Subset Sum

Subset Sum

Input

- A (multi)-set $S \subseteq \mathbb{N}^+$ of n positive integers s_1, \ldots, s_n .
- A target value $T \in \mathbb{N}^+$.

Question

Is there a subset $S' \subseteq S$ such that $\sum_{x \in S'} x = T$?

Answer: YES!

A Dynamic Programming Algorithm

Subproblem definition:

$$OPT[i,t] = \texttt{true} \text{ iff } \exists S'' \subseteq \{s_1, \dots, s_i\} \text{ such that } \sum_{x \in S''} x = t.$$

Base cases: OPT[0,0] = true.

$$OPT[0,t] = \texttt{false}, \text{ for } t > 0.$$

Recursive formula:

A Dynamic Programming Algorithm

Subproblem definition:

$$OPT[i,t] = \texttt{true iff } \exists S'' \subseteq \{s_1, \dots, s_i\} \text{ such that } \sum_{x \in S''} x = t.$$

Base cases:

OPT[0, 0] = true.OPT[0, t] = false, for t > 0.

Recursive formula:

- Either we ignore s_i OPT[i,t] = OPT[i-1,t]

• Or we include s_i in $S'' \dots OPT[i, t] = OPT[i - 1, t - s_i]$ (as long as $t \geq s_i$)

A Dynamic Programming Algorithm

Subproblem definition:

$$OPT[i,t] = \texttt{true} \text{ iff } \exists S'' \subseteq \{s_1, \dots, s_i\} \text{ such that } \sum_{x \in S''} x = t.$$

Base cases: $OPT[0,0] = \texttt{true}. \qquad OPT[0,t] = \texttt{false, for } t > 0.$

Recursive formula:

$$OPT[i,t] = \begin{cases} OPT[i-1,t] & \text{if } t < s_i \\ OPT[i-1,t] \lor OPT[i-1,t-s_i] & \text{if } t \ge s_i \end{cases}$$

Time Complexity

- $\Theta(n \cdot T)$ subproblems
- Each problem can be solved in constant time
- Overall time: $\Theta(n \cdot T)$

Is this a polynomial-time algorithm?

Time Complexity

- $\Theta(n \cdot T)$ subproblems
- Each problem can be solved in constant time
- Overall time: $\Theta(n \cdot T)$

Is this a polynomial-time algorithm? NO!

The input size is $O(n \log T)$ (Under reasonalbe assumptions) Choose, e.g., $T = 2^n$.

This is called a *pseudo*-polynomial-time algorithm.

Can we do better?

- Subset Sum is a well-known NP-complete problem.
- A polynomial-time algorithm for Subset Sum would imply P=NP.

- Let's give up on polynomial-time algorithms and look at exponential algorithms.
- Easy exercise: come up with an algorithm with time complexity $O^*(2^n)$. (OK for $n \approx 25$)
- Can the exponent be improved?

Can we do better?

- Subset Sum is a well-known NP-complete problem.
- A polynomial-time algorithm for Subset Sum would imply P=NP.

- Let's give up on polynomial-time algorithms and look at exponential algorithms.
- Easy exercise: come up with an algorithm with time complexity $O^*(2^n)$. (OK for $n \approx 25$)

C $O^*(2^n)$ is a shorthand for $O(2^n \cdot \text{poly}(n))$.

Split & List

Split & List

Partition S into S_1 and S_2 .

Observation: The following two statements are equivalent:

• $\exists S' \subseteq S$ such that $\sum_{x \in S'} x = T$; and

•
$$\exists S'_1 \subseteq S_1, S'_2 \subseteq S_2$$
 such that $\sum_{x \in S'_1} x + \sum_{x \in S'_2} x = T$.

Idea: Check whether the second statement hold.

How does this help?

