Binary Knapsack

Binary Knapsack

Input

- You are given a collection \mathcal{I} of n items indexed from 1 to n.
- Item i has a weight $w_{i}: \mathbb{N}^{+}$and a value $v_{i} \in \mathbb{N}^{+}$.
- You can carry an overall weight of at most $W \in \mathbb{N}$.

Goal

Find a subset of $S \subset \mathcal{I}$ such that:

- Its overall weight $w(S)=\sum_{i \in \mathcal{I}} w_{i}$ is at most W; and
- Its overall value $v(S)=\sum_{i \in \mathcal{I}} v_{i}$ is maximized.

Example

$$
\begin{array}{lll}
w_{1}=12 & w_{2}=1 & w_{3}=19 \\
v_{1}=15 & v_{2}=1 & v_{3}=8
\end{array}
$$

$$
w_{4}=14 \quad w_{5}=4 \quad w_{6}=3
$$

$$
v_{4}=20 \quad v_{5}=10 \quad v_{6}=4
$$

Maximum Weight: 20

Example

Maximum Weight: 20

$$
\begin{aligned}
& w(S)=19 \\
& v(S)=31
\end{aligned}
$$

A Dynamic Programming Algorithm

Subproblem definition:

$O P T[i, x]=$ Maximum overall value $v(S)$ among all subsets S of $\{1, \ldots, i\}$ such that $w(S) \leq x$.

Base case:

For any $x \geq 0, O P T[0, x]=0$.

A Dynamic Programming Algorithm

Recursive Formula

- Either we ignore item $i .$.

$$
O P T[i, x]=O P T[i-1, x]
$$

A Dynamic Programming Algorithm

Recursive Formula

- Either we ignore item $i \ldots$

$$
O P T[i, x]=O P T[i-1, x]
$$

- Or we select item i and we can still carry a weight of $x-w_{i}$

$$
O P T[i, x]=v_{i}+O P T\left[i-1, x-w_{i}\right]
$$

This is only viable if $x \geq w_{i}$!

A Dynamic Programming Algorithm

Recursive Formula

- Either we ignore item $i \ldots$

$$
O P T[i, x]=O P T[i-1, x]
$$

- Or we select item i and we can still carry a weight of $x-w_{i}$

$$
O P T[i, x]=v_{i}+O P T\left[i-1, x-w_{i}\right]
$$

This is only viable if $x \geq w_{i}$!

Time Complexity

- $\Theta(n \cdot W)$ subproblems
- Optimal solution in $O P T[n, W]$
- Each problem can be solved in constant time
- Overall time: $\Theta(n \cdot W)$

Time Complexity

- $\Theta(n \cdot W)$ subproblems
- Optimal solution in $O P T[n, W]$
- Each problem can be solved in constant time
- Overall time: $\Theta(n \cdot W)$

Is this a polynomial-time algorithm?

Time Complexity

- $\Theta(n \cdot W)$ subproblems
- Optimal solution in $O P T[n, W]$
- Each problem can be solved in constant time
- Overall time: $\Theta(n \cdot W)$

Is this a polynomial-time algorithm?

NO!

The input size is $O(n(\log W+\log V))$
where $V=\max _{i} v_{i}$
Choose, e.g., $W=2^{n}$.

Small maximum value

Can we do better if W is large (e.g., 2^{n}) and $V=\max _{i} v_{i}$ is small?

Small maximum value

Can we do better if W is large (e.g., 2^{n}) and $V=\max _{i} v_{i}$ is small?

Subproblem definition (sketch):
$O P T[i, x]=$ Minimim overall weight $w(S)$ among all subsets S of $\{1, \ldots, i\}$ such that $v(S) \geq x$.

Base case:

$O P T[0,0]=0$.
For any $x>0, O P T[0, x]=+\infty$.

Small maximum value

Can we do better if W is large (e.g., 2^{n}) and $V=\max _{i} v_{i}$ is small?

Subproblem definition (sketch):
$O P T[i, x]=$ Minimim overall weight $w(S)$ among all subsets S of $\{1, \ldots, i\}$ such that $v(S) \geq x$.

Base case:

$O P T[0,0]=0$.
For any $x>0, O P T[0, x]=+\infty$.

Use " $+\infty$ " to encode "not feasible"

Small maximum value

Recursive Formula

- Either we ignore item $i \ldots$

$$
O P T[i, x]=O P T[i-1, x]
$$

Small maximum value

Recursive Formula

- Either we ignore item $i \ldots$

$$
O P T[i, x]=O P T[i-1, x]
$$

- Or we select item i and we need to gain an additional value of $x-v_{i}$

$$
O P T[i, x]=w_{i}+O P T\left[i-1, \max \left\{x-v_{i}, 0\right\}\right]
$$

Small maximum value

Recursive Formula

- Either we ignore item $i \ldots$

$$
O P T[i, x]=O P T[i-1, x]
$$

- Or we select item i and we need to gain an additional value of $x-v_{i}$

$$
O P T[i, x]=w_{i}+O P T\left[i-1, \max \left\{x-v_{i}, 0\right\}\right]
$$

$O P T[i, x]=\min \left\{\begin{array}{l}O P T[i-1, x] \\ w_{i}+O P T\left[i-1, \max \left\{x-v_{i}, 0\right\}\right]\end{array}\right.$

Optimal Solution: $\quad V^{*}=\max _{x: O P T[n, x] \leq W} x$

Small maximum value

Optimal Solution: $\quad V^{*}=\max _{x: O P T[n, x] \leq W} x$
Note: $O P T[n, x]$ is monotonically non-decreasing w.r.t. x

Small maximum value

Optimal Solution: $\quad V^{*}=\max _{x: O P T[n, x] \leq W} x$
Note: $O P T[n, x]$ is monotonically non-decreasing w.r.t. x
Order of subproblems:
For each $x=1,2, \ldots$
Compute $O P T[1, x], O P T[2, x], \ldots, O P T[n, x]$
Stop computing subproblems as a soon as $O P T[n, x]>W$.

