Binary Knapsack

Binary Knapsack

Input

- You are given a collection ${\mathcal I}$ of n items indexed from 1 to n.
- Item i has a weight $w_i : \mathbb{N}^+$ and a value $v_i \in \mathbb{N}^+$.
- You can carry an overall weight of at most $W \in \mathbb{N}$.

Goal

Find a subset of $S \subset \mathcal{I}$ such that:

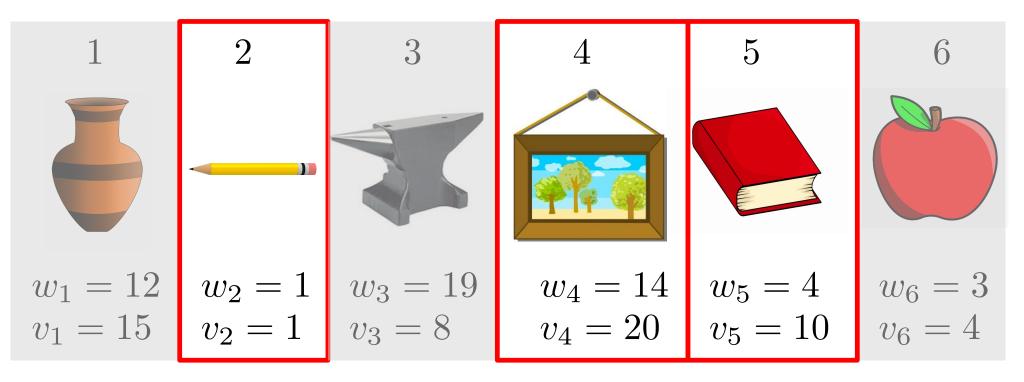
- Its overall weight $w(S) = \sum_{i \in \mathcal{I}} w_i$ is at most W; and
- Its overall value $v(S) = \sum_{i \in \mathcal{I}} v_i$ is maximized.

Example

$w_1 = 12$	$w_2 = 1$	$w_3 = 19$	$w_4 = 14$	$w_5 = 4$	$w_6 = 3$
$v_1 = 15$	$v_2 = 1$	$v_3 = 8$	$v_4 = 20$	$v_5 = 10$	$v_6 = 4$

Maximum Weight: 20

Example



Maximum Weight: 20

w(S) = 19v(S) = 31

Subproblem definition:

OPT[i, x] = Maximum overall value <math>v(S) among all subsets S of $\{1, \ldots, i\}$ such that $w(S) \le x$.

Base case:

For any $x \ge 0$, OPT[0, x] = 0.

Recursive Formula

• Either we ignore item *i*...

OPT[i, x] = OPT[i - 1, x]

Recursive Formula

• Either we ignore item *i*...

OPT[i, x] = OPT[i - 1, x]

• Or we select item i and we can still carry a weight of $x-w_i$

$$OPT[i, x] = v_i + OPT[i - 1, x - w_i]$$

This is only viable if $x \ge w_i!$

Recursive Formula

• Either we ignore item *i*...

OPT[i, x] = OPT[i - 1, x]

• Or we select item *i* and we can still carry a weight of $x - w_i$

 $OPT[i, x] = v_i + OPT[i - 1, x - w_i]$

This is only viable if $x \ge w_i!$

$$OPT[i, x] = \begin{cases} OPT[i-1, x] & \text{if } x < w_i \\ \\ \max \begin{cases} OPT[i-1, x] \\ v_i + OPT[i-1, x-w_i] \end{cases} & \text{if } x \ge w_i \end{cases}$$

Time Complexity

- $\Theta(n \cdot W)$ subproblems
- Optimal solution in OPT[n, W]
- Each problem can be solved in constant time
- Overall time: $\Theta(n \cdot W)$

Time Complexity

- $\Theta(n \cdot W)$ subproblems
- Optimal solution in OPT[n, W]
- Each problem can be solved in constant time
- Overall time: $\Theta(n \cdot W)$

Is this a polynomial-time algorithm?

