2-SAT and Strongly Connected Components

$2\text{-}\mathsf{SAT}$

Input: A formula ϕ consisting of

- A set of n boolean variables x_1, \ldots, x_n
- A conjuction of m clauses C_1, \ldots, C_m , i.e., disjunctions of 2 literals $C_j = (c_j^{(1)} \lor c_j^{(2)})$, where a literal is either a variable or its negation.

A truth assignment is a function $\tau : \{x_1, \ldots, x_n\} \rightarrow \{\top, \bot\}$

- A clause $C_j = (c_j^{(1)} \lor c_j^{(2)})$ is *satisfied* by τ according to the rules of boolean algebra.
- ϕ is satisfied iff all m clauses C_1, \ldots, C_m are satisfied.

Question: Is there a truth assignment that satisfies ϕ ?

Formula

$$\phi = (x_1 \lor \overline{x_2}) \land (x_2 \lor x_4) \land (\overline{x_1} \lor \overline{x_3}) \land (x_3 \lor \overline{x_2}) \land (\overline{x_1} \lor \overline{x_4})$$

Formula

$$\phi = (x_1 \lor \overline{x_2}) \land (x_2 \lor x_4) \land (\overline{x_1} \lor \overline{x_3}) \land (x_3 \lor \overline{x_2}) \land (\overline{x_1} \lor \overline{x_4})$$

Satisfying assignment:

$$x_1 = \bot \quad x_2 = \bot \quad x_3 = \top \quad x_4 = \top$$

Formula

$$\phi = (x_1 \vee \overline{x_2}) \land (x_2 \vee x_4) \land (\overline{x_1} \vee \overline{x_3}) \land (x_3 \vee \overline{x_2}) \land (\overline{x_1} \vee \overline{x_4})$$

Satisfying assignment:

$$x_1 = \bot \quad x_2 = \bot \quad x_3 = \top \quad x_4 = \top$$

Trivial solution $O^*(2^n)$

An Observation

- A clause of the form $(\neg x_i \lor x_j)$ corresponds to $x_i \implies x_j$
- If $x_i = \top$ then, in any satisfying assignment, $x_j = \top$
- We say that x_j is **implied**.

• The same holds for any clause $C_j = (c_j^{(1)} \lor c_j^{(2)})$

• If
$$c_j^{(1)} = \bot$$
 , then $c_j^{(2)} = \top$

• We say that the variable x_k corresponding to $c_j^{(2)}$ implied.

• If
$$c_j^{(2)} = x_k$$
, then $x_k = \top$. If $c_j^{(2)} = \overline{x_k}$, then $x_k = \bot$.

 $\phi = (x_1 \lor \overline{x_2}) \land (x_2 \lor x_4) \land (\overline{x_1} \lor \overline{x_3}) \land (x_3 \lor \overline{x_2}) \land (\overline{x_1} \lor \overline{x_4})$

$\phi = (x_1 \lor \overline{x_2}) \land (x_2 \lor x_4) \land (\overline{x_1} \lor \overline{x_3}) \land (x_3 \lor \overline{x_2}) \land (\overline{x_1} \lor \overline{x_4})$

Assume that $x_1 = \top$

 $\phi = (x_1 \lor \overline{x_2}) \land (x_2 \lor x_4) \land (\overline{x_1} \lor \overline{x_3}) \land (x_3 \lor \overline{x_2}) \land (\overline{x_1} \lor \overline{x_4})$

Assume that $x_1 = \top$

 x_3 and x_4 are implied. $x_3 = \bot$ and $x_4 = \bot$

 $\phi = (x_1 \lor \overline{x_2}) \land (x_2 \lor x_4) \land (\overline{x_1} \lor \overline{x_3}) \land (x_3 \lor \overline{x_2}) \land (\overline{x_1} \lor \overline{x_4})$

Assume that $x_1 = \top$

 x_3 and x_4 are implied. $x_3 = \bot$ and $x_4 = \bot$ $x_2 = \top$ is implied

 $\phi = (x_1 \lor \overline{x_2}) \land (x_2 \lor x_4) \land (\overline{x_1} \lor \overline{x_3}) \land (x_3 \lor \overline{x_2}) \land (\overline{x_1} \lor \overline{x_4})$

Assume that $x_1 = \top$

 x_3 and x_4 are implied. $x_3 = \bot$ and $x_4 = \bot$ $x_2 = \top$ is implied

 $x_2 = \bot$ is implied, a contradiction!

$\phi = (x_1 \lor \overline{x_2}) \land (x_2 \lor x_4) \land (\overline{x_1} \lor \overline{x_3}) \land (x_3 \lor \overline{x_2}) \land (\overline{x_1} \lor \overline{x_4})$

Assume that $x_1 = \bot$

$\phi = (x_1 \lor \overline{x_2}) \land (x_2 \lor x_4) \land (\overline{x_1} \lor \overline{x_3}) \land (x_3 \lor \overline{x_2}) \land (\overline{x_1} \lor \overline{x_4})$

Assume that $x_1 = \bot$

 $x_2 = \bot$ is implied.

$\phi = (x_1 \vee \overline{x_2}) \land (x_2 \vee x_4) \land (\overline{x_1} \vee \overline{x_3}) \land (x_3 \vee \overline{x_2}) \land (\overline{x_1} \vee \overline{x_4})$

Assume that $x_1 = \bot$

- $x_2 = \bot$ is implied.
- $x_4 = \top$ is implied.

$\phi = (x_1 \lor \overline{x_2}) \land (x_2 \lor x_4) \land (\overline{x_1} \lor \overline{x_3}) \land (x_3 \lor \overline{x_2}) \land (\overline{x_1} \lor \overline{x_4})$

Assume that $x_1 = \bot$

- $x_2 = \bot$ is implied.
- $x_4 = \top$ is implied.

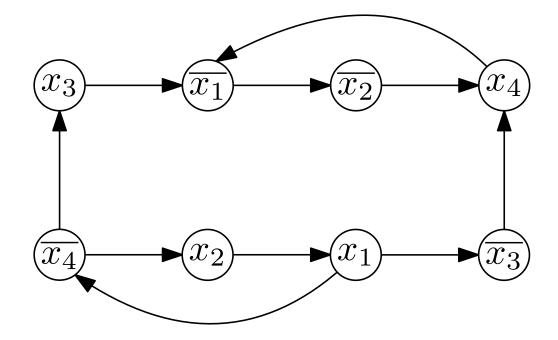
We found a satisfying assignment.

The Implication Graph

Given ϕ we construct a directed graph $G_{\phi} = (V, E)$ where:

- The vertices of G are all possible literals of ϕ , i.e., for each variable x_i we add both x_i and $\overline{x_i}$ to V.
- For each clause $(\ell_i \lor \ell_j)$:
 - Add $(\overline{\ell_i}, \ell_j)$ to E
 - Add $(\overline{\ell_j},\ell_i)$ to E
- Intuitively $(u, v) \in E$ means that if $u = \top$, then we must set $v = \top$.

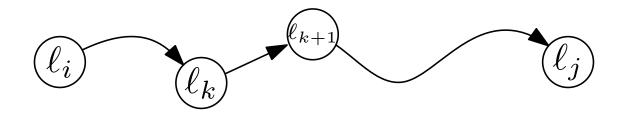
 $\phi = (x_1 \lor \overline{x_2}) \land (x_2 \lor x_4) \land (\overline{x_1} \lor \overline{x_3}) \land (x_3 \lor x_4) \land (\overline{x_1} \lor \overline{x_4})$



A useful property

Claim: G_{ϕ} is skew-simmetric: If there is a path P from ℓ_i to ℓ_j in G_{ϕ} , then there is also a path from $\overline{\ell_j}$ to $\overline{\ell_i}$.

• Pick any edge (ℓ_k, ℓ_{k+1}) of P.



- The edge (ℓ_k, ℓ_{k+1}) must have been created from the clause $(\overline{\ell_k} \vee \ell_{k+1})$.
- The clause $(\overline{\ell_k} \vee \ell_{k+1})$ also creates the edge $(\overline{\ell_{k+1}}, \overline{\ell_k})$.

