Limited Backtracking

$2\text{-}\mathsf{SAT}$

Input: A formula ϕ consisting of

- A set of n boolean variables x_1, \ldots, x_n
- A conjuction of m clauses C_1, \ldots, C_m , i.e., disjunctions of 2 literals $C_j = (c_j^{(1)} \lor c_j^{(2)})$, where a literal is either a variable or its negation.

A truth assignment is a function $\tau : \{x_1, \ldots, x_n\} \to \{\top, \bot\}$

- A clause $C_j = (c_j^{(1)} \lor c_j^{(2)})$ is *satisfied* by τ according to the rules of boolean algebra.
- ϕ is satisfied iff all m clauses C_1, \ldots, C_m are satisfied.

Question: Is there a truth assignment that satisfies ϕ ?

Formula

$$\phi = (x_1 \lor \overline{x_2}) \land (x_2 \lor x_4) \land (\overline{x_1} \lor \overline{x_3}) \land (x_3 \lor \overline{x_2}) \land (\overline{x_1} \lor \overline{x_4})$$

Formula

$$\phi = (x_1 \vee \overline{x_2}) \land (x_2 \vee x_4) \land (\overline{x_1} \vee \overline{x_3}) \land (x_3 \vee \overline{x_2}) \land (\overline{x_1} \vee \overline{x_4})$$

Satisfying assignment:

$$x_1 = \bot \quad x_2 = \bot \quad x_3 = \top \quad x_4 = \top$$

A Naive Solution

Idea: Recursively try all possible variable assignments Initially all variables are *unassigned*.

Bruteforce():

- If \exists unassigned variable x_i
 - Set x_i to \top
 - If Bruteforce(): Return true
 - Set x_i to \perp
 - If Bruteforce(): Return true
 - Set x_i to "unassigned" and return false
- Else
 - Return true $\iff \phi$ is satisfied.

An Observation

- A clause of the form $(\neg x_i \lor x_j)$ corresponds to $x_i \implies x_j$
- If $x_i = \top$ then, in any satisfying assignment, $x_j = \top$
- We say that x_j is **implied**.

• The same holds for any clause $C_j = (c_j^{(1)} \lor c_j^{(2)})$

• If
$$c_j^{(1)} = \bot$$
 , then $c_j^{(2)} = \top$

• We say that the variable x_k corresponding to $c_i^{(2)}$ implied.

• If
$$c_j^{(2)} = x_k$$
, then $x_k = \top$. If $c_j^{(2)} = \overline{x_k}$, then $x_k = \bot$.

 $\phi = (x_1 \lor \overline{x_2}) \land (x_2 \lor x_4) \land (\overline{x_1} \lor \overline{x_3}) \land (x_3 \lor \overline{x_2}) \land (\overline{x_1} \lor \overline{x_4})$

$\phi = (x_1 \lor \overline{x_2}) \land (x_2 \lor x_4) \land (\overline{x_1} \lor \overline{x_3}) \land (x_3 \lor \overline{x_2}) \land (\overline{x_1} \lor \overline{x_4})$

Assume that $x_1 = \top$

 $\phi = (x_1 \lor \overline{x_2}) \land (x_2 \lor x_4) \land (\overline{x_1} \lor \overline{x_3}) \land (x_3 \lor \overline{x_2}) \land (\overline{x_1} \lor \overline{x_4})$

Assume that $x_1 = \top$

 x_3 and x_4 are implied. $x_3 = \bot$ and $x_4 = \bot$

 $\phi = (x_1 \lor \overline{x_2}) \land (x_2 \lor x_4) \land (\overline{x_1} \lor \overline{x_3}) \land (x_3 \lor \overline{x_2}) \land (\overline{x_1} \lor \overline{x_4})$

Assume that $x_1 = \top$

 x_3 and x_4 are implied. $x_3 = \bot$ and $x_4 = \bot$ $x_2 = \top$ is implied

 $\phi = (x_1 \lor \overline{x_2}) \land (x_2 \lor x_4) \land (\overline{x_1} \lor \overline{x_3}) \land (x_3 \lor \overline{x_2}) \land (\overline{x_1} \lor \overline{x_4})$

Assume that $x_1 = \top$

 x_3 and x_4 are implied. $x_3 = \bot$ and $x_4 = \bot$ $x_2 = \top$ is implied

 $x_2 = \bot$ is implied, a contradiction!

$\phi = (x_1 \lor \overline{x_2}) \land (x_2 \lor x_4) \land (\overline{x_1} \lor \overline{x_3}) \land (x_3 \lor \overline{x_2}) \land (\overline{x_1} \lor \overline{x_4})$

Assume that $x_1 = \bot$

$\phi = (x_1 \lor \overline{x_2}) \land (x_2 \lor x_4) \land (\overline{x_1} \lor \overline{x_3}) \land (x_3 \lor \overline{x_2}) \land (\overline{x_1} \lor \overline{x_4})$

Assume that $x_1 = \bot$

 $x_2 = \bot$ is implied.