The Algorithm

- Partition S into S_1 and S_2 .
- $T_1 \leftarrow$ Set of the sums of *all possible* subsets of S_1 .
- $T_2 \leftarrow$ Set of the sums of *all possible* subsets of S_2 .
- $T_2 \leftarrow \text{Sort } T_2$.
- For each $t \in T_1$
 - Check whether $T t \in T_2$

The Algorithm

- Partition S into S_1 and S_2 . O(n)
- $T_1 \leftarrow \text{Set of the sums of all possible subsets of } S_1$. $O(2^{|S_1|})$
- $T_2 \leftarrow$ Set of the sums of all possible subsets of S_2 . $O(2^{|S_2|})$
- $T_2 \leftarrow \text{Sort } T_2$. $O(|S_2| \cdot 2^{|S_2|})$
- For each $t \in T_1$ $|T_1| = O(2^{|S_1|})$
 - Check whether $T t \in T_2$ $O(\log |T_2|) = O(|S_2|)$

$$O\left(|S_2| \cdot 2^{|S_1|} + |S_2| \cdot 2^{|S_2|}\right) = O^*\left(2^{|S_1|} + 2^{|S_2|}\right)$$

The Algorithm

- Partition S into S_1 and S_2 . O(n)
- $T_1 \leftarrow \text{Set of the sums of all possible subsets of } S_1$. $O(2^{|S_1|})$
- $T_2 \leftarrow \text{Set of the sums of all possible subsets of } S_2$. $O(2^{|S_2|})$
- $T_2 \leftarrow \text{Sort } T_2$. $O(|S_2| \cdot 2^{|S_2|})$
- For each $t \in T_1$ $|T_1| = O(2^{|S_1|})$
 - Check whether $T t \in T_2$ $O(\log |T_2|) = O(|S_2|)$

Choosing $|S_1| = \lfloor \frac{n}{2} \rfloor$ and $|S_2| = \lceil \frac{n}{2} \rceil$: $O^* \left(2^{|S_1|} + 2^{|S_2|} \right) = O^* \left(2^{n/2} + 2^{n/2} \right) = O^* (2^{\frac{n}{2}})$

- Let S be a set of n elements, where n is *small*.
- Option 1: use integers to encode the characteristic vectors of all subsets $S'\subseteq S$

$$S = \{ 2, 5, 3, 13, 7, 8, 9, 18, 3 \}$$

$$x = 0b \quad 0 \quad 1 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0$$

$$S' = \{ 5, 3, 8, 8, 18 \}$$

uint64_t nsums = static_cast<uint64_t>(1)<<S.size(); //2^n
std::vector<int> sums(nsums, 0);
for(uint64_t x=0; x<nsums; x++)
 for(unsigned int i=0; i<S.size(); i++)
 sums[x] += ((x>>i) & 1u)?S[i]:0;

Time: $O(n \cdot 2^n)$

pprox 2s for n=25

- Let S be a set of n elements, where n is *small*.
- Option 1: use integers to encode the characteristic vectors of all subsets $S'\subseteq S$

$$S = \{ 2, 5, 3, 13, 7, 8, 9, 18, 3 \}$$

$$x = 0b \quad 0 \quad 1 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0$$

$$S' = \{ 5, 3, 8, 8, 18 \}$$

uint64_t nsums = static_cast<uint64_t>(1)<<S.size(); //2^n
std::vector<int> sums(nsums, 0);
for(uint64_t x=0; x<nsums; x++)
 for(unsigned int i=0; i<S.size(); i++)
 sums[x] += ((x>>i) & 1u) * S[i];

Time: $O(n \cdot 2^n)$

 \approx 0.75s for n=25

- **Option 2:** explicitly maintain the characteristic vector.
- *Update* the previous sum when the characteristic vector changes.

sum = 34

- **Option 2:** explicitly maintain the characteristic vector.
- *Update* the previous sum when the characteristic vector changes.

sum = 37

- **Option 2:** explicitly maintain the characteristic vector.
- *Update* the previous sum when the characteristic vector changes.

sum = 25

- **Option 2:** explicitly maintain the characteristic vector.
- *Update* the previous sum when the characteristic vector changes.

sum = 25

Time complexity?