Small maximum value

Optimal Solution: $\quad V^{*}=\max _{x: O P T[n, x] \leq W} x$
Note: $O P T[n, x]$ is monotonically non-decreasing w.r.t. x
Order of subproblems:
For each $x=1,2, \ldots$
Compute $O P T[1, x], O P T[2, x], \ldots, O P T[n, x]$
Stop computing subproblems as a soon as $O P T[n, x]>W$.
Time complexity

- $\Theta\left(n \cdot V^{*}\right)$ subproblems
- Each problem can be solved in constant time
- Overall time: $\Theta\left(n \cdot V^{*}\right)=O\left(n^{2} V\right) \quad$ where $V=\max _{i} v_{i}$

What if there are few items?

A Split \& List Algorithm

- Split: let $S_{1}=\{1, \ldots,\lceil n / 2\rceil\}$ and $S_{2}=S \backslash S_{1}$.

A Split \& List Algorithm

- Split: let $S_{1}=\{1, \ldots,\lceil n / 2\rceil\}$ and $S_{2}=S \backslash S_{1}$.
- List: Let L_{1} (resp. L_{2}) be the list of all the pairs ($w(X), v(X)$) for each $X \subseteq S_{1}$ (resp. $X \subseteq S_{2}$).

A Split \& List Algorithm

- Split: let $S_{1}=\{1, \ldots,\lceil n / 2\rceil\}$ and $S_{2}=S \backslash S_{1}$.
- List: Let L_{1} (resp. L_{2}) be the list of all the pairs ($w(X), v(X)$) for each $X \subseteq S_{1}$ (resp. $X \subseteq S_{2}$).
- Sort L_{2} in lexicographic order.
- For each $(w, \cdot) \in L_{2}$, add a pair (w, v) in L_{2}^{\prime}, where $v=\max \left\{v^{\prime}:\left(w^{\prime}, v^{\prime}\right) \in L_{2}, w^{\prime} \leq w\right\}$

A Split \& List Algorithm

- Split: let $S_{1}=\{1, \ldots,\lceil n / 2\rceil\}$ and $S_{2}=S \backslash S_{1}$.
- List: Let L_{1} (resp. L_{2}) be the list of all the pairs ($w(X), v(X)$) for each $X \subseteq S_{1}$ (resp. $X \subseteq S_{2}$).
- Sort L_{2} in lexicographic order.
- For each $(w, \cdot) \in L_{2}$, add a pair (w, v) in L_{2}^{\prime}, where $v=\max \left\{v^{\prime}:\left(w^{\prime}, v^{\prime}\right) \in L_{2}, w^{\prime} \leq w\right\}$
- For each pair $(w, v) \in L_{1}$ such that $w \leq W$:
- Binary search for the last pair $\left(w^{\prime}, v^{\prime}\right) \in L_{2}^{\prime}$ for which $w^{\prime} \leq W-w$, if any.
- If w^{\prime} exists, $v+v^{\prime}$ is the value of a candidate solution.

A Split \& List Algorithm

- Split: let $S_{1}=\{1, \ldots,\lceil n / 2\rceil\}$ and $S_{2}=S \backslash S_{1}$.
- List: Let L_{1} (resp. L_{2}) be the list of all the pairs ($w(X), v(X)$) for each $X \subseteq S_{1}$ (resp. $X \subseteq S_{2}$).
- Sort L_{2} in lexicographic order.
- For each $(w, \cdot) \in L_{2}$, add a pair (w, v) in L_{2}^{\prime}, where $v=\max \left\{v^{\prime}:\left(w^{\prime}, v^{\prime}\right) \in L_{2}, w^{\prime} \leq w\right\}$
- For each pair $(w, v) \in L_{1}$ such that $w \leq W$:
- Binary search for the last pair $\left(w^{\prime}, v^{\prime}\right) \in L_{2}^{\prime}$ for which $w^{\prime} \leq W-w$, if any.
- If w^{\prime} exists, $v+v^{\prime}$ is the value of a candidate solution.
- Return: Best candidate solution, if any.

A Split \& List Algorithm

- Split: let $S_{1}=\{1, \ldots,\lceil n / 2\rceil\}$ and $S_{2}=S \backslash S_{1}$.
- List: Let L_{1} (resp. L_{2}) be the list of all the pairs $(w(X), v(X))$ for each $X \subseteq S_{1}$ (resp. $X \subseteq S_{2}$).
- Sort L_{2} in lexicographic order.
- For each $(w, \cdot) \in L_{2}$, add a pair (w, v) in L_{2}^{\prime}, where $v=\max \left\{v^{\prime}:\left(w^{\prime}, v^{\prime}\right) \in L_{2}, w^{\prime} \leq w\right\}$
- For each pair $(w, v) \in L_{1}$ such that $w \leq W$:
- Binary search for the last pair $\left(w^{\prime}, v^{\prime}\right) \in L_{2}^{\prime}$ for which $w^{\prime} \leq W-w$, if any.
- If w^{\prime} exists, $v+v^{\prime}$ is the value of a candidate solution.
- Return: Best candidate solution, if any.

Recap

Three Algorithms

- Dynamic programming: parameterize weights, store values.

$$
O(n W)
$$

- Dynamic programming: parameterize values, store weights.

$$
O\left(n V^{*}\right)=O\left(n^{2} V\right)
$$

- Split \& List:

$$
O\left(n 2^{\frac{n}{2}}\right)
$$