$\phi = (x_1 \vee \overline{x_2}) \land (x_2 \vee x_4) \land (\overline{x_1} \vee \overline{x_3}) \land (x_3 \vee \overline{x_2}) \land (\overline{x_1} \vee \overline{x_4})$

Assume that $x_1 = \bot$

- $x_2 = \bot$ is implied.
- $x_4 = \top$ is implied.

$\phi = (x_1 \lor \overline{x_2}) \land (x_2 \lor x_4) \land (\overline{x_1} \lor \overline{x_3}) \land (x_3 \lor \overline{x_2}) \land (\overline{x_1} \lor \overline{x_4})$

Assume that $x_1 = \bot$

- $x_2 = \bot$ is implied.
- $x_4 = \top$ is implied.

We found a satisfying assignment.

A Better Algorithm?

A Better Algorithm?

Idea: Only branch on non-implied variables.

Bruteforce():

- If \exists unassigned variable x_i :
 - Set x_i to op
 - Iteratively set all implied variables
 - If no contradiction is found and Bruteforce():
 - Return true
 - Revert all changes
 - Set x_i to \perp
 - Iteratively set all implied variables
 - If no contradiction is found and Bruteforce():
 - Return true
 - Revert all changes and return false
- Else
 - Return true

A Better Algorithm?

Idea: Only branch on non-implied variables.

Bruteforce():

- If \exists unassigned variable x_i :
 - Set x_i to op
 - Iteratively set all implied variables
 - If no contradiction is found and Bruteforce():
 - Return true
 - Revert all changes
 - Set x_i to \perp
 - Iteratively set all implied variables
 - If no contradiction is found and Bruteforce():
 - Return true
 - Revert all changes and return false
- Else
 - Return true

No variables left to assign and no contradictions

 \blacksquare x_i is not implied

 $\phi = (x_1 \lor x_2) \land (x_3 \lor x_4) \land (x_5 \lor x_6) \land \dots \land (x_{n-1}, x_n)$ $\land (x_{n-1} \lor \overline{x_n}) \land (\overline{x_{n-1}} \lor x_n) \land (\overline{x_{n-1}} \lor \overline{x_n})$

 $\phi = (x_1 \lor x_2) \land (x_3 \lor x_4) \land (x_5 \lor x_6) \land \dots \land (x_{n-1}, x_n)$ $\land (x_{n-1} \lor \overline{x_n}) \land (\overline{x_{n-1}} \lor x_n) \land (\overline{x_{n-1}} \lor \overline{x_n})$

 $\phi = (x_1 \lor x_2) \land (x_3 \lor x_4) \land (x_5 \lor x_6) \land \dots \land (x_{n-1}, x_n)$ $\land (x_{n-1} \lor \overline{x_n}) \land (\overline{x_{n-1}} \lor x_n) \land (\overline{x_{n-1}} \lor \overline{x_n})$

Limited Backtracking

Bruteforce():

- If \exists unassigned variable x_i :
 - Set x_i to \top
 - Iteratively set all implied variables
 - If no contradiction is found and Bruteforce():
 - Return true
 - Revert all changes
 - Set x_i to \perp
 - Iteratively set all implied variables
 - If no contradiction is found and Bruteforce():
 - Return true
 - Abort the whole algorithm and report ϕ as not satisfiable
- Else
 - Return true

 $\phi = (x_1 \lor x_2) \land (x_3 \lor x_4) \land (x_5 \lor x_6) \land \dots \land (x_{n-1}, x_n)$ $\wedge (x_{n-1} \vee \overline{x_n}) \wedge (\overline{x_{n-1}} \vee x_n) \wedge (\overline{x_{n-1}} \vee \overline{x_n})$

 (x_1)

 $\phi = (x_1 \lor x_2) \land (x_3 \lor x_4) \land (x_5 \lor x_6) \land \dots \land (x_{n-1}, x_n)$ $\wedge (x_{n-1} \vee \overline{x_n}) \wedge (\overline{x_{n-1}} \vee x_n) \wedge (\overline{x_{n-1}} \vee \overline{x_n})$

 $\phi = (x_1 \lor x_2) \land (x_3 \lor x_4) \land (x_5 \lor x_6) \land \dots \land (x_{n-1}, x_n)$ $\wedge (x_{n-1} \vee \overline{x_n}) \wedge (\overline{x_{n-1}} \vee x_n) \wedge (\overline{x_{n-1}} \vee \overline{x_n})$

 $\phi = (x_1 \lor x_2) \land (x_3 \lor x_4) \land (x_5 \lor x_6) \land \dots \land (x_{n-1}, x_n)$ $\wedge (x_{n-1} \vee \overline{x_n}) \wedge (\overline{x_{n-1}} \vee x_n) \wedge (\overline{x_{n-1}} \vee \overline{x_n})$

