
2-SAT and Strongly Connected

Components



2-SAT
Input: A formula ϕ consisting of

• A set of n boolean variables x1, . . . , xn

• A conjuction of m clauses C1, . . . , Cm, i.e., disjunctions

of 2 literals Cj = (c
(1)
j ∨ c

(2)
j ), where a literal is either a

variable or its negation.

A truth assignment is a function τ : {x1, . . . , xn} → {⊤,⊥}

• A clause Cj = (c
(1)
j ∨ c

(2)
j ) is satisfied by τ according to the

rules of boolean algebra.

• ϕ is satisfied iff all m clauses C1, . . . , Cm are satisfied.

Question: Is there a truth assigment that satisfies ϕ?



ϕ = (x1 ∨ x2) ∧ (x2 ∨ x4) ∧ (x1 ∨ x3) ∧ (x3 ∨ x2) ∧ (x1 ∨ x4)

Formula

Example



ϕ = (x1 ∨ x2) ∧ (x2 ∨ x4) ