,bk∈N

b1+···+bk≤b−1

kX

i=1

OPT−[ui, bi]

Max-Weight IS on Trees w. Budget

Recursive Formula (First Attempt):

• “Guess” the correct combination of b1, b2, . . . , bk:

OPT+[v, b] = w(v) + max
b1,b2,...,bk∈N

b1+···+bk≤b−1

kX

i=1

OPT−[ui, bi]

Will this work?

Max-Weight IS on Trees w. Budget

Recursive Formula (First Attempt):

• “Guess” the correct combination of b1, b2, . . . , bk:

OPT+[v, b] = w(v) + max
b1,b2,...,bk∈N

b1+···+bk≤b−1

kX

i=1

OPT−[ui, bi]

Will this work? Yes!

Max-Weight IS on Trees w. Budget

Recursive Formula (First Attempt):

• “Guess” the correct combination of b1, b2, . . . , bk:

OPT+[v, b] = w(v) + max
b1,b2,...,bk∈N

b1+···+bk≤b−1

kX

i=1

OPT−[ui, bi]

Will this work? Yes!

How long will this take?

Stars and Bars!

• How many possible choices of b1, b2, . . . , bk ∈ N such
that b1 + · · ·+ bk = x?

Stars and Bars!

• How many possible choices of b1, b2, . . . , bk ∈ N such
that b1 + · · ·+ bk = x?

• How many different ways to arrange x stars and k − 1
bars?

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆ ⋆

Stars and Bars!

• How many possible choices of b1, b2, . . . , bk ∈ N such
that b1 + · · ·+ bk = x?

• How many different ways to arrange x stars and k − 1
bars?

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆ ⋆
|{z}
b1=2

| {z }
b2=3

|{z}
b3=0

| {z }
b4=4

Stars and Bars!

• How many possible choices of b1, b2, . . . , bk ∈ N such
that b1 + · · ·+ bk = x?

• How many different ways to arrange x stars and k − 1
bars?

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆ ⋆
|{z}
b1=2

| {z }
b2=3

|{z}
b3=0

| {z }
b4=4

(x+ k − 1)!

x!(k − 1)!
=

�
x+ k − 1

k − 1

�
= Ω

��x
k

�k
�

Stars and Bars!

• How many possible choices of b1, b2, . . . , bk ∈ N such
that b1 + · · ·+ bk = x?

• How many different ways to arrange x stars and k − 1
bars?

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆ ⋆
|{z}
b1=2

| {z }
b2=3

|{z}
b3=0

| {z }
b4=4

(x+ k − 1)!

x!(k − 1)!
=

�
x+ k − 1

k − 1

�
= Ω

��x
k

�k
�

Too slow!

Recursive Formula: Second Attempt

Let’s consider a more abstract problem.

• Input: f1, . . . , fk : N → R and B ∈ N.

• Output: x1, . . . , xk ∈ N such that
P

i xi ≤ B andP
i fi(xi) is maximized.

(Assume that each fi can be evaluated in constant time).

Recursive Formula: Second Attempt

Let’s consider a more abstract problem.

• Input: f1, . . . , fk : N → R and B ∈ N.

• Output: x1, . . . , xk ∈ N such that
P

i xi ≤ B andP
i fi(xi) is maximized.

How do we solve this problem?

(Assume that each fi can be evaluated in constant time).

Recursive Formula: Second Attempt

Let’s consider a more abstract problem.

• Input: f1, . . . , fk : N → R and B ∈ N.

• Output: x1, . . . , xk ∈ N such that
P

i xi ≤ B andP
i fi(xi) is maximized.

How do we solve this problem?

Dynamic Programming!

(Assume that each fi can be evaluated in constant time).

Distributing Budget Optimally

Subproblem Idea

D[j, b] = Best way to distribute b units of budget among the
first j functions.

More Formally:

D[j, b] = max
x1,...,xj∈N
x1+···+xj≤b

jX

i=1

fi(xi)

Base Case: If j = 1, explictly check the b+ 1 possible
choices.