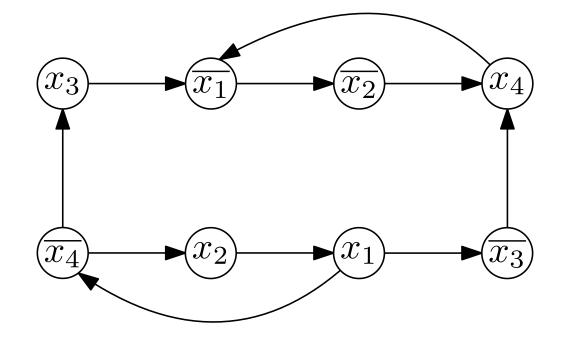
Strongly Connected Components

Definition: A strongly connected component of a graph G = (V, E) is a maximal set $C \subseteq V$ such that $\forall x, y \in C$, there is a path from x to y in G.

Strongly Connected Components

Definition: A strongly connected component of a graph G = (V, E) is a maximal set $C \subseteq V$ such that $\forall x, y \in C$, there is a path from x to y in G.

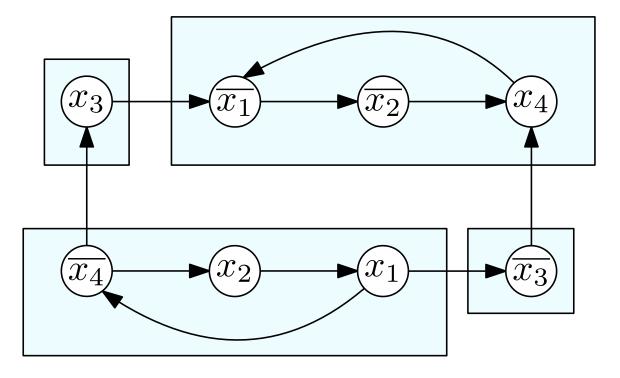
$$\phi = (x_1 \vee \overline{x_2}) \land (x_2 \vee x_4) \land (\overline{x_1} \vee \overline{x_3}) \land (x_3 \vee x_4) \land (\overline{x_1} \vee \overline{x_4})$$



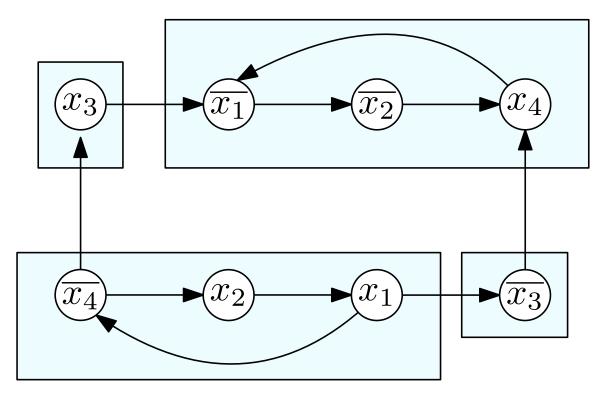
Strongly Connected Components

Definition: A strongly connected component of a graph G = (V, E) is a maximal set $C \subseteq V$ such that $\forall x, y \in C$, there is a path from x to y in G.

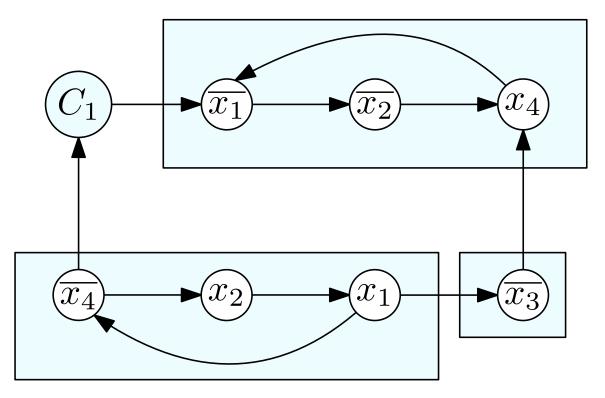
$$\phi = (x_1 \vee \overline{x_2}) \land (x_2 \vee x_4) \land (\overline{x_1} \vee \overline{x_3}) \land (x_3 \vee x_4) \land (\overline{x_1} \vee \overline{x_4})$$



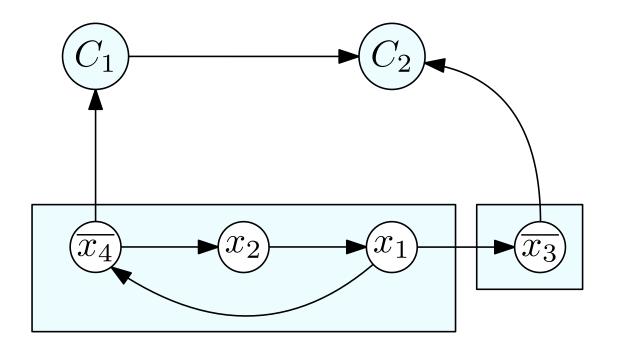
- Each vertex in V' is a SCC of G.
- There is an edge between a pair of distinct connected components $(C, C') \in E$ iff $\exists x \in C, y \in C'$ such that $(x, y) \in E$.



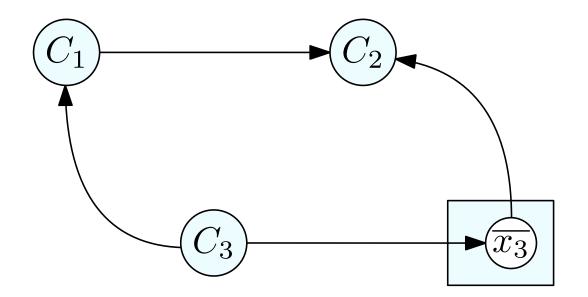
- Each vertex in V' is a SCC of G.
- There is an edge between a pair of distinct connected components $(C, C') \in E$ iff $\exists x \in C, y \in C'$ such that $(x, y) \in E$.



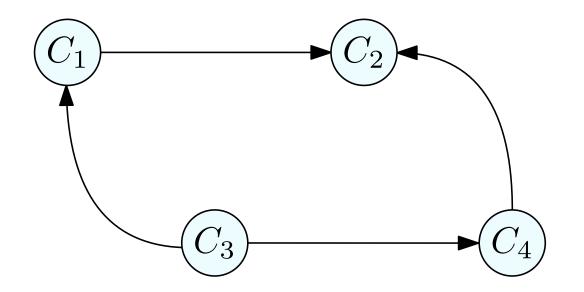
- Each vertex in V' is a SCC of G.
- There is an edge between a pair of distinct connected components $(C, C') \in E$ iff $\exists x \in C, y \in C'$ such that $(x, y) \in E$.



- Each vertex in V' is a SCC of G.
- There is an edge between a pair of distinct connected components $(C, C') \in E$ iff $\exists x \in C, y \in C'$ such that $(x, y) \in E$.

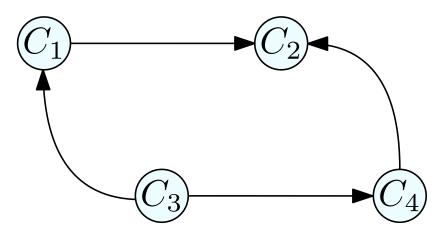


- Each vertex in V' is a SCC of G.
- There is an edge between a pair of distinct connected components $(C, C') \in E$ iff $\exists x \in C, y \in C'$ such that $(x, y) \in E$.



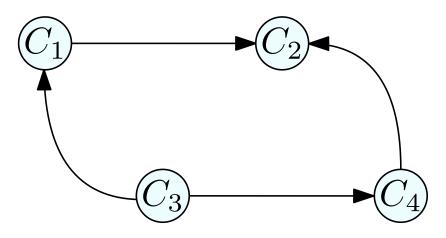
Toplogical Order

Observation: Contracting the SCCs of a directed graph yields a directed acyclic graph.