Time Complexity

- $\Theta(n \cdot W)$ subproblems
- Optimal solution in OPT[n, W]
- Each problem can be solved in constant time
- Overall time: $\Theta(n \cdot W)$

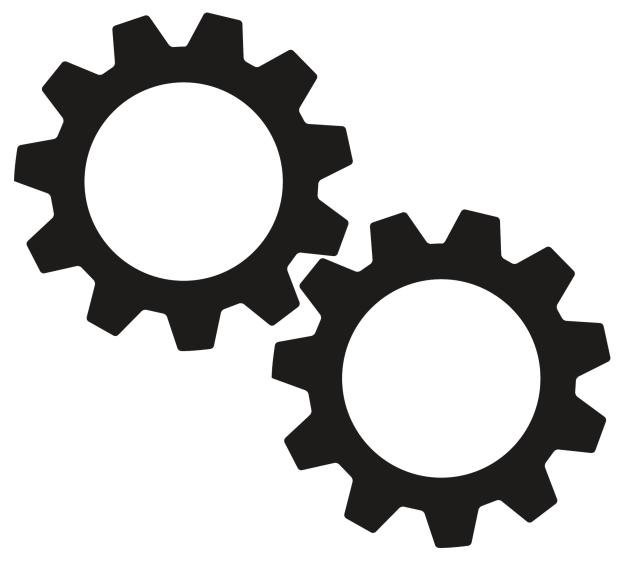
Is this a polynomial-time algorithm? NO!

The input size is $O(n(\log W + \log V))$

where $V = \max_i v_i$

Choose, e.g., $W = 2^n$.

Can we do better if W is large (e.g., 2^n) and $V = \max_i v_i$ is small?



Can we do better if W is large (e.g., 2^n) and $V = \max_i v_i$ is small?

Subproblem definition (sketch):

OPT[i, x] = Minimim overall weight w(S) among all subsets S of $\{1, \ldots, i\}$ such that $v(S) \ge x$.

Base case:

OPT[0, 0] = 0.

For any x > 0, $OPT[0, x] = +\infty$.

Can we do better if W is large (e.g., 2^n) and $V = \max_i v_i$ is small?

Subproblem definition (sketch):

OPT[i, x] = Minimim overall weight w(S) among all subsets S of $\{1, \ldots, i\}$ such that $v(S) \ge x$.

Base case:

OPT[0, 0] = 0.

For any x > 0, $OPT[0, x] = +\infty$.

Use "+ ∞ " to encode "not feasible"

Recursive Formula

• Either we ignore item *i*...

$$OPT[i, x] = OPT[i - 1, x]$$

Recursive Formula

• Either we ignore item *i*...

$$OPT[i, x] = OPT[i - 1, x]$$

• Or we select item i and we need to gain an additional value of $x-v_i$

$$OPT[i, x] = w_i + OPT[i - 1, \max\{x - v_i, 0\}]$$

Recursive Formula

• Either we ignore item *i*...

$$OPT[i, x] = OPT[i - 1, x]$$

• Or we select item i and we need to gain an additional value of $x-v_i$

$$OPT[i, x] = w_i + OPT[i - 1, \max\{x - v_i, 0\}]$$

$$OPT[i, x] = \min \begin{cases} OPT[i - 1, x] \\ w_i + OPT[i - 1, \max\{x - v_i, 0\}] \end{cases}$$

Optimal Solution: $V^* = \max_{x:OPT[n,x] \le W} x$

Optimal Solution: $V^* = \max_{x:OPT[n,x] \le W} x$

Note: OPT[n, x] is monotonically non-decreasing w.r.t. x

Optimal Solution: $V^* = \max_{x:OPT[n,x] \le W} x$

Note: OPT[n, x] is monotonically non-decreasing w.r.t. x**Order of subproblems:**

For each $x = 1, 2, \ldots$

Compute $OPT[1, x], OPT[2, x], \dots, OPT[n, x]$

Stop computing subproblems as a soon as OPT[n, x] > W.

Optimal Solution: $V^* = \max_{x:OPT[n,x] \le W} x$

Note: OPT[n, x] is monotonically non-decreasing w.r.t. x **Order of subproblems:**

