Subset Sum




Subset Sum

Input
o A (multi)-set S C N7 of n positive integers s1, ..., S,.

o A target value T € NT.

Question

Is there a subset 5" C S such that ) | oz =17



Example




Example

Answer: YES!



A Dynamic Programming Algorithm

Subproblem definition:

OPTIi,t] = true iff 38" C {s1,...,s;} such that » =t
$€S,/

Base cases:

OPT|0,0] = true. OPT|0,t] = false, fort > 0.

Recursive formula:



A Dynamic Programming Algorithm

Subproblem definition:

OPTIi,t] = true iff 38" C {s1,...,s;} such that » =t

mGS,/
Base cases:
OPT|0,0] = true. OPT|0,t] = false, for t > 0.
Recursive formula:
e Either we ignore s; OPT|i,t] = OPTi — 1,t]

e Or weinclude s; in S”... OPT[i,t] = OPT[i —1,t — s

(as long as t > s;)



A Dynamic Programming Algorithm

Subproblem definition:

OPTIi,t] = true iff 38" C {s1,...,s;} such that » =t

mGS,/
Base cases:
OPT|0,0] = true. OPT|0,t] = false, for t > 0.
Recursive formula:
(OPTi — 1,1 if t < s;

OPTJi,] = ¢

OPT:i—l,t:VOPT[i—l,t—Si] IftZSZ

\



Time Complexity
e O(n-T) subproblems
e Each problem can be solved in constant time

e Overall time: O(n-T)

Is this a polynomial-time algorithm?



Time Complexity
e O(n-T) subproblems
e Each problem can be solved in constant time

e Overall time: O(n-T)

Is this a polynomial-time algorithm?

NO!

The input size is O(nlogT) (Under reasonalbe assumptions)
Choose, e.g., T' = 2™,

This is called a pseudo-polynomial-time algorithm.



Can we do better?

Subset Sum is a well-known NP-complete problem.

A polynomial-time algorithm for Subset Sum
would imply P=NP.

Let's give up on polynomial-time algorithms and look at
exponential algorithms.

Easy exercise: come up with an algorithm with time
complexity O*(2"). (OK for n ~ 25)

Can the exponent be improved?



Can we do better?

Subset Sum is a well-known NP-complete problem.

A polynomial-time algorithm for Subset Sum
would imply P=NP.

Let's give up on polynomial-time algorithms and look at
exponential algorithms.

Easy exercise: come up with an algorithm with time
complexity O*(2"). (OK for n ~ 25)

O*(2™) is a shorthand for O(2" - poly(n)).




Split & List




Split & List

Partition S into S7; and 55.

Observation: The following two statements are equivalent:

e 35" C Ssuch that ), o o =T}, and

e 157 C 51,55 C S5 such that Z%Si T+ ersg r="T.

Ildea: Check whether the second statement hold.

How does this help?



The Algorithm

Partition .S into S7 and 5s.

T} < Set of the sums of all possible subsets of 5.

T5 <+ Set of the sums of all possible subsets of S5.

T5 Sort 15,

For each t € T}
e Check whether T'—t € T5



The Algorithm

Partition S into S7 and Ss. O(n)

T} < Set of the sums of all possible subsets of 5. O(2|Sl|)
T, «+ Set of the sums of all possible subsets of So. O(2!52])

T, < Sort Tb. O(] S| - 21521
For each t € T} ’Tl‘ — O(2|Sl|)
o Check whether T —t € T, O(log |T5]) = O(]Sa|)

0, (\SQ\ AL INE 2|S2|) — O* (2|Sl| 4 2|S2|)



The Algorithm

e Partition S into S; and 55. O(n)

o T} <+ Set of the sums of all possible subsets of 5. O(2|Sl|)
o T, < Set of the sums of all possible subsets of S,. O(2!52])

o Th + Sort T5. O(‘32’ ' 2|SQ|)
e Foreacht eTj 11| = O(2|Sl|)
o Check whether T —t € T O(log |T3|) = O(|S2])

Choosing |S1| = | 5] and [S2] = [ 5 |:

O (2|51| 4 2|52|) _ O (Qn/Q n 2n/2) _ 0*(2%)



Intermission: Generating All Subsets

e Let S be a set of n elements, where n is small.

e Option 1: use integers to encode the characteristic
vectors of all subsets S’ C S

S={2,5,3,13,7,8,9, 18, 3)
r=00 0 1 1 0 0 1 0 1 0
S = { 5. 3 . S 18 )

uint64_t nsums = static_cast<uint64_t>(1)<<S.size(); //2°n
std: :vector<int> sums(nsums, O0);
for(uint64_t x=0; x<nsums; x++)
for(unsigned int i=0; i<S.size(); i++)
sums [x] += ( (x>>1i) & 1u )?S[i]:0;

Time: O(n -2") ~ 2s for n = 25



Intermission: Generating All Subsets

e Let S be a set of n elements, where n is small.

