Subset Sum

Subset Sum

Input

- A (multi)-set $S \subseteq \mathbb{N}^{+}$of n positive integers s_{1}, \ldots, s_{n}.
- A target value $T \in \mathbb{N}^{+}$.

Question

Is there a subset $S^{\prime} \subseteq S$ such that $\sum_{x \in S^{\prime}} x=T$?

Example

Example

Answer: YES!

A Dynamic Programming Algorithm

Subproblem definition:
$O P T[i, t]=$ true iff $\exists S^{\prime \prime} \subseteq\left\{s_{1}, \ldots, s_{i}\right\}$ such that $\sum_{x \in S^{\prime \prime}} x=t$.
Base cases:
$O P T[0,0]=$ true.
$O P T[0, t]=$ false, for $t>0$.

Recursive formula:

A Dynamic Programming Algorithm

Subproblem definition:
$O P T[i, t]=$ true iff $\exists S^{\prime \prime} \subseteq\left\{s_{1}, \ldots, s_{i}\right\}$ such that $\sum_{x \in S^{\prime \prime}} x=t$.
Base cases:
$O P T[0,0]=$ true.
$O P T[0, t]=$ false, for $t>0$.

Recursive formula:

- Either we ignore s_{i}
- Or we include s_{i} in $S^{\prime \prime} \ldots$
$O P T[i, t]=O P T[i-1, t]$
$O P T[i, t]=O P T\left[i-1, t-s_{i}\right]$
(as long as $t \geq s_{i}$)

A Dynamic Programming Algorithm

Subproblem definition:
$O P T[i, t]=$ true iff $\exists S^{\prime \prime} \subseteq\left\{s_{1}, \ldots, s_{i}\right\}$ such that $\sum_{x \in S^{\prime \prime}} x=t$.
Base cases:
$O P T[0,0]=$ true.
$O P T[0, t]=$ false, for $t>0$.

Recursive formula:

$$
O P T[i, t]= \begin{cases}O P T[i-1, t] & \text { if } t<s_{i} \\ O P T[i-1, t] \vee O P T\left[i-1, t-s_{i}\right] & \text { if } t \geq s_{i}\end{cases}
$$

Time Complexity

- $\Theta(n \cdot T)$ subproblems
- Each problem can be solved in constant time
- Overall time: $\Theta(n \cdot T)$

Is this a polynomial-time algorithm?

Time Complexity

- $\Theta(n \cdot T)$ subproblems
- Each problem can be solved in constant time
- Overall time: $\Theta(n \cdot T)$

Is this a polynomial-time algorithm?

NO!

The input size is $O(n \log T)$
(Under reasonalbe assumptions)
Choose, e.g., $T=2^{n}$.
This is called a pseudo-polynomial-time algorithm.

Can we do better?

- Subset Sum is a well-known NP-complete problem.
- A polynomial-time algorithm for Subset Sum would imply $\mathrm{P}=\mathrm{NP}$.
- Let's give up on polynomial-time algorithms and look at exponential algorithms.
- Easy exercise: come up with an algorithm with time complexity $O^{*}\left(2^{n}\right)$.
(OK for $n \approx 25$)
- Can the exponent be improved?

Can we do better?

- Subset Sum is a well-known NP-complete problem.
- A polynomial-time algorithm for Subset Sum would imply $\mathrm{P}=\mathrm{NP}$.
- Let's give up on polynomial-time algorithms and look at exponential algorithms.
- Easy exercise: come up with an algorithm with time complexity $O^{*}\left(2^{n}\right)$.
$O^{*}\left(2^{n}\right)$ is a shorthand for $O\left(2^{n} \cdot \operatorname{poly}(n)\right)$.