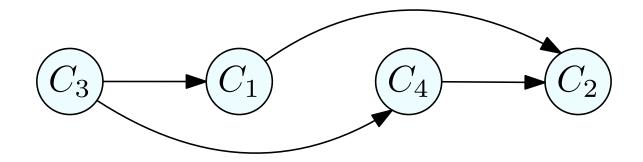


Toplogical Order

Observation: Contracting the SCCs of a directed graph yields a directed acyclic graph.



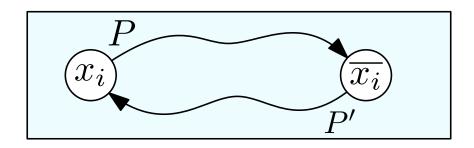
Definition: A topological order of a directed acyclic graph is a linear order v_1, v_2, \ldots of the vertices such that, for any edge (v_i, v_j) , we have i < j.



Claim 1: If, for some x_i , both x_i and $\overline{x_i}$ belong to the same SCC C, then ϕ is not satisfiable.

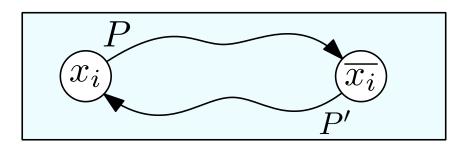
Claim 1: If, for some x_i , both x_i and $\overline{x_i}$ belong to the same SCC C, then ϕ is not satisfiable.

• Since x_i and $\overline{x_i}$ are in the same SCC, there is a path P in G from x_i to $\overline{x_i}$ and a path P' from $\overline{x_i}$ to x_i .



Claim 1: If, for some x_i , both x_i and $\overline{x_i}$ belong to the same SCC C, then ϕ is not satisfiable.

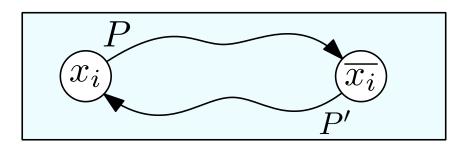
• Since x_i and $\overline{x_i}$ are in the same SCC, there is a path P in G from x_i to $\overline{x_i}$ and a path P' from $\overline{x_i}$ to x_i .



In any satisfying assignment, we cannot have x_i = ⊤, since it would imply (through P) that x_i = ⊤, i.e., x_i = ⊥. ↓

Claim 1: If, for some x_i , both x_i and $\overline{x_i}$ belong to the same SCC C, then ϕ is not satisfiable.

• Since x_i and $\overline{x_i}$ are in the same SCC, there is a path P in G from x_i to $\overline{x_i}$ and a path P' from $\overline{x_i}$ to x_i .



- In any satisfying assignment, we cannot have x_i = ⊤, since it would imply (through P) that x_i = ⊤, i.e., x_i = ⊥. ↓
- A symmetric argument shows that we cannot have $x_i = \bot$ since it would imply $x_i = \top$ through P'. 4

Assumption: for all x_i , x_i and $\overline{x_i}$ belong to different SCCs.

An algorithm:

- \forall SCC $C = C_1, C_2, \ldots$ of G in reverse topological order.
 - Assign all unassigned literals of C to \top and their complement to \bot .

Assumption: for all x_i , x_i and $\overline{x_i}$ belong to different SCCs.

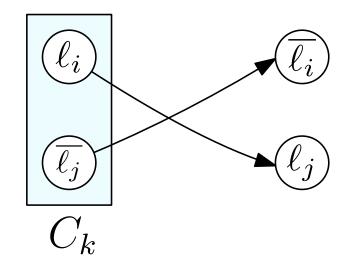
An algorithm:

- \forall SCC $C = C_1, C_2, \ldots$ of G in reverse topological order.
 - Assign all unassigned literals of C to \top and their complement to \bot .

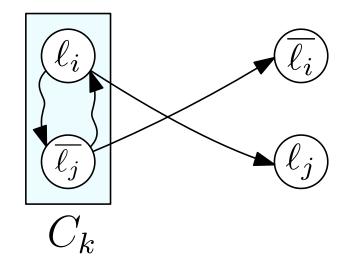
Claim 2: When ℓ_i is set to \top , all literals ℓ_j reachable from ℓ_i in G are set to \top .

Proof: By induction on the index k of the SCC C_k containing ℓ_i .

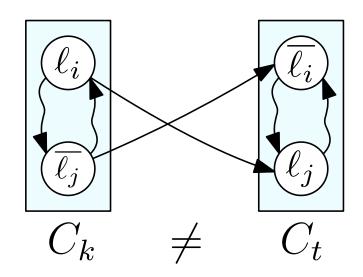
Relation between SSCs and 2-SAT Suppose that there is a neighbor ℓ_j of ℓ_i such that $\ell_j = \bot$. By skew-simmetry G contains the edge $(\overline{\ell_j}, \overline{\ell_i})$ $\overline{\ell_j}$ is set to \top and must belong to a SCC C_h for some $h \leq k$. If h = k: Relation between SSCs and 2-SAT Suppose that there is a neighbor ℓ_j of ℓ_i such that $\ell_j = \bot$. By skew-simmetry G contains the edge $(\overline{\ell_j}, \overline{\ell_i})$ $\overline{\ell_j}$ is set to \top and must belong to a SCC C_h for some $h \le k$. If h = k:



Relation between SSCs and 2-SAT Suppose that there is a neighbor ℓ_j of ℓ_i such that $\ell_j = \bot$. By skew-simmetry G contains the edge $(\overline{\ell_j}, \overline{\ell_i})$ $\overline{\ell_j}$ is set to \top and must belong to a SCC C_h for some $h \le k$. If h = k:

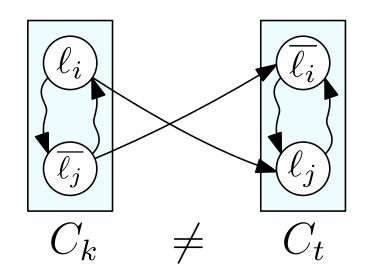


Relation between SSCs and 2-SAT Suppose that there is a neighbor ℓ_j of ℓ_i such that $\ell_j = \bot$. By skew-simmetry G contains the edge $(\overline{\ell_j}, \overline{\ell_i})$ $\overline{\ell_j}$ is set to \top and must belong to a SCC C_h for some $h \leq k$. If h = k:



•
$$C_k \neq C_t$$
 (otherwise $\ell_i, \overline{\ell_i} \in C_k$)

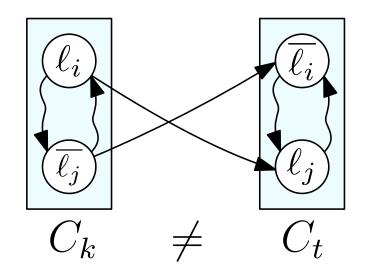
Relation between SSCs and 2-SAT Suppose that there is a neighbor ℓ_j of ℓ_i such that $\ell_j = \bot$. By skew-simmetry G contains the edge $(\overline{\ell_j}, \overline{\ell_i})$ $\overline{\ell_j}$ is set to \top and must belong to a SCC C_h for some $h \le k$. If h = k:



• $C_k \neq C_t$ (otherwise $\ell_i, \overline{\ell_i} \in C_k$)

•
$$(C_k, C_t) \in E' \implies t < k$$

Relation between SSCs and 2-SAT Suppose that there is a neighbor ℓ_j of ℓ_i such that $\ell_j = \bot$. By skew-simmetry G contains the edge $(\overline{\ell_j}, \overline{\ell_i})$ $\overline{\ell_j}$ is set to \top and must belong to a SCC C_h for some $h \leq k$. If h = k:

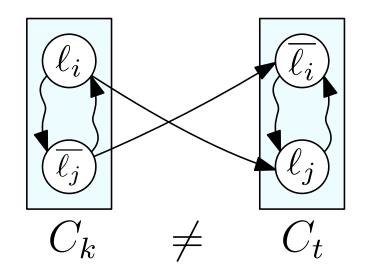


• $C_k \neq C_t$ (otherwise $\ell_i, \overline{\ell_i} \in C_k$)

•
$$(C_k, C_t) \in E' \implies t < k$$

• After C_t was considered $\overline{\ell_i} = \top \implies \ell_i = \bot$.

