
Subset Sum

Subset Sum

• A (multi)-set S ⊆ N+ of n positive integers s1, . . . , sn.

Question

Input

Is there a subset S′ ⊆ S such that
P

x∈S′ x = T?

• A target value T ∈ N+.

Example

S
5

2

7

18
9

8

13

3

3

T = 37

Example

S
5

2

7

18
9

8

13

3

3

T = 37

1813

3

3

Answer: YES!

S ′

A Dynamic Programming Algorithm

Subproblem definition:

OPT [i, t] = true iff ∃S′′ ⊆ {s1, . . . , si} such that
X

x∈S′′

x = t.

Base cases:

OPT [0, 0] = true.

Recursive formula:

OPT [0, t] = false, for t > 0.

A Dynamic Programming Algorithm

Subproblem definition:

OPT [i, t] = true iff ∃S′′ ⊆ {s1, . . . , si} such that
X

x∈S′′

x = t.

Base cases:

OPT [0, 0] = true.

Recursive formula:

• Either we ignore si OPT [i, t] = OPT [i− 1, t]

• Or we include si in S′′... OPT [i, t] = OPT [i− 1, t− si]

(as long as t ≥ si)

OPT [0, t] = false, for t > 0.

A Dynamic Programming Algorithm

Subproblem definition:

OPT [i, t] = true iff ∃S′′ ⊆ {s1, . . . , si} such that
X

x∈S′′

x = t.

Base cases:

OPT [0, 0] = true.

Recursive formula:

OPT [i, t] =

(
OPT [i− 1, t] if t < si

OPT [i− 1, t] ∨OPT [i− 1, t− si] if t ≥ si

OPT [0, t] = false, for t > 0.

Time Complexity

• Θ(n · T) subproblems

• Each problem can be solved in constant time

• Overall time: Θ(n · T)

Is this a polynomial-time algorithm?

Time Complexity

• Θ(n · T) subproblems

• Each problem can be solved in constant time

• Overall time: Θ(n · T)

Is this a polynomial-time algorithm?

NO!
The input size is O(n log T) (Under reasonalbe assumptions)

Choose, e.g., T = 2n.

This is called a pseudo-polynomial-time algorithm.

Can we do better?

• Subset Sum is a well-known NP-complete problem.

• A polynomial-time algorithm for Subset Sum
would imply P=NP.

• Let’s give up on polynomial-time algorithms and look at
exponential algorithms.

• Easy exercise: come up with an algorithm with time
complexity O∗(2n).

• Can the exponent be improved?

(OK for n ≈ 25)

Can we do better?

• Subset Sum is a well-known NP-complete problem.

• A polynomial-time algorithm for Subset Sum
would imply P=NP.

• Let’s give up on polynomial-time algorithms and look at
exponential algorithms.

• Easy exercise: come up with an algorithm with time
complexity O∗(2n).

• Can the exponent be improved?

(OK for n ≈ 25)

O∗(2n) is a shorthand for O(2n · poly(n)).

Split & List

Split & List

Partition S into S1 and S2.

Observation: The following two statements are equivalent:

• ∃S′ ⊆ S such that
P

x∈S′ x = T ; and

• ∃S′
1 ⊆ S1, S

′
2 ⊆ S2 such that

P
x∈S′

1
x+

P
x∈S′

2
x = T .

Idea: Check whether the second statement hold.

How does this help?

The Algorithm

• Partition S into S1 and S2.

• T1 ← Set of the sums of all possible subsets of S1.

• T2 ← Set of the sums of all possible subsets of S2.

• T2 ← Sort T2.

• For each t ∈ T1

• Check whether T − t ∈ T2

The Algorithm

• Partition S into S1 and S2.

• T1 ← Set of the sums of all possible subsets of S1.

• T2 ← Set of the sums of all possible subsets of S2.

• T2 ← Sort T2.

• For each t ∈ T1

• Check whether T − t ∈ T2

O(n)

O(2|S1|)

O(2|S2|)

|T1| = O(2|S1|)

O(log |T2|) = O(|S2|)

O
�
|S2| · 2|S1| + |S2| · 2|S2|

�
= O∗

�
2|S1| + 2|S2|

�

O(|S2| · 2|S2|)

The Algorithm

• Partition S into S1 and S2.

• T1 ← Set of the sums of all possible subsets of S1.

• T2 ← Set of the sums of all possible subsets of S2.

• T2 ← Sort T2.

• For each t ∈ T1

• Check whether T − t ∈ T2

O(n)

O(2|S1|)

O(2|S2|)

|T1| = O(2|S1|)

O(log |T2|) = O(|S2|)

O∗
�
2|S1| + 2|S2|

�
= O∗

�
2n/2 + 2n/2

�
= O∗(2

n
2)

Choosing |S1| = ⌊n
2 ⌋ and |S2| = ⌈n

2 ⌉:

O(|S2| · 2|S2|)

Intermission: Generating All Subsets
• Let S be a set of n elements, where n is small.

• Option 1: use integers to encode the characteristic
vectors of all subsets S′ ⊆ S

52 7 1898133 3S = { }, , , , , , , ,

x = 0b 0 1 1 0 0 01 1 0

S ′ = { 5 83 18, , , }
uint64_t nsums = static_cast<uint64_t>(1)<<S.size(); //2^n

std::vector<int> sums(nsums, 0);

for(uint64_t x=0; x<nsums; x++)

for(unsigned int i=0; i<S.size(); i++)

sums[x] += ((x>>i) & 1u)?S[i]:0;

Time: O(n · 2n) ≈ 2s for n = 25

Intermission: Generating All Subsets
• Let S be a set of n elements, where n is small.