Split \& List

Split \& List

Partition S into S_{1} and S_{2}.
Observation: The following two statements are equivalent:

- $\exists S^{\prime} \subseteq S$ such that $\sum_{x \in S^{\prime}} x=T$; and
- $\exists S_{1}^{\prime} \subseteq S_{1}, S_{2}^{\prime} \subseteq S_{2}$ such that $\sum_{x \in S_{1}^{\prime}} x+\sum_{x \in S_{2}^{\prime}} x=T$.

Idea: Check whether the second statement hold.

How does this help?

The Algorithm

- Partition S into S_{1} and S_{2}.
- $T_{1} \leftarrow$ Set of the sums of all possible subsets of S_{1}.
- $T_{2} \leftarrow$ Set of the sums of all possible subsets of S_{2}.
- $T_{2} \leftarrow$ Sort T_{2}.
- For each $t \in T_{1}$
- Check whether $T-t \in T_{2}$

The Algorithm

- Partition S into S_{1} and S_{2}.
- $T_{1} \leftarrow$ Set of the sums of all possible subsets of $S_{1} . O\left(2^{\left|S_{1}\right|}\right)$
- $T_{2} \leftarrow$ Set of the sums of all possible subsets of S_{2}. $O\left(2^{\left|S_{2}\right|}\right)$
- $T_{2} \leftarrow$ Sort T_{2}. $O\left(\left|S_{2}\right| \cdot 2^{\left|S_{2}\right|}\right)$
- For each $t \in T_{1}$

$$
\left|T_{1}\right|=O\left(2^{\left|S_{1}\right|}\right)
$$

- Check whether $T-t \in T_{2}$

$$
O\left(\log \left|T_{2}\right|\right)=O\left(\left|S_{2}\right|\right)
$$

$$
O\left(\left|S_{2}\right| \cdot 2^{\left|S_{1}\right|}+\left|S_{2}\right| \cdot 2^{\left|S_{2}\right|}\right)=O^{*}\left(2^{\left|S_{1}\right|}+2^{\left|S_{2}\right|}\right)
$$

The Algorithm

- Partition S into S_{1} and S_{2}.
- $T_{1} \leftarrow$ Set of the sums of all possible subsets of $S_{1} . O\left(2^{\left|S_{1}\right|}\right)$
- $T_{2} \leftarrow$ Set of the sums of all possible subsets of $S_{2} . O\left(2^{\left|S_{2}\right|}\right)$
- $T_{2} \leftarrow$ Sort T_{2}.
$O\left(\left|S_{2}\right| \cdot 2^{\left|S_{2}\right|}\right)$
- For each $t \in T_{1}$

$$
\left|T_{1}\right|=O\left(2^{\left|S_{1}\right|}\right)
$$

- Check whether $T-t \in T_{2}$
$O\left(\log \left|T_{2}\right|\right)=O\left(\left|S_{2}\right|\right)$

Choosing $\left|S_{1}\right|=\left\lfloor\frac{n}{2}\right\rfloor$ and $\left|S_{2}\right|=\left\lceil\frac{n}{2}\right\rceil$:

$$
O^{*}\left(2^{\left|S_{1}\right|}+2^{\left|S_{2}\right|}\right)=O^{*}\left(2^{n / 2}+2^{n / 2}\right)=O^{*}\left(2^{\frac{n}{2}}\right)
$$

Intermission: Generating All Subsets

- Let S be a set of n elements, where n is small.
- Option 1: use integers to encode the characteristic vectors of all subsets $S^{\prime} \subseteq S$

```
    S={2, 5, 3, 13, 7, 8, 9, 18, 3}
x=0b
    S'={ 5, 3 ,
```



```
uint64_t nsums = static_cast<uint64_t>(1)<<S.size(); //2^n
```

uint64_t nsums = static_cast<uint64_t>(1)<<S.size(); //2^n
std::vector<int> sums(nsums, 0);
std::vector<int> sums(nsums, 0);
for(uint64_t x=0; x<nsums; x++)
for(uint64_t x=0; x<nsums; x++)
for(unsigned int i=O; i<S.size(); i++)
for(unsigned int i=O; i<S.size(); i++)
sums[x] += ((x>>i) \& 1u)?S[i]:0;

```
        sums[x] += ( (x>>i) & 1u )?S[i]:0;
```