Relation between SSCs and 2-SAT Suppose that there is a neighbor ℓ_j of ℓ_i such that $\ell_j = \bot$. By skew-simmetry G contains the edge $(\overline{\ell_j}, \overline{\ell_i})$ $\overline{\ell_j}$ is set to \top and must belong to a SCC C_h for some $h \le k$. If h = k:



• $C_k \neq C_t$ (otherwise $\ell_i, \overline{\ell_i} \in C_k$)

•
$$(C_k, C_t) \in E' \implies t < k$$

• After
$$C_t$$
 was considered $\overline{\ell_i} = \top \implies \ell_i = \bot.$

If h < k:

By inductive hyphotesis, all neighbors of $\overline{\ell_j}$ are set to \top , i.e., $\overline{\ell_i} = \top \implies \ell_i = \bot$.

Relation between SSCs and 2-SAT

Claim 1: If, for some x_i , both x_i and $\overline{x_i}$ belong to the same SCC C, then ϕ is not satisfiable.

Assumption: $\forall x_i, x_i \text{ and } \overline{x_i} \text{ belong to different SCCs.}$ **Claim 2:** When ℓ_i is set to \top , all literals ℓ_j reachable from ℓ_i in G are set to \top .

Relation between SSCs and 2-SAT

Claim 1: If, for some x_i , both x_i and $\overline{x_i}$ belong to the same SCC C, then ϕ is not satisfiable.

Assumption: $\forall x_i, x_i \text{ and } \overline{x_i} \text{ belong to different SCCs.}$ **Claim 2:** When ℓ_i is set to \top , all literals ℓ_j reachable from ℓ_i in G are set to \top .

Corollary: ϕ is satisfiable iff $\forall x_i$, x_i and $\overline{x_i}$ belong to different SCCs. The algorithm computes a satisfying assignment.

- Consider a generic clause $(\ell_i \lor \ell_j)$
- If ℓ_i is set to op, the clause is satisfied.
- If ℓ_i is set to \perp : $\overline{\ell_i} = \top$ and G contains the edge $(\overline{\ell_i}, \ell_j)$. The claim implies that $\ell_j = \top$.

Time Complexity

Satisfiability

(Assuming $m = \Omega(n)$)

O(m)

- Construct the implication graph G_ϕ
- Compute the SSCs of G_{ϕ} O(m)
- If a SCC of G contains both x_i and $\overline{x_i}$, for some x_i : O(n)
 - Return " ϕ is not satisfiable"
- Return " ϕ is satisfiable"

Time Complexity

Satisfying assignment

(Assuming $m = \Omega(n)$)

O(m)

O(m)

O(m)

O(n)

- Construct the implication graph G_{ϕ}
- Compute the SSCs of G_{ϕ} O(m)
- If a SCC of G contains both x_i and $\overline{x_i}$, for some x_i : O(n)
 - Return " ϕ is not satisfiable"
- $G'_{\phi} \leftarrow \text{Contract the SCCs of } G_{\phi}$
- Topologically sort G^\prime
- \forall SCC C of G in reverse topological order.
 - Assign all unassigned literals of C to \top and their complement to \bot .

Time Complexity

Satisfying assignment

(Assuming $m = \Omega(n)$)

How?

O(m)

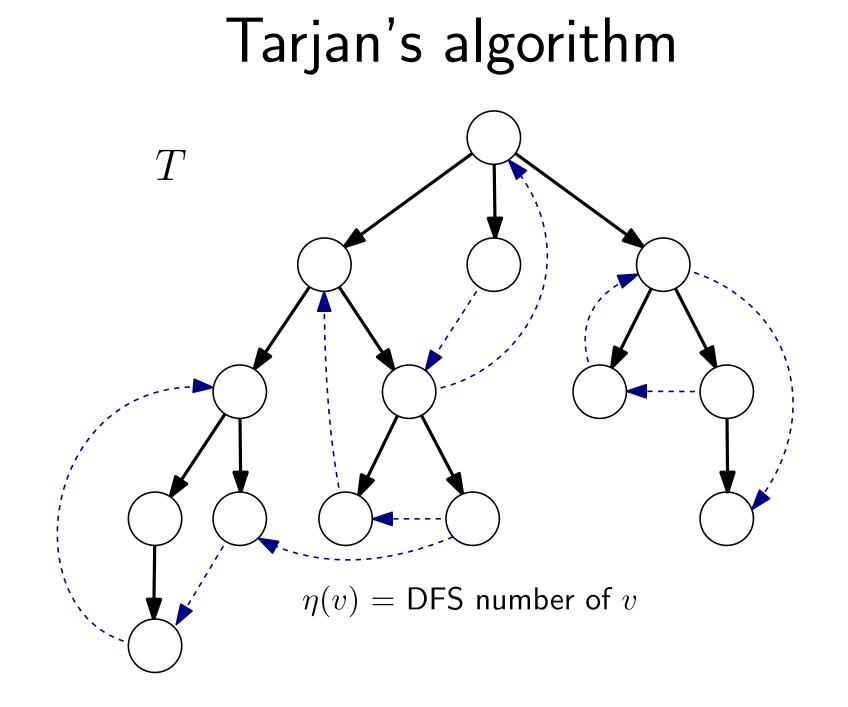
O(m)

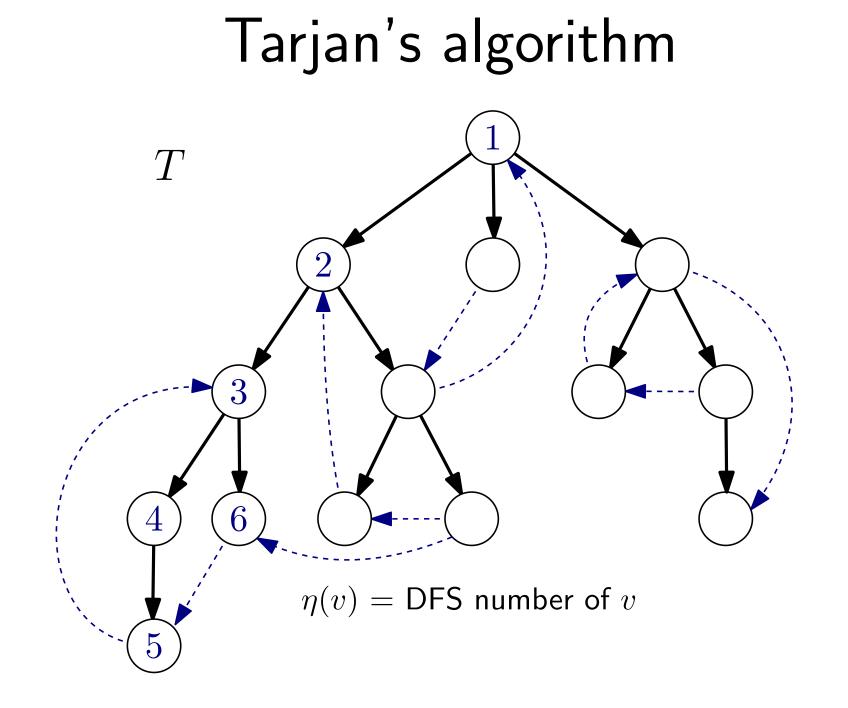
O(m)