• Option 1: use integers to encode the characteristic
vectors of all subsets S′ ⊆ S

52 7 1898133 3S = { }, , , , , , , ,

x = 0b 0 1 1 0 0 01 1 0

S ′ = { 5 83 18, , , }
uint64_t nsums = static_cast<uint64_t>(1)<<S.size(); //2^n

std::vector<int> sums(nsums, 0);

for(uint64_t x=0; x<nsums; x++)

for(unsigned int i=0; i<S.size(); i++)

sums[x] += ((x>>i) & 1u)?S[i]:0;

Time: O(n · 2n)

* S[i];

≈ 0.75s for n = 25

Intermission: Generating All Subsets

• Update the previous sum when the characteristic vector
changes.

• Option 2: explicitly maintain the characteristic vector.

0 1 1 0 0 01 1 0

52 7 1898133 3S = { }, , , , , , , ,

sum = 34

Intermission: Generating All Subsets

• Update the previous sum when the characteristic vector
changes.

• Option 2: explicitly maintain the characteristic vector.

52 7 1898133 3S = { }, , , , , , , ,

0 1 1 0 0 01 1 1

sum = 37

Intermission: Generating All Subsets

• Update the previous sum when the characteristic vector
changes.

• Option 2: explicitly maintain the characteristic vector.

52 7 1898133 3S = { }, , , , , , , ,

0 1 1 0 0 11 0 0

sum = 25

Intermission: Generating All Subsets

• Update the previous sum when the characteristic vector
changes.

• Option 2: explicitly maintain the characteristic vector.

52 7 1898133 3S = { }, , , , , , , ,

0 1 1 0 0 11 0 0

sum = 25

Time complexity?

Intermission: Generating All Subsets

• b0 flips at every iteration

0 1 1 0 0 01 1 0

bn−1 b2 b1 b0. . .

• b1 flips every 2 iterations

• b2 flips every 4 iterations

• . . .

• bi flips every 2i iterations

Total # of operations (including updates to sum) ∝ # bit flips

n−1X

i=0

2n

2i
=

nX

i=1

2i = 2n+1 − 2 = Θ(2n).

uint64_t nsums = static_cast<uint64_t>(1)<<S.size(); //2^n

std::vector<int> &sums = *new std::vector<int>(nsums);

std::vector<bool> bits(S.size());

for(uint64_t i=0; i<nsums; i++)

{

int j=0;

while(bits[j])

{

bits[j] = 0;

sums[i] -= S[j];

j++;

}

bits[j]=1;

sums[i] += bits[j];

}

Generating All Subsets

≈ 0.2s for n = 25

Back to Subset Sum: Which Algorithm?

Dynamic Programming Split and List

O(n · T) O(n · 2n
2)

T ≤ 2
n
2 T ≥ 2

n
2

OK for n ≤ 50, regardless of TOK for “small” T

Split & List

• Split input into two sets S1, S2

• Explicitly compute all possible (partial) solutions w.r.t. S1

and S2

Brute force!

• Combine the solutions of S1 with those of S2

Quicker than brute force

Can we split into 3 sets?

1-in-3 positive SAT

1-in-3 positive SAT
Input: A formula ϕ consisting of

• A set of n boolean variables x1, . . . , xn

• A collection of m clauses C1, . . . , Cm, i.e., triples of

variables Cj = (c
(1)
j , c

(2)
j , c

(3)
j) ∈ {x1, . . . , xn}3

A truth assignment is a function τ : {x1, . . . , xn} → {⊤,⊥}

• A clause Cj = (c
(1)
j , c

(2)
j , c

(3)
j) is satisfied by τ iff exactly

one of τ(c
(1)
j), τ(c

(2)
j), and τ(c

(3)
j) is ⊤.

• ϕ is satisfied iff all m clauses C1, . . . , Cm are satisfied.

Question: Is there a truth assigment that satisfies ϕ?

Example

ϕ = (x1, x2, x4) ∧ (x2, x4, x5) ∧ (x1, x3, x5) ∧ (x2, x3, x1)

Formula

Example

ϕ = (x1, x2, x4) ∧ (x2, x4, x5) ∧ (x1, x3, x5) ∧ (x2, x3, x1)

x1 = ⊥ x2 = ⊥ x3 = ⊤ x4 = ⊤ x5 = ⊥

Satisfying assignment:

Formula

Example

ϕ = (x1, x2, x4) ∧ (x2, x4, x5) ∧ (x1, x3, x5) ∧ (x2, x3, x1)

x1 = ⊥ x2 = ⊥ x3 = ⊤ x4 = ⊤ x5 = ⊥

Satisfying assignment:

Formula

Trivial solution O∗(2n)

An Algorithm Based on Split & List

• Split the n boolean variables into two sets S1, S2 of size ≈ n
2

• For each possible truth assigment τ1 of the variables in S1

• χ ← (χ1, . . . ,χm)

• If τ1 sets ≥ 2 variables in the same clause to ⊤, discard it.

• Otherwise, store in X1 the characteristic vector
χ(τ1) = (χ1,χ2, . . . ,χm) ∈ {⊤,⊥}m of the satisfied
clauses, where χj = ⊤ iff τ1 satisfies Cj .

• Compute X2 in a similar way.

• For each vector χ = (χ1, . . . ,χm) ∈ X1

• Binary search for X in X2

• Sort X2 (e.g., w.r.t. the lexicographic order)