 $\phi = (x_1 \lor x_2) \land (x_3 \lor x_4) \land (x_5 \lor x_6) \land \dots \land (x_{n-1}, x_n)$ $\wedge (x_{n-1} \vee \overline{x_n}) \wedge (\overline{x_{n-1}} \vee x_n) \wedge (\overline{x_{n-1}} \vee \overline{x_n})$

 $\phi = (x_1 \lor x_2) \land (x_3 \lor x_4) \land (x_5 \lor x_6) \land \dots \land (x_{n-1}, x_n)$ $\wedge (x_{n-1} \vee \overline{x_n}) \wedge (\overline{x_{n-1}} \vee x_n) \wedge (\overline{x_{n-1}} \vee \overline{x_n})$

 $\phi = (x_1 \lor x_2) \land (x_3 \lor x_4) \land (x_5 \lor x_6) \land \dots \land (x_{n-1}, x_n)$ $\wedge (x_{n-1} \vee \overline{x_n}) \wedge (\overline{x_{n-1}} \vee x_n) \wedge (\overline{x_{n-1}} \vee \overline{x_n})$

 $\phi = (x_1 \lor x_2) \land (x_3 \lor x_4) \land (x_5 \lor x_6) \land \dots \land (x_{n-1}, x_n)$ $\wedge (x_{n-1} \vee \overline{x_n}) \wedge (\overline{x_{n-1}} \vee x_n) \wedge (\overline{x_{n-1}} \vee \overline{x_n})$

 $\phi = (x_1 \lor x_2) \land (x_3 \lor x_4) \land (x_5 \lor x_6) \land \dots \land (x_{n-1}, x_n)$ $\wedge (x_{n-1} \vee \overline{x_n}) \wedge (\overline{x_{n-1}} \vee x_n) \wedge (\overline{x_{n-1}} \vee \overline{x_n})$

Correctness

Claim: If the algorithm returns true, then ϕ is satisfiable. Proof: trivial. The algorithm can only return true if a satisfying assignment is constructed.

Claim: If the algorithm aborts, then ϕ is not satisfiable.

- Consder the recursive call that aborted and reported ϕ as unsatisfiable.
- All (previously unassigned) variables that are assigned during this call are not implied by any variable assigned in a previous call.
- Assigning either \top or \bot to x_i leads to a contradiction regardless of the values of the previous variables.

- Assume that we can find in O(1) time:
 - A contradiction, if one exists.
 - An unassigned implied variable, if any.

- Assume that we can find in O(1) time:
 - A contradiction, if one exists.
 - An unassigned implied variable, if any.

- Assume that we can find in O(1) time:
 - A contradiction, if one exists.
 - An unassigned implied variable, if any.

- Assume that we can find in O(1) time:
 - A contradiction, if one exists.
 - An unassigned implied variable, if any.

- Assume that we can find in O(1) time:
 - A contradiction, if one exists.
 - An unassigned implied variable, if any.

- Assume that we can find in O(1) time:
 - A contradiction, if one exists.
 - An unassigned implied variable, if any.

- Assume that we can find in O(1) time:
 - A contradiction, if one exists.
 - An unassigned implied variable, if any.

- Assume that we can find in O(1) time:
 - A contradiction, if one exists.
 - An unassigned implied variable, if any.

- Assume that we can find in O(1) time:
 - A contradiction, if one exists.
 - An unassigned implied variable, if any.

- Assume that we can find in O(1) time:
 - A contradiction, if one exists.
 - An unassigned implied variable, if any.

- Assume that we can find in O(1) time:
 - A contradiction, if one exists.
 - An unassigned implied variable, if any.

- Assume that we can find in O(1) time:
 - A contradiction, if one exists.
 - An unassigned implied variable, if any.

- Assume that we can find in O(1) time:
 - A contradiction, if one exists.
 - An unassigned implied variable, if any.

- Assume that we can find in O(1) time:
 - A contradiction, if one exists.
 - An unassigned implied variable, if any.

- Assume that we can find in O(1) time:
 - A contradiction, if one exists.
 - An unassigned implied variable, if any.

- Assume that we can find in O(1) time:
 - A contradiction, if one exists.
 - An unassigned implied variable, if any.

- Assume that we can find in O(1) time:
 - A contradiction, if one exists.
 - An unassigned implied variable, if any.

- Assume that we can find in O(1) time:
 - A contradiction, if one exists.
 - An unassigned implied variable, if any.

- Assume that we can find in O(1) time:
 - A contradiction, if one exists.
 - An unassigned implied variable, if any.

- Assume that we can find in O(1) time:
 - A contradiction, if one exists.
 - An unassigned implied variable, if any.

- Assume that we can find in O(1) time:
 - A contradiction, if one exists.
 - An unassigned implied variable, if any.

- Assume that we can find in O(1) time:
 - A contradiction, if one exists.
 - An unassigned implied variable, if any.