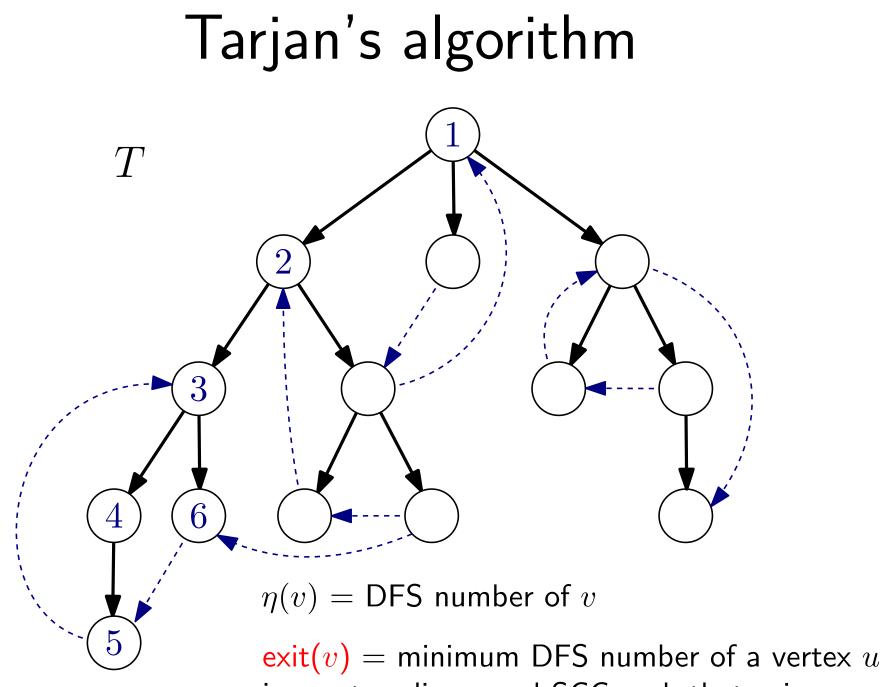
O(m)

O(n)

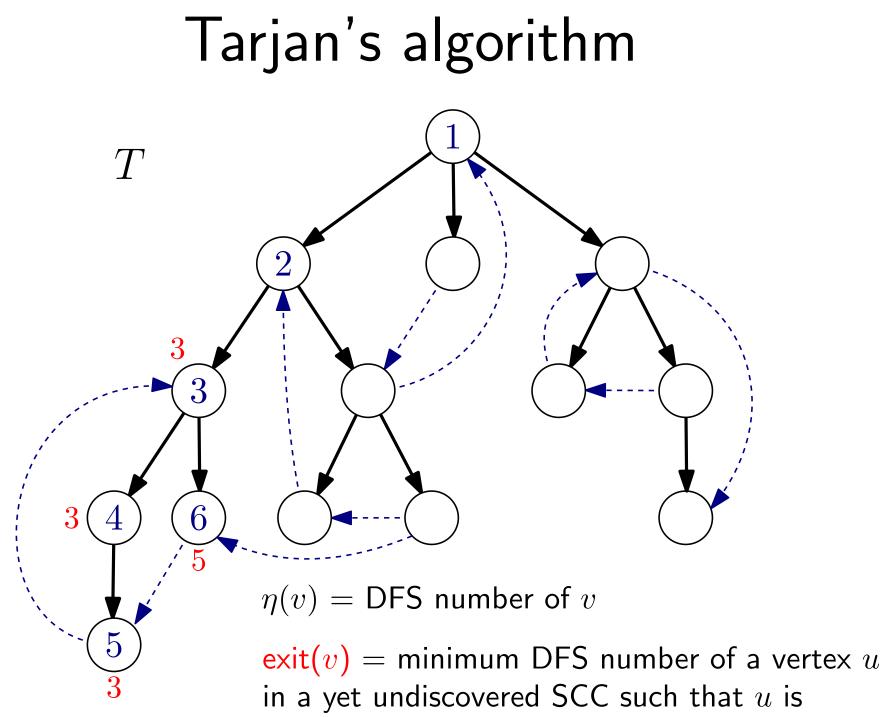
- Construct the implication graph G_{ϕ}
- Compute the SSCs of G_{ϕ}
- If a SCC of G contains both x_i and $\overline{x_i}$, for some x_i : O(n)
 - Return " ϕ is not satisfiable"
- $G'_{\phi} \leftarrow \text{Contract the SCCs of } G_{\phi}$
- Topologically sort G^\prime
- \forall SCC C of G in reverse topological order.
 - Assign all unassigned literals of C to \top and their complement to \bot .