D[1, b] = max{f1(0), f1(1), f1(2), . . . , f1(b)}

Distributing Budget Optimally

Recursive Formula

D[j, b] = max
b′∈{0,...,b}

{D[j − 1, b− b′] + fj(b
′)}

“Guess” how much budget b′ will be assigned to fj .

At most O(B) choices.

Time Complexity: k(B + 1) ·O(B) = O(kB2)

(Value of the) Optimal Solution: D[k,B]

Input: A tree T with integer weights on its vertices, a budget
B ∈ N.

Output: The maximum weight of an independent set S of T
such that |S| ≤ B.

2

2

6

0 1

B = 5

4 4

32

Back to the Original Problem

Max-Weight IS on Trees w. Budget

Base cases: v is a leaf of T .

OPT+[v, b] =

(
w(v) if b ≥ 1

−∞ if b = 0

OPT−[v, b] = 0

Recursive formula for OPT+[v, b]

• Let C(v) = {u1, . . . , uk}.

• Compute D[k, b− 1] for fi(x) = OPT−[ui, x].

OPT+[v, b] = w(v) +D[k, b− 1]

Max-Weight IS on Trees w. Budget

Base cases: v is a leaf of T .

OPT+[v, b] =

(
w(v) if b ≥ 1

−∞ if b = 0

OPT−[v, b] = 0

Recursive formula for OPT+[v, b]

• Let C(v) = {u1, . . . , uk}.

• Compute D[k, b− 1] for fi(x) = OPT−[ui, x].

OPT+[v, b] = w(v) +D[k, b− 1]

Nested DP!

Max-Weight IS on Trees w. Budget

Base cases: v is a leaf of T .

OPT+[v, b] =

(
w(v) if b ≥ 1

−∞ if b = 0

OPT−[v, b] = 0

Recursive formula for OPT−[v, b]

• Let C(v) = {u1, . . . , uk}.

• Compute D[k, b] for

fi(x) = max{OPT−[ui, x], OPT+[ui, x]}.

Nested DP!

OPT−[v, b] = D[k, b]

Edit Distance

Edit Distance

• Autocorrect / Spell checking

• Unix diff

• Bioinformatics (DNA alignment)

• Plagiarism detection

• Speech recognition

• ...

“Next NASA mission is going to land on toast”
mars

Edit Distance

Input: Two strings S = s1s2 . . . sn, and T = t1t2 . . . tm.

Output: The edit distance between S and T .

Definition: The edit distance between S and T is the
minimum number of edits required to turn S into T , where an
edit is one of:

• Insertion: Inserting a new character at some position of S.

• Deletion: Removing one of the characters in S.

• Substitution: Replacing one character of S with another.

MARS → MARKS

MARS → MAS

MARS → CARS

A Dynamic Programming Algorithm

Subproblem definition. For 0 ≤ i ≤ n and 0 ≤ j ≤ m:

OPT [i, j] = Edit distance between S(i) = s1, . . . , si and
T (j) = t1, . . . , tj .

Note: S(0) = T (0) = ε, where ε is the empty string.

Base case:

OPT [0, 0] = Minum number of operations needed to
transform S(0) = ε into T (0) = ε.

OPT [0, 0] = 0

A Dynamic Programming Algorithm

Recursive formula

OPT [i, j] = min





1 +OPT [i− 1, j]

1 +OPT [i, j − 1]

1(si ̸=tj) +OPT [i− 1, j − 1]

If i, j > 0:

If i = 0 or j = 0:

OPT [i, j] =

(
1 +OPT [0, j − 1] if i = 0

1 +OPT [i− 1, 0] if j = 0
= max{i, j}

(deletion)

(insertion)

(substitution)