- b_0 flips at every iteration
- b_1 flips every 2 iterations
- b_2 flips every 4 iterations
- . . .
- b_i flips every 2^i iterations

Total # of operations (including updates to sum) \propto # bit flips

$$\sum_{i=0}^{n-1} \frac{2^n}{2^i} = \sum_{i=1}^n 2^i = 2^{n+1} - 2 = \Theta(2^n).$$

Generating All Subsets

```
uint64_t nsums = static_cast<uint64_t>(1)<<S.size(); //2^n
std::vector<int> &sums = *new std::vector<int>(nsums);
std::vector<bool> bits(S.size());
```

```
for(uint64_t i=0; i<nsums; i++)</pre>
{
    int j=0;
    while(bits[j])
    {
       bits[j] = 0;
        sums[i] -= S[j];
        j++;
    }
    bits[j]=1;
    sums[i] += bits[j];
}
```

 \approx 0.2s for n=25

Back to Subset Sum: Which Algorithm?

Dynamic Programming

 $O(n \cdot T)$

 $T \le 2^{\frac{n}{2}}$

OK for "small" T

Split and List

 $O(n \cdot 2^{\frac{n}{2}})$

 $T \ge 2^{\frac{n}{2}}$

OK for $n \leq 50$, regardless of T

Split & List

- Split input into two sets S_1 , S_2
- Explicitly compute all possible (partial) solutions w.r.t. S_1 and S_2

Brute force!

• Combine the solutions of S_1 with those of S_2

Quicker than brute force

Can we split into 3 sets?

1-in-3 positive SAT

1-in-3 positive SAT

Input: A formula ϕ consisting of

- A set of n boolean variables x_1, \ldots, x_n
- A collection of m clauses C_1, \ldots, C_m , i.e., triples of variables $C_j = (c_j^{(1)}, c_j^{(2)}, c_j^{(3)}) \in \{x_1, \ldots, x_n\}^3$

A truth assignment is a function $\tau : \{x_1, \ldots, x_n\} \to \{\top, \bot\}$

- A clause $C_j = (c_j^{(1)}, c_j^{(2)}, c_j^{(3)})$ is satisfied by τ iff exactly one of $\tau(c_j^{(1)})$, $\tau(c_j^{(2)})$, and $\tau(c_j^{(3)})$ is \top .
- ϕ is satisfied iff all m clauses C_1, \ldots, C_m are satisfied.

Question: Is there a truth assignment that satisfies ϕ ?

Example

Formula

$$\phi = (x_1, x_2, x_4) \land (x_2, x_4, x_5) \land (x_1, x_3, x_5) \land (x_2, x_3, x_1)$$

Example

Formula

$$\phi = (x_1, x_2, x_4) \land (x_2, x_4, x_5) \land (x_1, x_3, x_5) \land (x_2, x_3, x_1)$$

Satisfying assignment:

$$x_1 = \bot$$
 $x_2 = \bot$ $x_3 = \top$ $x_4 = \top$ $x_5 = \bot$

Example

Formula

$$\phi = (x_1, x_2, x_4) \land (x_2, x_4, x_5) \land (x_1, x_3, x_5) \land (x_2, x_3, x_1)$$

Satisfying assignment:

$$x_1 = \bot$$
 $x_2 = \bot$ $x_3 = \top$ $x_4 = \top$ $x_5 = \bot$

Trivial solution $O^*(2^n)$

An Algorithm Based on Split & List

- Split the *n* boolean variables into two sets S_1, S_2 of size $\approx \frac{n}{2}$
- For each possible truth assignment au_1 of the variables in S_1
 - If τ_1 sets ≥ 2 variables in the same clause to \top , discard it.
 - Otherwise, store in X_1 the characteristic vector $\chi(\tau_1) = (\chi_1, \chi_2, \dots, \chi_m) \in \{\top, \bot\}^m$ of the satisfied clauses, where $\chi_j = \top$ iff τ_1 satisfies C_j .
- Compute X_2 in a similar way.
- Sort X_2 (e.g., w.r.t. the lexicographic order)
- For each vector $\chi = (\chi_1, \dots, \chi_m) \in X_1$
 - $\overline{\chi} \leftarrow (\overline{\chi_1}, \dots, \overline{\chi_m})$
 - Binary search for \overline{X} in X_2