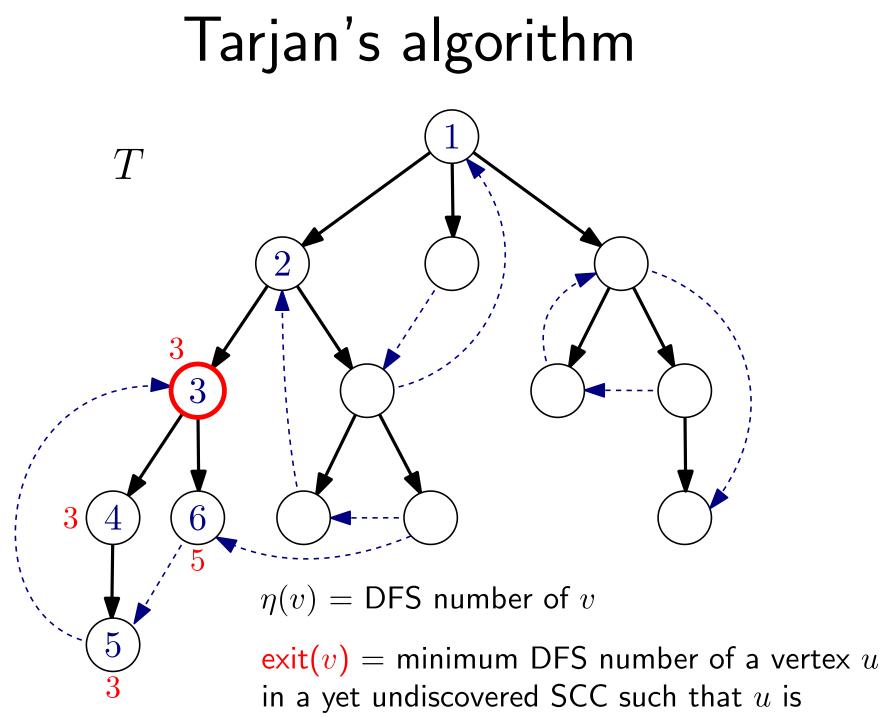


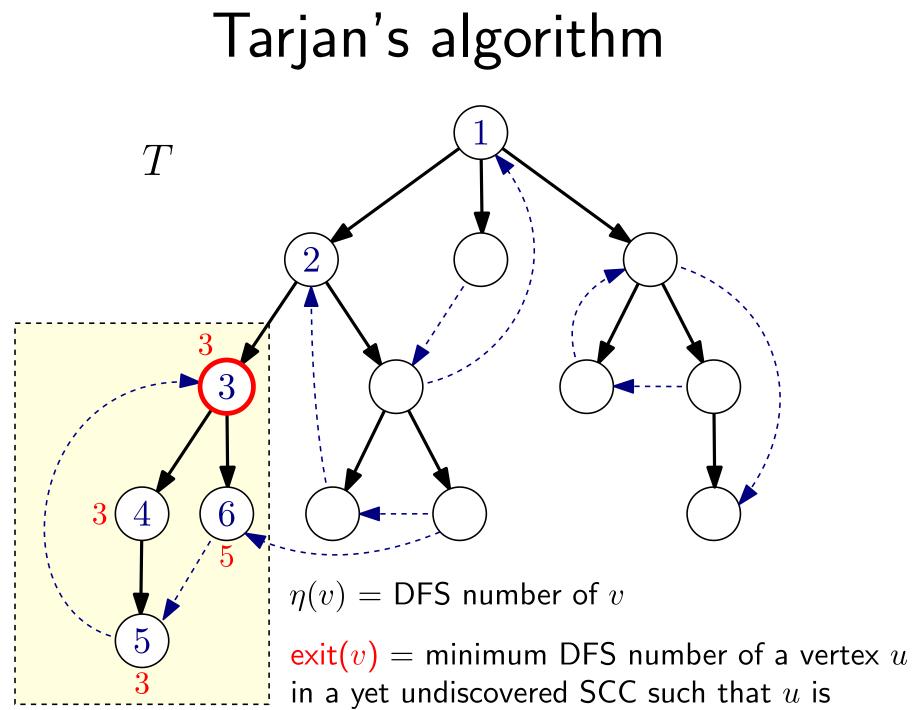


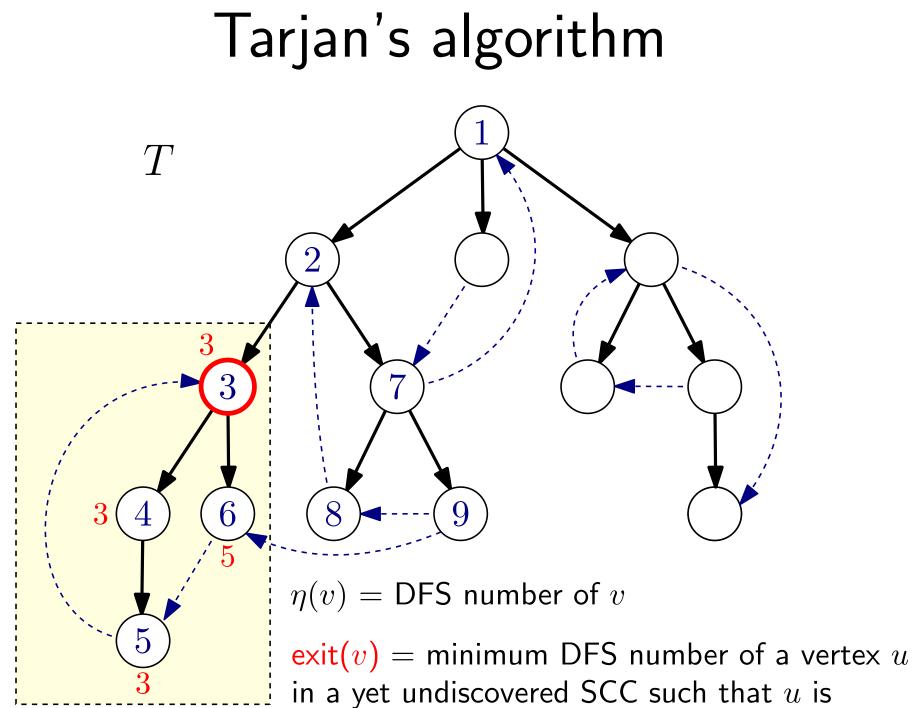


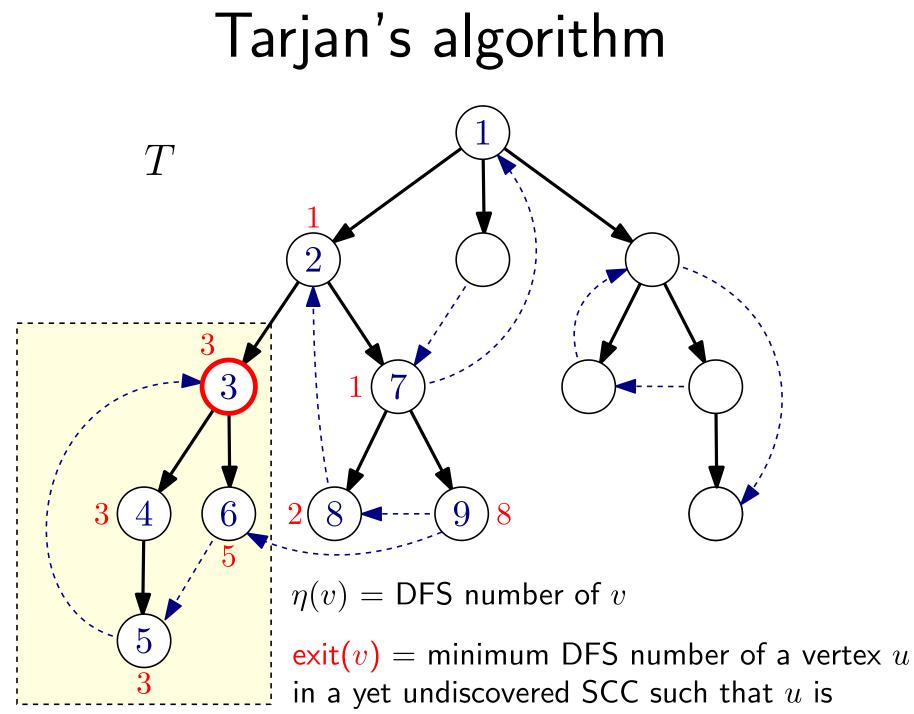
in a yet undiscovered SCC such that u is reachable from v via a path in T followed by at most one final non-tree edge.