M

ε

A

R

S

ε T O A S T

MARS → TOAST

0 1 2 3 4 5

0

1

2

3

4

i\j
0

Example

M

ε

A

R

S

ε T O A S T

2

3

4

2 3 4 5

MARS → TOAST

0 1 2 3 4 5

0

1

2

3

4

i\j
10

1

Example

M

ε

A

R

S

ε T O A S T

2

3

4

2 3 4 5

MARS → TOAST

0 1 2 3 4 5

0

1

2

3

4

i\j
10

1

Example

M

ε

A

R

S

ε T O A S T

2

3

4

2 3 4 5

MARS → TOAST

0 1 2 3 4 5

0

1

2

3

4

i\j
10

1

Example

M

ε

A

R

S

ε T O A S T

2

3

4

2 3 4 5

MARS → TOAST

0 1 2 3 4 5

0

1

2

3

4

i\j
10

1 1

Example

M

ε

A

R

S

ε T O A S T

2

3

4

2 3 4 5

MARS → TOAST

0 1 2 3 4 5

0

1

2

3

4

i\j
10

1 1

Example

M

ε

A

R

S

ε T O A S T

2

3

4

2 3 4

2

5

MARS → TOAST

0 1 2 3 4 5

0

1

2

3

4

i\j
10

1 1

Example

M

ε

A

R

S

ε T O A S T

2

3

4

2 3 4

2 3

5

MARS → TOAST

0 1 2 3 4 5

0

1

2

3

4

i\j
10

1 1

Example

M

ε

A

R

S

ε T O A S T

2

3

4

2 3 4

2 3

5

2

MARS → TOAST

0 1 2 3 4 5

0

1

2

3

4

i\j
10

1 1

Example

M

ε

A

R

S

ε T O A S T

2

3

4

2 3 4

2 3

5

2 2

MARS → TOAST

0 1 2 3 4 5

0

1

2

3

4

i\j
10

1 1

Example

M

ε

A

R

S

ε T O A S T

2

3

4

2 3 4

2 3

2

5

2 2

MARS → TOAST

0 1 2 3 4 5

0

1

2

3

4

i\j
10

1 1

Example

M

ε

A

R

S

ε T O A S T

2

3

4

2 3 4

2 3

2

5

2 2

MARS → TOAST

0 1 2 3 4 5

0

1

2

3

4

i\j
10

1 1

Example

M

ε

A

R

S

ε T O A S T

2

3

4

2 3 4

1 2 3 4

2 3 4

3 3 3 3 4

4 4 4 3

5

5

2 2

MARS → TOAST

0 1 2 3 4 5

0

1

2

3

4

i\j
10

1 1

4

Example

M

ε

A

R

S

ε T O A S T

2

3

4

2 3 4

1 2 3 4

2 3 4

3 3 3 3 4

4 4 4 3

5

5

2 2

MARS → TOAST

0 1 2 3 4 5

0

1

2

3

4

i\j
10

1 1

Edit distance: 4

4

Example

M

ε

A

R

S

ε T O A S T

2

3

4

2 3 4

1 2 3 4

2 3 4

3 3 3 3 4

4 4 4 3

5

5

2 2

MARS → TOAST

0 1 2 3 4 5

0

1

2

3

4

i\j
10

1 1

Edit distance: 4

4

Time: ?

Example

M

ε

A

R

S

ε T O A S T

2

3

4

2 3 4

1 2 3 4

2 3 4

3 3 3 3 4

4 4 4 3

5

5

2 2

MARS → TOAST

0 1 2 3 4 5

0

1

2

3

4

i\j
10

1 1

Edit distance: 4

4

Time: O(nm)

Example

A Possible Implementation

int edit_distance(std::string &s, std::string &t)

{

std::array<std::array<int, t.size()+1>, s.size()+1> OPT;

for(int i=0; i<=s.size(); i++) OPT[i][0] = i;

for(int j=1; j<=t.size(); j++) OPT[0][j] = j;

for(int i=1; i<=s.size(); i++)

for(int j=1; j<=t.size(); j++)

OPT[i][j] = std::min({OPT[i-1][j]+1, OPT[i][j-1]+1,

OPT[i-1][j-1] + ((s[i]==t[j])?0:1)});

return OPT[s.size()][t.size()];

}

Reconstructing Solutions
• Option 1: Retrace optimal choices backwards.

M

ε

A

R

S

ε T O A S T

1

2

3

4

2 3 4

3 4

3 4

3 3 3 4

4 4 4

5

5

2 2

43

3

2

2

1

1

0

Reconstructing Solutions
• Option 1: Retrace optimal choices backwards.

M

ε

A

R

S

ε T O A S T

1

2

3

4

2 3 4

3 4

3 4

3 3 3 4

4 4 4

5

5

2 2

43

3

2

2

1

1

0

Reconstructing Solutions
• Option 1: Retrace optimal choices backwards.

M

ε

A

R

S

ε T O A S T

1

2

3

4

2 3 4

3 4

3 4

3 3 3 4

4 4 4

5

5

2 2

43

3

2

2

1

1

0

Reconstructing Solutions
• Option 1: Retrace optimal choices backwards.

M

ε

A

R

S

ε T O A S T

1

2

3

4

2 3 4

3 4

3 4

3 3 3 4

4 4 4

5

5

2 2

43

3

2

2

1

1

0

Reconstructing Solutions
• Option 1: Retrace optimal choices backwards.

M

ε

A

R

S

ε T O A S T

1

2

3

4

2 3 4

3 4

3 4

3 3 3 4

4 4 4

5

5

2 2

43

3

2

2

1

1

0

Reconstructing Solutions
• Option 1: Retrace optimal choices backwards.

M

ε

A

R

S

ε T O A S T

1

2

3

4

2 3 4

3 4

3 4

3 3 3 4

4 4 4

5

5

2 2

43

3

2

2

1

1

0

Reconstructing Solutions
• Option 1: Retrace optimal choices backwards.

M

ε

A

R

S

ε T O A S T

1

2

3

4

2 3 4

3 4

3 4

3 3 3 4

4 4 4

5

5

2 2

43

3

2

2

1

1

0

Reconstructing Solutions
• Option 1: Retrace optimal choices backwards.

M

ε

A

R

S

ε T O A S T

1

2

3

4

2 3 4

3 4

3 4

3 3 3 4

4 4 4

5

5

2 2

43

3

2

2

1

1

0

int i=s.size(), j=t.size();

while(i!=0 || j!=0)

{

//Do something

if(i>0 && OPT[i][j]==OPT[i-1][j]+1) i--; //Deletion

else if(j>0 && OPT[i][j]==OPT[i][j-1]+1) j--; //Insertion

else { i--; j--; } //Substitution

}

M

ε

A

R

S

ε T O A S T

0 1

1

2

3

4

2 3 4

1 2 3 4

2 3 4

3 3 3 3 4

4 4 4 3 4

5

5

2 2

Reconstructing Solutions
• Option 1: Retrace optimal choices backwards.

• Change M to T

• Insert O
• (Leave A unchanged)

• Delete R
• (Leave S unchanged)

• Insert T

TARS
TOARS
TOARS
TOAS
TOAS
TOAST

MARS

M

ε

A

R

S

ε T O A S T

0 1

1

2

3

4

2 3 4

1 2 3 4

2 3 4

3 3 3 3 4

4 4 4 3 4

5

5

2 2

Reconstructing Solutions
• Option 1: Retrace optimal choices backwards.

M

ε

A

R

S

ε T O A S T

0 1

1

2

3

4

2 3 4

1 2 3 4

2 3 4

3 3 3 3 4

4 4 4 3 4

5

5

2 2

0 1 2 3 4 5

0

1

2

3

4

i\j

Reconstructing Solutions

• Option 2: Esplicitly store (any of) the optimal choice(s)
for each subproblem while filling the table.

M

ε

A

R

S

ε T O A S T

0 1

1

2

3

4

2 3 4

1 2 3 4

2 3 4

3 3 3 3 4

4 4 4 3 4

5

5

2 2

0 1 2 3 4 5

0

1

2

3

4

i\j

Reconstructing Solutions

• Option 2: Esplicitly store (any of) the optimal choice(s)
for each subproblem while filling the table.

