
Binary Knapsack



Binary Knapsack

• You are given a collection I of n items indexed from 1 to n.

• Item i has a weight wi : N+ and a value vi ∈ N+.

• You can carry an overall weight of at most W ∈ N.

Goal

• Its overall weight w(S) =
P

i∈I wi is at most W ; and

• Its overall value v(S) =
P

i∈I vi is maximized.

Input

Find a subset of S ⊂ I such that:



Example

1 2 3 4 5 6

w1 = 12
v1 = 15

w2 = 1
v2 = 1

w3 = 19
v3 = 8

w4 = 14
v4 = 20

w5 = 4
v5 = 10

w6 = 3
v6 = 4

Maximum Weight: 20
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v1 = 15

w2 = 1
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w5 = 4
v5 = 10

w6 = 3
v6 = 4

Maximum Weight: 20

w(S) = 19

v(S) = 31



A Dynamic Programming Algorithm

Subproblem definition:

OPT [i, x] = Maximum overall value v(S) among all subsets
S of {1, . . . , i} such that w(S) ≤ x.

Base case:

For any x ≥ 0, OPT [0, x] = 0.
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Recursive Formula

• Either we ignore item i...

OPT [i, x] = OPT [i− 1, x]
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This is only viable if x ≥ wi!



A Dynamic Programming Algorithm

Recursive Formula

• Either we ignore item i...

• Or we select item i and we can still carry a weight of x−wi

OPT [i, x] = OPT [i− 1, x]

OPT [i, x] = vi +OPT [i− 1, x− wi]

This is only viable if x ≥ wi!

OPT [i, x] =





OPT [i− 1, x] if x < wi

max

(
OPT [i− 1, x]

vi +OPT [i− 1, x− wi]
if x ≥ wi
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• Overall time: Θ(n ·W )

• Optimal solution in OPT [n,W ]
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Time Complexity

• Θ(n ·W ) subproblems

• Each problem can be solved in constant time

• Overall time: Θ(n ·W )

Is this a polynomial-time algorithm?

NO!

The input size is O(n(logW + log V )) where V = maxi vi

Choose, e.g., W = 2n.

• Optimal solution in OPT [n,W ]



Small maximum value

Can we do better if W is large (e.g., 2n) and V = maxi vi is
small?



Small maximum value

Subproblem definition (sketch):

OPT [i, x] = Minimim overall weight w(S) among all subsets
S of {1, . . . , i} such that v(S) ≥ x.

Base case:

OPT [0, 0] = 0.

For any x > 0, OPT [0, x] = +∞.

Can we do better if W is large (e.g., 2n) and V = maxi vi is
small?



Small maximum value

Subproblem definition (sketch):

OPT [i, x] = Minimim overall weight w(S) among all subsets
S of {1, . . . , i} such that v(S) ≥ x.

Base case:

OPT [0, 0] = 0.

For any x > 0, OPT [0, x] = +∞.

Use “+∞” to encode “not feasible”

Can we do better if W is large (e.g., 2n) and V = maxi vi is
small?
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Recursive Formula

• Either we ignore item i...

• Or we select item i and we need to gain an additional
value of x− vi
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Recursive Formula

• Either we ignore item i...

• Or we select item i and we need to gain an additional
value of x− vi

OPT [i, x] = OPT [i− 1, x]

OPT [i, x] = wi +OPT [i− 1,max{x− vi, 0}]

OPT [i, x] = min

(
OPT [i− 1, x]

wi +OPT [i− 1,max{x− vi, 0}]

Optimal Solution: V ∗ = max
x :OPT [n,x]≤W

x

Small maximum value
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Optimal Solution: V ∗ = max
x :OPT [n,x]≤W

x

Note: OPT [n, x] is monotonically non-decreasing w.r.t. x

Stop computing subproblems as a soon as OPT [n, x] > W .

For each x = 1, 2, . . .

Compute OPT [1, x], OPT [2, x], . . . , OPT [n, x]

Order of subproblems:

Small maximum value



• Θ(n · V ∗) subproblems

• Each problem can be solved in constant time

• Overall time: Θ(n · V ∗) = O(n2V )

Optimal Solution: V ∗ = max
x :OPT [n,x]≤W

x

where V = maxi vi

Note: OPT [n, x] is monotonically non-decreasing w.r.t. x

Stop computing subproblems as a soon as OPT [n, x] > W .

For each x = 1, 2, . . .

Compute OPT [1, x], OPT [2, x], . . . , OPT [n, x]

Order of subproblems:

Small maximum value

Time complexity



What if there are few items?
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• Split: let S1 = {1, . . . , ⌈n/2⌉} and S2 = S \ S1.
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A Split & List Algorithm

• Split: let S1 = {1, . . . , ⌈n/2⌉} and S2 = S \ S1.

• List: Let L1 (resp. L2) be the list of all the pairs
(w(X), v(X)) for each X ⊆ S1 (resp. X ⊆ S2).

• Sort L2 in lexicographic order.

• For each pair (w, v) ∈ L1 such that w ≤ W :

• Binary search for the last pair (w′, v′) ∈ L′
2

for which w′ ≤ W − w, if any.

• If w′ exists, v + v′ is the value of a candidate solution.

• Return: Best candidate solution, if any.

O(n)

O(2
n
2 )

O(n · 2n
2 )

O(2
n
2 )

O(n)

• For each (w, ·) ∈ L2, add a pair (w, v) in L′
2,

where v = max{v′ : (w′, v′) ∈ L2, w
′ ≤ w} O(2

n
2 )



Recap



O(nW )

O(nV ∗) = O(n2V )

O(n2
n
2 )

• Dynamic programming: parameterize weights, store
values.

• Dynamic programming: parameterize values, store
weights.

• Split & List:

Three Algorithms