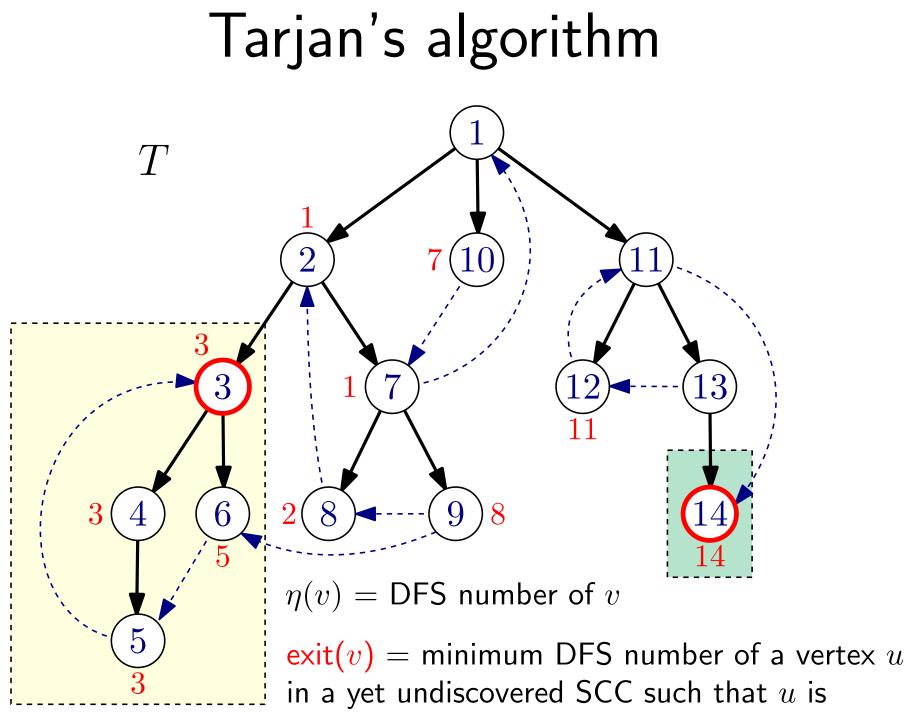


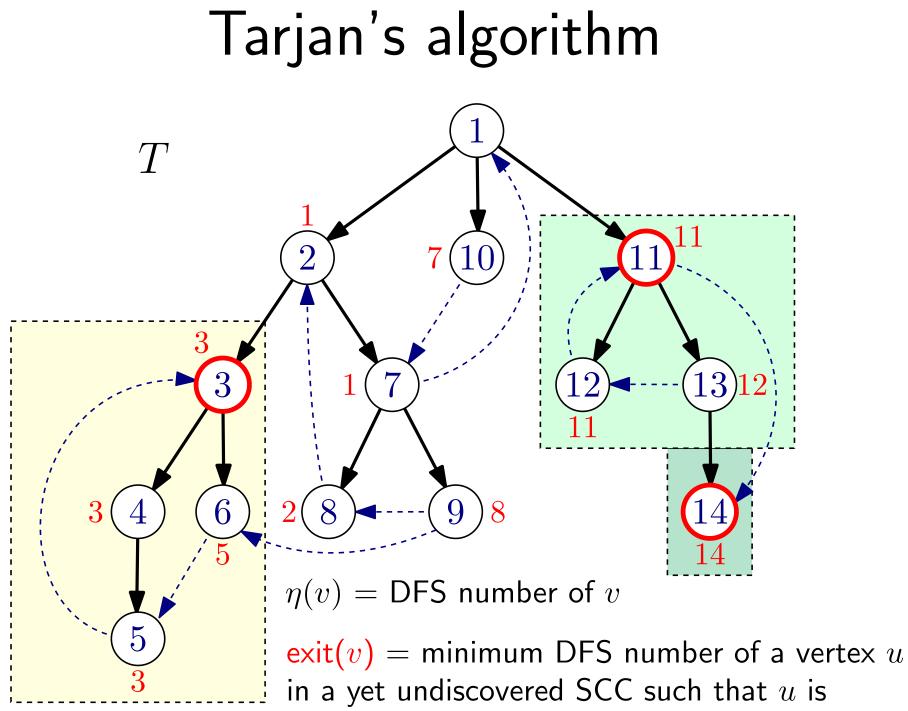


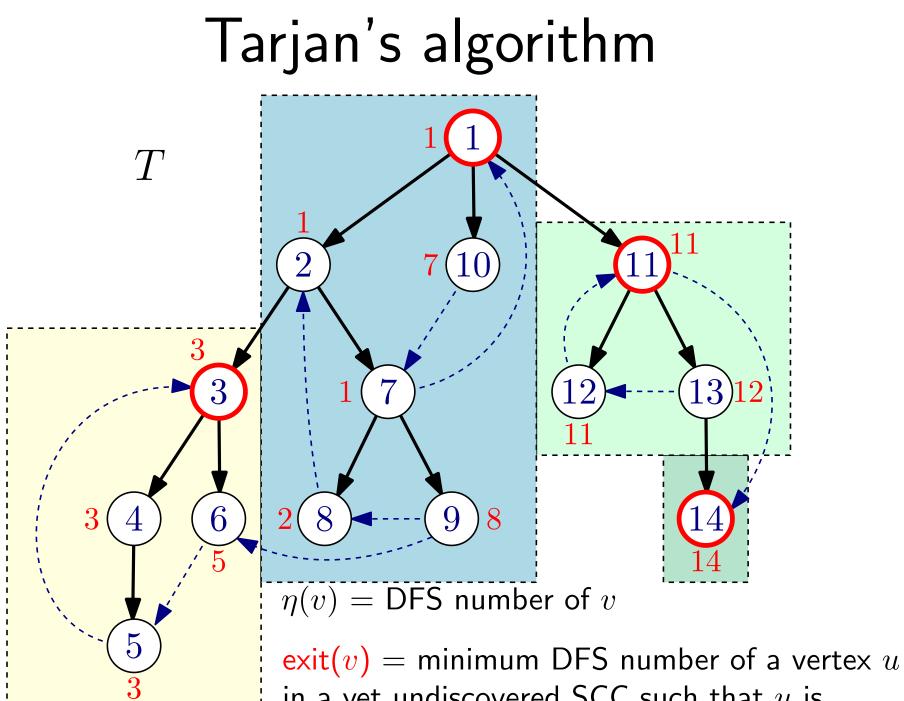










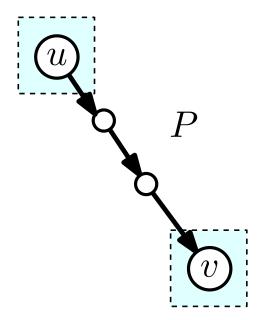


in a yet undiscovered SCC such that u is reachable from v via a path in T followed by at most one final non-tree edge.

Claim: Let C be a SCC. The subgraph T[C] of T induced by C is connected. **Proof:**

Let u be the first vertex of C that is visited by the algorithm. Let $v \in C$, with $v \neq u$.

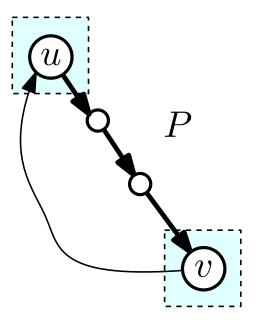
• u must be an ancestor of v in T (by the properties of DFS).



Claim: Let C be a SCC. The subgraph T[C] of T induced by C is connected. **Proof:**

Let u be the first vertex of C that is visited by the algorithm. Let $v \in C$, with $v \neq u$.

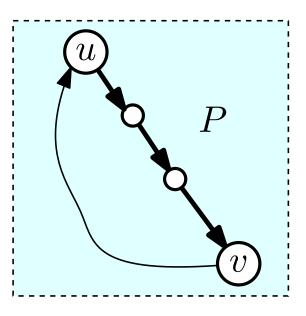
• u must be an ancestor of v in T (by the properties of DFS).



Claim: Let C be a SCC. The subgraph T[C] of T induced by C is connected. **Proof:**

Let u be the first vertex of C that is visited by the algorithm. Let $v \in C$, with $v \neq u$.

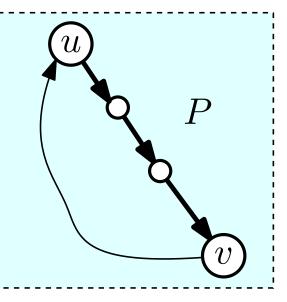
• u must be an ancestor of v in T (by the properties of DFS).



Claim: Let C be a SCC. The subgraph T[C] of T induced by C is connected. **Proof:**

Let u be the first vertex of C that is visited by the algorithm. Let $v \in C$, with $v \neq u$.

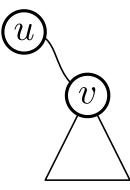
• u must be an ancestor of v in T (by the properties of DFS).



• There is a path from u to v in $G \implies$ the vertices in P are in $C \implies u$ and v must also be connected in T[C].

Definition: the *head* u of a SCC C is the (unique!) vertex of C having minimum depth in T.

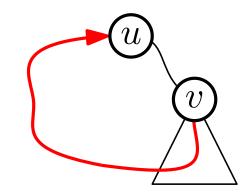
Definition: the *head* u of a SCC C is the (unique!) vertex of C having minimum depth in T.



Definition: the *head* u of a SCC C is the (unique!) vertex of C having minimum depth in T.

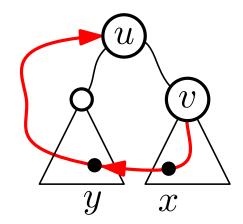
Claim: $\forall v \in C \setminus \{u\}, \ \eta(v) \neq exit(v).$

• There is a path P from v to u.



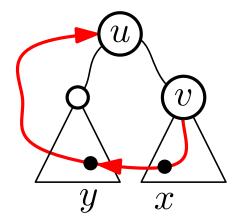
Definition: the *head* u of a SCC C is the (unique!) vertex of C having minimum depth in T.

- There is a path P from v to u.
- Consider the first edge (x, y) of P such that $y \notin T_v$.



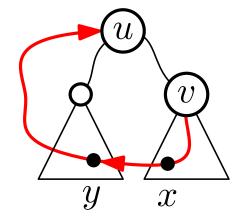
Definition: the *head* u of a SCC C is the (unique!) vertex of C having minimum depth in T.

- There is a path P from v to u.
- Consider the first edge (x, y) of P such that $y \notin T_v$.
- y is visited before v in the DFS.



Definition: the *head* u of a SCC C is the (unique!) vertex of C having minimum depth in T.

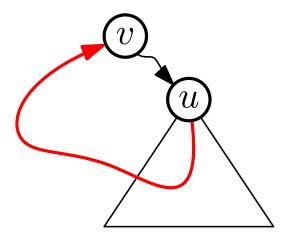
- There is a path P from v to u.
- Consider the first edge (x, y) of P such that $y \notin T_v$.
- y is visited before v in the DFS.
- $exit(v) \le \eta(y) < \eta(v)$.



