More on Dynamic Programming

Drink as Much as Possible: A Variant

Robert still wants to drink as much a possible.

- Robert walks through the streets of King's Landing and encounters n taverns t_1, t_2, \ldots, t_n , in order
- When Robert encounters a tavern t_i , he can either stop for a drink or continue walking.
- Tavern t_i has $w_i \in \mathbb{N}$ liters of wine.
- If Robert drinks in tavern t_i then he will be too drunk to drink in tavern t_{i+1} . He will be able to drink again by the time he reaches t_{i+2}
- **Goal:** Compute the maximum amount of wine (in liters) Roberts can drink

Definition: An *independent set* (IS) of a graph G = (V, E) is a set $\mathcal{I} \subseteq V$ such that $\forall (u, v) \in E$, $u \notin \mathcal{I}$ or $v \notin \mathcal{I}$.

Definition: An *independent set* (IS) of a graph G = (V, E) is a set $\mathcal{I} \subseteq V$ such that $\forall (u, v) \in E$, $u \notin \mathcal{I}$ or $v \notin \mathcal{I}$.

Definition: An *independent set* (IS) of a graph G = (V, E) is a set $\mathcal{I} \subseteq V$ such that $\forall (u, v) \in E$, $u \notin \mathcal{I}$ or $v \notin \mathcal{I}$.

Linear-Time Dynamic Programming Algorithm

Definition: An *independent set* (IS) of a graph G = (V, E) is a set $\mathcal{I} \subseteq V$ such that $\forall (u, v) \in E$, $u \notin \mathcal{I}$ or $v \notin \mathcal{I}$.

Linear-Time Dynamic Programming Algorithm

Sketch of the algorithm:

 $OPT[i] = Maximum-weight IS w.r.t. the subpath <math>t_1, \ldots, t_i$

 $OPT[0] = 0 \qquad OPT[1] = w_1$

 $OPT[i] = \max\{w_i + OPT[i-2], OPT[i-1]\}$

Problem: Given a tree T with integer weights on its vertices, compute the weight of a Max-Weight IS of T.

Problem: Given a tree T with integer weights on its vertices, compute the weight of a Max-Weight IS of T.

Given $v \in V(T)$, let T_v be the subtree of T rooted at v, and let w(v) be the *weight* of v.

Subproblems:

• $OPT^+[v] =$ Weight of a maximum-weight IS of T_v with the constraint that v must belong to the IS.

• $OPT^{-}[v] =$ Weight of a maximum-weight IS of T_v with the constraint that v must *not* belong to the IS.

• $OPT[v] = \max\{OPT^+[v], OPT^-[v]\}.$

Given $v \in V(T)$, let T_v be the subtree of T rooted at v, and let w(v) be the *weight* of v.

Subproblems:

• $OPT^+[v] =$ Weight of a maximum-weight IS of T_v with the constraint that v must belong to the IS.

• $OPT^{-}[v] =$ Weight of a maximum-weight IS of T_v with the constraint that v must *not* belong to the IS.

•
$$OPT[v] = \max\{OPT^+[v], OPT^-[v]\}.$$

Base case: If v is a leaf in T, then:

- $OPT^+[v] = w(v)$, and
- $OPT^{-}[v] = 0$

Recursive formula(s):

Let C(v) be set of the children of v in T.

•
$$OPT^+[v] = w(v) + \sum_{u \in C(v)} OPT^-[u].$$

•
$$OPT^{-}[v] = \sum_{u \in C(v)} OPT[u] = \sum_{u \in C(v)} \max\{OPT^{+}[u], OPT^{-}[u]\}.$$

Recursive formula(s):

Let C(v) be set of the children of v in T.

•
$$OPT^+[v] = w(v) + \sum_{u \in C(v)} OPT^-[u].$$

•
$$OPT^{-}[v] = \sum_{u \in C(v)} OPT[u] = \sum_{u \in C(v)} \max\{OPT^{+}[u], OPT^{-}[u]\}.$$

Optimal solution:

• $OPT[r] = \max\{OPT^+[r], OPT^-[r]\}$, where r is the root of T

Recursive formula(s):

Let C(v) be set of the children of v in T.