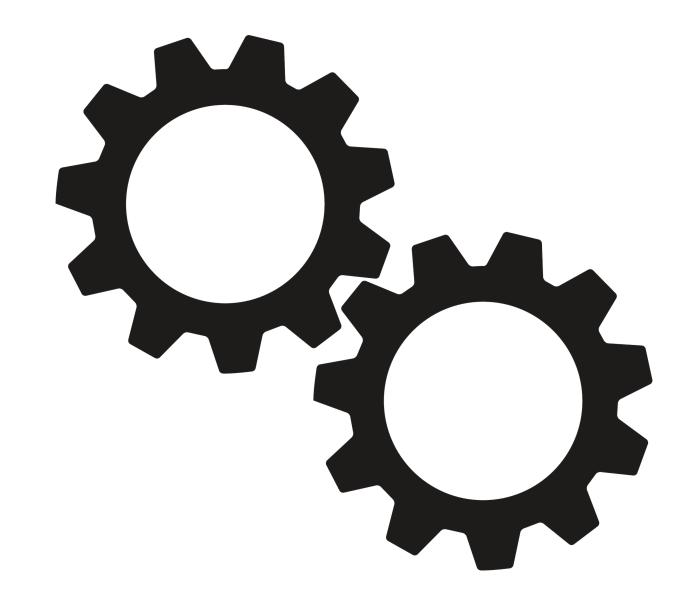
For each $x = 1, 2, \ldots$

Compute $OPT[1, x], OPT[2, x], \dots, OPT[n, x]$

Stop computing subproblems as a soon as OPT[n, x] > W. **Time complexity**

- $\Theta(n \cdot V^*)$ subproblems
- Each problem can be solved in constant time
- Overall time: $\Theta(n \cdot V^*) = O(n^2 V)$ where $V = \max_i v_i$

What if there are few items?



• Split: let $S_1 = \{1, \ldots, \lceil n/2 \rceil\}$ and $S_2 = S \setminus S_1$.

- Split: let $S_1 = \{1, \ldots, \lceil n/2 \rceil\}$ and $S_2 = S \setminus S_1$.
- List: Let L_1 (resp. L_2) be the list of all the pairs (w(X), v(X)) for each $X \subseteq S_1$ (resp. $X \subseteq S_2$).

- Split: let $S_1 = \{1, \ldots, \lceil n/2 \rceil\}$ and $S_2 = S \setminus S_1$.
- List: Let L_1 (resp. L_2) be the list of all the pairs (w(X), v(X)) for each $X \subseteq S_1$ (resp. $X \subseteq S_2$).
- Sort L_2 in lexicographic order.
- For each $(w, \cdot) \in L_2$, add a pair (w, v) in L'_2 , where $v = \max\{v' : (w', v') \in L_2, w' \le w\}$

- Split: let $S_1 = \{1, \ldots, \lceil n/2 \rceil\}$ and $S_2 = S \setminus S_1$.
- List: Let L_1 (resp. L_2) be the list of all the pairs (w(X), v(X)) for each $X \subseteq S_1$ (resp. $X \subseteq S_2$).
- Sort L_2 in lexicographic order.
- For each $(w, \cdot) \in L_2$, add a pair (w, v) in L'_2 , where $v = \max\{v' : (w', v') \in L_2, w' \le w\}$
- For each pair $(w, v) \in L_1$ such that $w \leq W$:
 - Binary search for the last pair $(w', v') \in L'_2$ for which $w' \leq W - w$, if any.
 - If w' exists, v + v' is the value of a candidate solution.

- Split: let $S_1 = \{1, \ldots, \lceil n/2 \rceil\}$ and $S_2 = S \setminus S_1$.
- List: Let L_1 (resp. L_2) be the list of all the pairs (w(X), v(X)) for each $X \subseteq S_1$ (resp. $X \subseteq S_2$).
- Sort L_2 in lexicographic order.
- For each $(w, \cdot) \in L_2$, add a pair (w, v) in L'_2 , where $v = \max\{v' : (w', v') \in L_2, w' \le w\}$
- For each pair $(w, v) \in L_1$ such that $w \leq W$:
 - Binary search for the last pair $(w', v') \in L'_2$ for which $w' \leq W - w$, if any.
 - If w' exists, v + v' is the value of a candidate solution.
- Return: Best candidate solution, if any.

- Split: let $S_1 = \{1, \ldots, \lceil n/2 \rceil\}$ and $S_2 = S \setminus S_1$. O(n)
- List: Let L_1 (resp. L_2) be the list of all the pairs (w(X), v(X)) for each $X \subseteq S_1$ (resp. $X \subseteq S_2$).
- Sort L_2 in lexicographic order. $O(n \cdot 2^{\frac{n}{2}})$

 $O(2^{\frac{n}{2}})$

- For each $(w, \cdot) \in L_2$, add a pair (w, v) in L'_2 , where $v = \max\{v' : (w', v') \in L_2, w' \le w\}$ $O(2^{\frac{n}{2}})$
- For each pair $(w, v) \in L_1$ such that $w \leq W$: $O(2^{\frac{n}{2}})$
 - Binary search for the last pair $(w', v') \in L'_2$ O(n) for which $w' \leq W w$, if any.
 - If w' exists, v + v' is the value of a candidate solution.
- Return: Best candidate solution, if any.

Three Algorithms

• **Dynamic programming:** parameterize weights, store values.

O(nW)

• **Dynamic programming:** parameterize values, store weights.

$$O(nV^*) = O(n^2V)$$

• Split & List:

$$O(n2^{\frac{n}{2}})$$