Time: $O\left(n \cdot 2^{n}\right)$
$\approx 2 \mathrm{~s}$ for $n=25$

Intermission: Generating All Subsets

- Let S be a set of n elements, where n is small.
- Option 1: use integers to encode the characteristic vectors of all subsets $S^{\prime} \subseteq S$

```
    S={2,5,3,13,7, 8, 9, 18, 3}
x=0b
    S'={ 5, 3, 8, 18,
uint64_t nsums = static_cast<uint64_t>(1)<<S.size(); //2^n
std::vector<int> sums(nsums, 0);
for(uint64_t x=0; x<nsums; x++)
    for(unsigned int i=0; i<S.size(); i++)
        sums[x] += ((x>>i) & 1u ) * S[i];
```

Time: $O\left(n \cdot 2^{n}\right)$

Intermission: Generating All Subsets

- Option 2: explicitly maintain the characteristic vector.
- Update the previous sum when the characteristic vector changes.

$$
\left.\begin{array}{cccccccc}
S=\left\{\begin{array}{ccc}
2, & 5, & 3, \\
0 & 1 & 1
\end{array} 0_{0}, 7,8, ~\right. & 0 & 18 & 0 & 1 & 0
\end{array}\right\}
$$

sum $=34$

Intermission: Generating All Subsets

- Option 2: explicitly maintain the characteristic vector.
- Update the previous sum when the characteristic vector changes.

$$
\left.\left.\begin{array}{r}
S=\{2, \\
0, \\
0
\end{array} 1,1,13,7,8,9,18,3\right\}\right\}
$$

sum $=37$

Intermission: Generating All Subsets

- Option 2: explicitly maintain the characteristic vector.
- Update the previous sum when the characteristic vector changes.

$$
\begin{array}{ccccccccc}
S=\left\{\begin{array}{cc}
2, & 5, \\
0 & 1
\end{array}, 13, ~\right. & 1 & 0 & 0 & 1 & 1 & 0 & 0
\end{array}
$$

$$
\text { sum }=25
$$

Intermission: Generating All Subsets

- Option 2: explicitly maintain the characteristic vector.
- Update the previous sum when the characteristic vector changes.

$$
\begin{aligned}
& S=\{2,5,3,13,7,8,9,18,3\} \\
& \begin{array}{lllllllll}
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0
\end{array}
\end{aligned}
$$

sum $=25$

Time complexity?

Intermission: Generating All Subsets

$$
\begin{array}{cccccccccc}
b_{n-1} & & & \cdots & & & b_{2} & b_{1} & b_{0} \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0
\end{array}
$$

- b_{0} flips at every iteration
- b_{1} flips every 2 iterations
- b_{2} flips every 4 iterations
- b_{i} flips every 2^{i} iterations

Total \# of operations (including updates to sum) \propto \# bit flips

$$
\sum_{i=0}^{n-1} \frac{2^{n}}{2^{i}}=\sum_{i=1}^{n} 2^{i}=2^{n+1}-2=\Theta\left(2^{n}\right) .
$$

Generating All Subsets

```
uint64_t nsums = static_cast<uint64_t>(1)<<S.size(); //2^n
std::vector<int> &sums = *new std::vector<int>(nsums);
std::vector<bool> bits(S.size());
for(uint64_t i=0; i<nsums; i++)
{
    int j=0;
    while(bits[j])
    {
        bits[j] = 0;
        sums[i] -= S[j];
        j++;
        }
        bits[j]=1;
        sums[i] += bits[j];
}
```


Back to Subset Sum: Which Algorithm?