e Option 1: use integers to encode the characteristic
vectors of all subsets S’ C S

S={2,5,3,13,7,8,9, 18, 3)
r=00 0 1 1 0 0 1 0 1 0
S = { 5. 3 . S 18 )

uint64_t nsums = static_cast<uint64_t>(1)<<S.size(); //2°n
std: :vector<int> sums(nsums, 0);
for(uint64_t x=0; x<nsums; x++)
for(unsigned int i=0; i<S.size(); i++)
sums [x] += ( (x>>i) & 1u ) * S[i];

Time: O(n -2") ~ 0.75s for n = 25



Intermission: Generating All Subsets

e Option 2: explicitly maintain the characteristic vector.

e Update the previous sum when the characteristic vector
changes.

S={2,5,3,13,7,8,9, 18, 3}
0o 1 1 0 0 1 0 1 0

sum = 34



Intermission: Generating All Subsets

e Option 2: explicitly maintain the characteristic vector.

e Update the previous sum when the characteristic vector
changes.

S={2,5,3,13,7,8,9, 18, 3)
o 1 1 0 0 1 0 1 1

sum = 37



Intermission: Generating All Subsets

e Option 2: explicitly maintain the characteristic vector.

e Update the previous sum when the characteristic vector
changes.

S={2,5,3,13,7,8,9, 18, 3)
o 1 1 0 0 1 1 0 0

sum = 25



Intermission: Generating All Subsets

e Option 2: explicitly maintain the characteristic vector.

e Update the previous sum when the characteristic vector
changes.

S={2,5,3,13,7,8,9, 18, 3)
o 1 1 0 0 1 1 0 0

sum = 25

Time complexity?



Intermission: Generating All Subsets

bn—l bg b1 bo
o 1 1 o 0 1 O I 0

e 0 flips at every iteration
e by flips every 2 iterations

e by flips every 4 iterations

o b, flips every 2° iterations

Total # of operations (including updates to sum) o< # bit flips

n—1 in n
> o = » 2l =2" 2 =0(2").
1=0 1=1



Generating All Subsets

uint64_t nsums = static_cast<uint64_t>(1)<<S.size(); //2°n
std: :vector<int> &sums = *new std::vector<int>(nsums) ;
std: :vector<bool> bits(S.size());

for(uint64_t i=0; i<nsums; i++)
{
int j=0;
while(bits[j])
{
bits[j] = 0;
sums [i] -= S[j];
j++;

}

bits[j]=1;
sums [i] += bits[j];

~ 0.2s for n = 25



Back to Subset Sum: Which Algorithm?

Dynamic Programming Split and List
O(n-T) O(n-22)
T <22 T > 22

OK for “small” T OK for n < 50, regardless of T’



Split & List
e Split input into two sets S7, So

e Explicitly compute all possible (partial) solutions w.r.t. S,
and SQ

Brute force!

e Combine the solutions of S; with those of S5

Quicker than brute force @

Can we split into 3 sets?



1-in-3 positive SAT




1-in-3 positive SAT

Input: A formula ¢ consisting of

e A set of n boolean variables z1,..., 2,
e A collection of m clauses C4,...,C,,, i.e., triples of
variables C'; = (c§-1),c§-2), (3) e {x1,...,x,}"
A truth assignment is a function 7: {x1,...,x,} — {T, L1}

. )) s satisfied by T iff exactly

o A clause C; = (cg-l) c§- ) §
nd 7(c)) is T.

one of 7(c <1>) r(ct?), a

e ¢ is satisfied iff all m clauses C4,...,C),, are satisfied.

Question: |s there a truth assigment that satisfies ¢7



Example

Formula

¢ — (56173327:64) A (33273347935) A (517175173,5135) A (37275637331)



Example

Formula

¢ — ($17$27$4) A (513275647335) A (33175133,335) A (CEQVCC?))xl)

Satisfying assignment:

$1:J_ 332:J_ 333:—|_ .2134:—|_ ZC5:J_



Example

Formula

¢ — ($17$27$4) A (513275647335) A (33175133,335) A (CEQVCC?))xl)

Satisfying assignment:

$1:J_ 332:J_ 333:—|_ .2134:—|_ ZC5:J_

Trivial solution O*(2")






An Algorithm Based on Split & List

e Split the n boolean variables into two sets S, 53 of size = 5

e For each possible truth assigment 7 of the variables in .S}
o |f 7y sets > 2 variables in the same clause to T, discard it.

e Otherwise, store in X the characteristic vector

X(11) = (x1,X2,---, Xm) € {T, L}™ of the satisfied
clauses, where x; = T iff 7y satisfies C;.

e Compute X5 in a similar way.

e Sort X5 (e.g., w.r.t. the lexicographic order)
e For each vector x = (x1,...,Xxm) € X1

X < (X1, Xm)

e Binary search for X in X5