•
$$OPT^+[v] = w(v) + \sum_{u \in C(v)} OPT^-[u].$$

•
$$OPT^{-}[v] = \sum_{u \in C(v)} OPT[u] = \sum_{u \in C(v)} \max\{OPT^{+}[u], OPT^{-}[u]\}.$$

Optimal solution:

• $OPT[r] = \max\{OPT^+[r], OPT^-[r]\}$, where r is the root of T

Order of subproblems: ?

In order of decreasing depth in T

In order of increasing subtree heights

Order of Subproblems

Order of Subproblems

Order of Subproblems

In DFS postoder

Time Complexity

- Suppose we can find a suitable order in O(n) time.
- The time spent on vertex v is: O(1 + |C(v)|)
- Overall time complexity, up to multiplicative constants:

$$\sum_{v \in V(T)} \left(1 + |C(v)| \right) = n + \sum_{v \in V(T)} |C(v)| = n + (n-1) = O(n)$$

A possible implementation with DFS

struct Node { int weight; std::vector<Node*> children; }; std::pair<int,int> dfs(Node* v) { int opt_plus = v->weight; int opt_minus = 0; for(Node *u : v->children) ſ std::pair<int,int> opt_u = dfs(u); opt_plus += opt_u.second; opt_minus += std::max(opt_u.first, opt_u.second); } return std::make_pair(opt_plus, opt_minus); Node* root = load_tree(); //Read T. Return a pointer to its root. std::pair<int,int> opt = dfs(root);

```
std::cout << std::max(opt.first, opt.second) << "\n";</pre>
```

What happens if the previous code is run on this tree?

What happens if the previous code is run on this tree?

- \$./max_weight_is < nasty_instance.in</pre>
- \$ Segmentation fault

What happens if the previous code is run on this tree?

Why?

- \$./max_weight_is < nasty_instance.in</pre>
- \$ Segmentation fault

What happens if the previous code is run on this tree?

Solutions

- Non recursive DFS
- Different order (use BFS to construct levels)
- Explicitly manage DFS stack

- \$./max_weight_is < nasty_instance.in</pre>
- \$ Segmentation fault

Max-Weight Independent Set on Trees + Budget Constraints

Input: A tree T with integer weights on its vertices, a *budget* $B \in \mathbb{N}$.

Input: A tree T with integer weights on its vertices, a *budget* $B \in \mathbb{N}$.

Input: A tree T with integer weights on its vertices, a *budget* $B \in \mathbb{N}$.

Input: A tree T with integer weights on its vertices, a *budget* $B \in \mathbb{N}$.

Input: A tree T with integer weights on its vertices, a *budget* $B \in \mathbb{N}$.

Input: A tree T with integer weights on its vertices, a *budget* $B \in \mathbb{N}$.

Subproblem definition:

 $OPT^+[v, b] = Maximum Weight of an IS of T_v that contains v and has size at most b.$

 $OPT^{-}[v, b] = Maximum Weight of an IS of T_v that does not contain v and has size at most b.$

Base cases: v is a leaf of T.

$$OPT^{+}[v, b] = \begin{cases} w(v) & \text{if } b \ge 1 \\ -\infty & \text{if } b = 0 \end{cases} \quad \blacktriangleleft \quad \begin{array}{c} \text{Constrains can't} \\ \text{satisfied!} \end{cases}$$
$$OPT^{-}[v, b] = 0$$

be

Recursive Formula:

- Let's consider $OPT^+[v, b]$.
- If b = 0, then $OPT^+[v, b] = -\infty$.
- If b > 0, we need to "distribute" b 1 units of budget among $C(v) = \{u_1, u_2, \dots, u_k\}$
- We want to choose $b_1, b_2, \ldots, b_k \in \mathbb{N}$ such that $b_1 + \cdots + b_k \leq b 1$ and they maximize:

 $OPT^{-}[u_1, b_1] + OPT^{-}[u_2, b_2] + \dots + OPT^{-}[u_k, b_k]$

Recursive Formula (First Attempt):

• "Guess" the correct combination of b_1, b_2, \ldots, b_k :

$$OPT^{+}[v,b] = w(v) + \max_{\substack{b_1, b_2, \dots, b_k \in \mathbb{N} \\ b_1 + \dots + b_k \le b - 1}} \sum_{i=1}^k OPT^{-}[u_i, b_i]$$

Recursive Formula (First Attempt):

• "Guess" the correct combination of b_1, b_2, \ldots, b_k :

$$OPT^{+}[v,b] = w(v) + \max_{\substack{b_1, b_2, \dots, b_k \in \mathbb{N} \\ b_1 + \dots + b_k \le b - 1}} \sum_{i=1}^k OPT^{-}[u_i, b_i]$$

Will this work?

Recursive Formula (First Attempt):

• "Guess" the correct combination of b_1, b_2, \ldots, b_k :

$$OPT^{+}[v,b] = w(v) + \max_{\substack{b_1, b_2, \dots, b_k \in \mathbb{N} \\ b_1 + \dots + b_k \le b - 1}} \sum_{i=1}^k OPT^{-}[u_i, b_i]$$

Will this work? Yes!

Recursive Formula (First Attempt):

• "Guess" the correct combination of b_1, b_2, \ldots, b_k :

$$OPT^{+}[v,b] = w(v) + \max_{\substack{b_1, b_2, \dots, b_k \in \mathbb{N} \\ b_1 + \dots + b_k \le b - 1}} \sum_{i=1}^k OPT^{-}[u_i, b_i]$$

Will this work? Yes!

How long will this take?

• How many possible choices of $b_1, b_2, \ldots, b_k \in \mathbb{N}$ such that $b_1 + \cdots + b_k = x$?

- How many possible choices of $b_1, b_2, \ldots, b_k \in \mathbb{N}$ such that $b_1 + \cdots + b_k = x$?
- How many different ways to arrange x stars and k 1 bars?

- How many possible choices of $b_1, b_2, \ldots, b_k \in \mathbb{N}$ such that $b_1 + \cdots + b_k = x$?
- How many different ways to arrange x stars and k 1 bars?

- How many possible choices of $b_1, b_2, \ldots, b_k \in \mathbb{N}$ such that $b_1 + \cdots + b_k = x$?
- How many different ways to arrange x stars and k 1 bars?

$$\underbrace{\begin{array}{c} \star \star \\ \underbrace{}_{b_1=2} \end{array}}_{b_1=2} \underbrace{\begin{array}{c} \star \star \star \\ \underbrace{}_{b_2=3} \end{array}}_{b_2=3} \underbrace{\begin{array}{c} \star \star \star \star \\ \underbrace{}_{b_3=0} \end{array}}_{b_3=0} \underbrace{\begin{array}{c} \star \star \star \star \\ \underbrace{}_{b_4=4} \end{array}}_{b_4=4}$$
$$\frac{(x+k-1)!}{x!(k-1)!} = \begin{pmatrix} x+k-1 \\ k-1 \end{pmatrix} = \Omega\left(\left(\frac{x}{k}\right)^k\right)$$

• How many possible choices of $b_1, b_2, \ldots, b_k \in \mathbb{N}$ such that $b_1 + \cdots + b_k = x$?

Recursive Formula: Second Attempt

Let's consider a more abstract problem.

- Input: $f_1, \ldots, f_k : \mathbb{N} \to \mathbb{R}$ and $B \in \mathbb{N}$.
- Output: $x_1, \ldots, x_k \in \mathbb{N}$ such that $\sum_i x_i \leq B$ and $\sum_i f_i(x_i)$ is maximized.

(Assume that each f_i can be evaluated in constant time).

Recursive Formula: Second Attempt

Let's consider a more abstract problem.

- Input: $f_1, \ldots, f_k : \mathbb{N} \to \mathbb{R}$ and $B \in \mathbb{N}$.
- Output: $x_1, \ldots, x_k \in \mathbb{N}$ such that $\sum_i x_i \leq B$ and $\sum_i f_i(x_i)$ is maximized.

(Assume that each f_i can be evaluated in constant time).

How do we solve this problem?

Recursive Formula: Second Attempt

Let's consider a more abstract problem.

- Input: $f_1, \ldots, f_k : \mathbb{N} \to \mathbb{R}$ and $B \in \mathbb{N}$.
- Output: $x_1, \ldots, x_k \in \mathbb{N}$ such that $\sum_i x_i \leq B$ and $\sum_i f_i(x_i)$ is maximized.

(Assume that each f_i can be evaluated in constant time).

How do we solve this problem? Dynamic Programming!

Distributing Budget Optimally

Subproblem Idea

D[j,b] = Best way to distribute b units of budget among the first j functions.

More Formally:

$$D[j,b] = \max_{\substack{x_1,...,x_j \in \mathbb{N} \\ x_1 + \dots + x_j \le b}} \sum_{i=1}^j f_i(x_i)$$

Base Case: If j = 1, explicitly check the b + 1 possible choices.

$$D[1,b] = \max\{f_1(0), f_1(1), f_1(2), \dots, f_1(b)\}\$$

Distributing Budget Optimally

Recursive Formula

"Guess" how much budget b' will be assigned to f_j .

$$D[j,b] = \max_{b' \in \{0,\dots,b\}} \{ D[j-1,b-b'] + f_j(b') \}$$

At most O(B) choices.

Time Complexity: $k(B+1) \cdot O(B) = O(kB^2)$

(Value of the) Optimal Solution: D[k, B]

Back to the Original Problem

Input: A tree T with integer weights on its vertices, a *budget* $B \in \mathbb{N}$.

Base cases: v is a leaf of T.

$$OPT^{+}[v, b] = \begin{cases} w(v) & \text{if } b \ge 1\\ -\infty & \text{if } b = 0 \end{cases}$$
$$OPT^{-}[v, b] = 0$$

Recursive formula for $OPT^+[v, b]$

• Let
$$C(v) = \{u_1, \ldots, u_k\}.$$

• Compute D[k, b-1] for $f_i(x) = OPT^-[u_i, x]$.

$$OPT^{+}[v, b] = w(v) + D[k, b - 1]$$

Nested DP!

Base cases: v is a leaf of T.

$$OPT^{+}[v, b] = \begin{cases} w(v) & \text{if } b \ge 1\\ -\infty & \text{if } b = 0 \end{cases}$$
$$OPT^{-}[v, b] = 0$$

Recursive formula for $OPT^+[v, b]$

• Let
$$C(v) = \{u_1, \ldots, u_k\}.$$

• Compute D[k, b-1] for $f_i(x) = OPT^-[u_i, x]$.

$$OPT^{+}[v, b] = w(v) + D[k, b - 1]$$
Max-Weight IS on Trees w. Budget

Base cases: v is a leaf of T.

$$OPT^{+}[v, b] = \begin{cases} w(v) & \text{if } b \ge 1\\ -\infty & \text{if } b = 0 \end{cases}$$
$$OPT^{-}[v, b] = 0$$

Recursive formula for $OPT^{-}[v, b]$

• Let
$$C(v) = \{u_1, \ldots, u_k\}.$$

• Compute
$$D[k, b]$$
 for

$$f_i(x) = \max\{OPT^-[u_i, x], OPT^+[u_i, x]\}$$

$$OPT^{-}[v,b] = D[k,b]$$

Nested DP!

Edit Distance

Edit Distance

"Next NASA mission is going to land on toast"

- Autocorrect / Spell checking
- Unix diff
- Bioinformatics (DNA alignment)
- Plagiarism detection
- Speech recognition

Edit Distance

Input: Two strings $S = s_1 s_2 \dots s_n$, and $T = t_1 t_2 \dots t_m$.

Output: The *edit distance* between S and T.

Definition: The *edit distance* between S and T is the minimum number of *edits* required to turn S into T, where an edit is one of:

• Insertion: Inserting a new character at some position of S.

 $MARS \rightarrow MARKS$

• **Deletion:** Removing one of the characters in S.

 $MARS \rightarrow MAS$

• Substitution: Replacing one character of S with another.

 $\texttt{MARS} \rightarrow \texttt{CARS}$

A Dynamic Programming Algorithm

Subproblem definition. For $0 \le i \le n$ and $0 \le j \le m$:

OPT[i, j] =Edit distance between $S^{(i)} = s_1, \dots, s_i$ and $T^{(j)} = t_1, \dots, t_j$.

Note: $S^{(0)} = T^{(0)} = \varepsilon$, where ε is the empty string.

Base case:

OPT[0,0] = Minum number of operations needed to transform $S^{(0)} = \varepsilon$ into $T^{(0)} = \varepsilon$.

OPT[0,0] = 0

A Dynamic Programming Algorithm

Recursive formula

If i, j > 0:

 $OPT[i, j] = \min \begin{cases} 1 + OPT[i - 1, j] & \text{(deletion)} \\ 1 + OPT[i, j - 1] & \text{(insertion)} \\ 1_{(s_i \neq t_j)} + OPT[i - 1, j - 1] & \text{(substitution)} \end{cases}$

If
$$i = 0$$
 or $j = 0$:
 $OPT[i, j] = \begin{cases} 1 + OPT[0, j - 1] & \text{if } i = 0\\ 1 + OPT[i - 1, 0] & \text{if } j = 0 \end{cases} = \max\{i, j\}$

 $\texttt{MARS} \rightarrow \texttt{TOAST}$ $i \setminus j$ S Т Т Α ${\mathcal E}$ ${\mathcal E}$ Μ $\mathbf{2}$ $\mathbf{2}$ $\mathbf{2}$ $\mathbf{2}$ $\mathbf{2}$ Α R S

Edit distance: 4

Edit distance: 4

Time: ?

Edit distance: 4

Time: O(nm)

A Possible Implementation

```
int edit_distance(std::string &s, std::string &t)
{
   std::array<std::array<int, t.size()+1>, s.size()+1> OPT;
   for(int i=0; i<=s.size(); i++) OPT[i][0] = i;</pre>
   for(int j=1; j<=t.size(); j++) OPT[0][j] = j;</pre>
   for(int i=1; i<=s.size(); i++)</pre>
       for(int j=1; j<=t.size(); j++)</pre>
           OPT[i][j] = std::min({OPT[i-1][j]+1, OPT[i][j-1]+1,
                           OPT[i-1][j-1] + ((s[i]==t[j])?0:1)});
   return OPT[s.size()][t.size()];
```

	E	Т	0	A	S	Т
ε	0	1	2	3	4	5
Μ	1	1	2	3	4	5
Α	2	2	2	2	3	4
R	3	3	3	3	3	4
S	4	4	4	4	3	4

	E	Т	0	A	S	Т
ε	0	1	2	3	4	5
Μ	1	1	2	3	4	5
Α	2	2	2	2	3	4
R	3	3	3	3	3	4
S	4	4	4	4	3	-4

	E	Т	0	A	S	Т
ε	0	1	2	3	4	5
Μ	1	1	2	3	4	5
Α	2	2	2	2	3	4
R	3	3	3	3	3	4
S	4	4	4	4	3	-4

	Ċ	Т	0	A	S	Т
E	0	1	2	3	4	5
Μ	1	1	2	3	4	5
Α	2	2	2	2	3	4
R	3	3	3	3	3	4
S	4	4	4	4	3	-4

	E	Т	0	A	S	Т
ε	0	1	2	3	4	5
Μ	1	1	2	3	4	5
Α	2	2	2	2	3	4
R	3	3	3	3	3	4
S	4	4	4	4	3	-4

	E	Т	0	А	S	Т
Ć	0	1	2	3	4	5
Μ	1	1	2	3	4	5
Α	2	2	2	2	3	4
R	3	3	3	3	3	4
S	4	4	4	4	3	►4

• **Option 1:** Retrace optimal choices backwards.

int i=s.size(), j=t.size();
while(i!=0 || j!=0)

```
//Do something
if(i>0 && OPT[i][j]==OPT[i-1][j]+1) i--; //Deletion
else if(j>0 && OPT[i][j]==OPT[i][j-1]+1) j--; //Insertion
else { i--; j--; } //Substitution
```


• **Option 1:** Retrace optimal choices backwards.

- Change M to T
- Insert O
- (Leave A unchanged)
- Delete R
- (Leave S unchanged)
- Insert T

MARS TARS TOARS TOARS TOAS TOAST

• **Option 2:** Esplicitly store (any of) the optimal choice(s) for each subproblem while filling the table.

• **Option 2:** Esplicitly store (any of) the optimal choice(s) for each subproblem while filling the table.