Dynamic Programming

$$
\begin{aligned}
& O(n \cdot T) \\
& T \leq 2^{\frac{n}{2}}
\end{aligned}
$$

Split and List
$O\left(n \cdot 2^{\frac{n}{2}}\right)$

$$
T \geq 2^{\frac{n}{2}}
$$

OK for $n \leq 50$, regardless of T

Split \& List

- Split input into two sets S_{1}, S_{2}
- Explicitly compute all possible (partial) solutions w.r.t. S_{1} and S_{2}

Brute force!

- Combine the solutions of S_{1} with those of S_{2}

Quicker than brute force

Can we split into 3 sets?

1-in-3 positive SAT

1-in-3 positive SAT

Input: A formula ϕ consisting of

- A set of n boolean variables x_{1}, \ldots, x_{n}
- A collection of m clauses C_{1}, \ldots, C_{m}, i.e., triples of variables $C_{j}=\left(c_{j}^{(1)}, c_{j}^{(2)}, c_{j}^{(3)}\right) \in\left\{x_{1}, \ldots, x_{n}\right\}^{3}$

A truth assignment is a function $\tau:\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow\{\top, \perp\}$

- A clause $C_{j}=\left(c_{j}^{(1)}, c_{j}^{(2)}, c_{j}^{(3)}\right)$ is satisfied by τ iff exactly one of $\tau\left(c_{j}^{(1)}\right), \tau\left(c_{j}^{(2)}\right)$, and $\tau\left(c_{j}^{(3)}\right)$ is T .
- ϕ is satisfied iff all m clauses C_{1}, \ldots, C_{m} are satisfied.

Question: Is there a truth assigment that satisfies ϕ ?

Example

Formula

$$
\phi=\left(x_{1}, x_{2}, x_{4}\right) \wedge\left(x_{2}, x_{4}, x_{5}\right) \wedge\left(x_{1}, x_{3}, x_{5}\right) \wedge\left(x_{2}, x_{3}, x_{1}\right)
$$

Example

Formula

$$
\phi=\left(x_{1}, x_{2}, x_{4}\right) \wedge\left(x_{2}, x_{4}, x_{5}\right) \wedge\left(x_{1}, x_{3}, x_{5}\right) \wedge\left(x_{2}, x_{3}, x_{1}\right)
$$

Satisfying assignment:

$$
x_{1}=\perp \quad x_{2}=\perp \quad x_{3}=\top \quad x_{4}=\top \quad x_{5}=\perp
$$

Example

Formula

$$
\phi=\left(x_{1}, x_{2}, x_{4}\right) \wedge\left(x_{2}, x_{4}, x_{5}\right) \wedge\left(x_{1}, x_{3}, x_{5}\right) \wedge\left(x_{2}, x_{3}, x_{1}\right)
$$

Satisfying assignment:

$$
x_{1}=\perp \quad x_{2}=\perp \quad x_{3}=\top \quad x_{4}=\top \quad x_{5}=\perp
$$

Trivial solution $O^{*}\left(2^{n}\right)$

$$
0
$$

An Algorithm Based on Split \& List

- Split the n boolean variables into two sets S_{1}, S_{2} of size $\approx \frac{n}{2}$
- For each possible truth assigment τ_{1} of the variables in S_{1}
- If τ_{1} sets ≥ 2 variables in the same clause to T, discard it.
- Otherwise, store in X_{1} the characteristic vector $\chi\left(\tau_{1}\right)=\left(\chi_{1}, \chi_{2}, \ldots, \chi_{m}\right) \in\{\top, \perp\}^{m}$ of the satisfied clauses, where $\chi_{j}=\top$ iff τ_{1} satisfies C_{j}.
- Compute X_{2} in a similar way.
- Sort X_{2} (e.g., w.r.t. the lexicographic order)
- For each vector $\chi=\left(\chi_{1}, \ldots, \chi_{m}\right) \in X_{1}$
- $\bar{\chi} \leftarrow\left(\overline{\chi_{1}}, \ldots, \overline{\chi_{m}}\right)$
- Binary search for \bar{X} in X_{2}