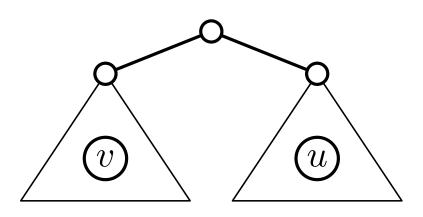
Claim: Let u be the first encountered head in postorder. $\eta(u) = exit(u)$.

• Assume that there is a vertex v s.t. $\eta(v) = exit(u) < \eta(u)$.

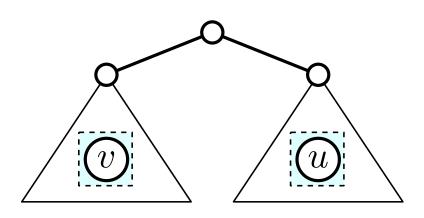
- Assume that there is a vertex v s.t. $\eta(v) = exit(u) < \eta(u)$.
- v cannot be an ancestor of u (otherwise $v \in C$ and u is not the head of C).



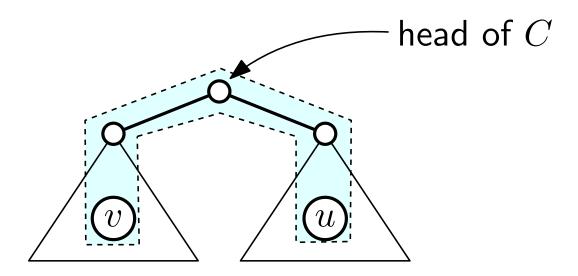
- Assume that there is a vertex v s.t. $\eta(v) = exit(u) < \eta(u)$.
- v cannot be an ancestor of u (otherwise $v \in C$ and u is not the head of C).



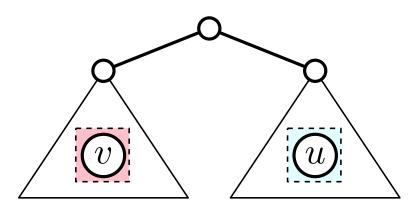
- Assume that there is a vertex v s.t. $\eta(v) = exit(u) < \eta(u)$.
- v cannot be an ancestor of u (otherwise $v \in C$ and u is not the head of C).
- If $v \in C$, then u and v are connected in $T[C] \implies$ the lowest common ancestor of u and v is in C.



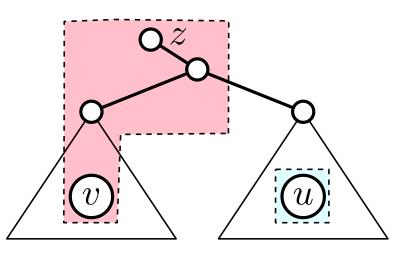
- Assume that there is a vertex v s.t. $\eta(v) = exit(u) < \eta(u)$.
- v cannot be an ancestor of u (otherwise $v \in C$ and u is not the head of C).
- If v ∈ C, then u and v are connected in T[C] ⇒ the lowest common ancestor of u and v is in C.



- Assume that there is a vertex v s.t. $\eta(v) = exit(u) < \eta(u)$.
- v cannot be an ancestor of u (otherwise $v \in C$ and u is not the head of C).
- If $v \in C$, then u and v are connected in $T[C] \implies$ the lowest common ancestor of u and v is in C.
- If $v \in C' \neq C$ then the head z of C' must be an ancestor of $u \implies$ there is a path from u to z and vice-versa.



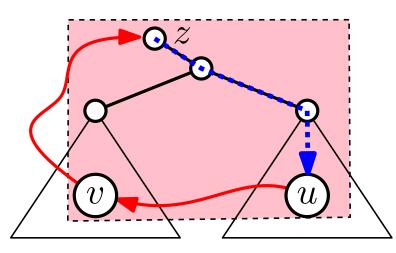
- Assume that there is a vertex v s.t. $\eta(v) = exit(u) < \eta(u)$.
- v cannot be an ancestor of u (otherwise $v \in C$ and u is not the head of C).
- If $v \in C$, then u and v are connected in $T[C] \implies$ the lowest common ancestor of u and v is in C.
- If $v \in C' \neq C$ then the head z of C' must be an ancestor of $u \implies$ there is a path from u to z and vice-versa.



- Assume that there is a vertex v s.t. $\eta(v) = exit(u) < \eta(u)$.
- v cannot be an ancestor of u (otherwise $v \in C$ and u is not the head of C).
- If $v \in C$, then u and v are connected in $T[C] \implies$ the lowest common ancestor of u and v is in C.
- If $v \in C' \neq C$ then the head z of C' must be an ancestor of $u \implies$ there is a path from u to z and vice-versa.



- Assume that there is a vertex v s.t. $\eta(v) = exit(u) < \eta(u)$.
- v cannot be an ancestor of u (otherwise $v \in C$ and u is not the head of C).
- If $v \in C$, then u and v are connected in $T[C] \implies$ the lowest common ancestor of u and v is in C.
- If v ∈ C' ≠ C then the head z of C' must be an ancestor for u ⇒ there is a path from u to z and vice-versa.



The Algorithm

While \exists vertex $u \in G$ (that has not been deleted):

- cnt $\leftarrow 0$; $T \leftarrow (\{u\}, \emptyset)$
- SCC(*u*)

SCC(u):

- $\eta(u) \leftarrow \text{cnt}; \text{ cnt} \leftarrow \text{cnt} + 1; exit(u) \leftarrow \eta(u)$
- For each $(u, v) \in E$:
 - If v has not yet been visited:
 - $\bullet \ \operatorname{\mathsf{Add}}\ (u,v)$ to T
 - SCC(v)
 - $exit(u) \leftarrow \min\{exit(u), exit(v)\}$
 - Else:
 - $exit(u) \leftarrow \min\{exit(u), \eta(v)\}$
- If $exit(u) = \eta(u)$:
 - $\bullet\,$ Report a new SCC C containing all the descendants of u in T
 - Delete the vertices in C from G and T (vertices can be "deleted" in constant time by marking them)

The Algorithm

While \exists vertex $u \in G$ (that has not been deleted):

- cnt $\leftarrow 0$; $T \leftarrow (\{u\}, \emptyset)$
- SCC(*u*)

SCC(u):

- $\eta(u) \leftarrow \text{cnt}; \text{ cnt} \leftarrow \text{cnt} + 1; exit(u) \leftarrow \eta(u)$
- For each $(u, v) \in E$:
 - If v has not yet been visited:
 - $\bullet \ \operatorname{\mathsf{Add}}\ (u,v)$ to T
 - SCC(v)
 - $exit(u) \leftarrow \min\{exit(u), exit(v)\}$
 - Else:
 - $exit(u) \leftarrow \min\{exit(u), \eta(v)\}$
- If $exit(u) = \eta(u)$:
 - $\bullet\,$ Report a new SCC C containing all the descendants of u in T
 - Delete the vertices in C from G and T (vertices can be "deleted" in constant time by marking them)

The Algorithm

While \exists vertex $u \in G$ (that has not been deleted):

- cnt $\leftarrow 0$; $T \leftarrow (\{u\}, \emptyset)$ $S \leftarrow \mathsf{Empty stack}$
- SCC(*u*)

SCC(u):

- $\eta(u) \leftarrow \text{cnt}$; $\text{cnt} \leftarrow \text{cnt} + 1$; $exit(u) \leftarrow \eta(u)$ Push u into S
- For each $(u, v) \in E$:
 - If v has not yet been visited:
 - $\bullet \ \operatorname{\mathsf{Add}}\ (u,v)$ to T
 - SCC(v)
 - $exit(u) \leftarrow \min\{exit(u), exit(v)\}$
 - Else:
 - $exit(u) \leftarrow \min\{exit(u), \eta(v)\}$
- If $exit(u) = \eta(u)$:
 - $C = \emptyset$; do $z \leftarrow Pop$ from S; $C \leftarrow C \cup \{z\}$ while $z \neq u$;
 - Delete the vertices in C from G and T (vertices can be "deleted" in constant time by marking them)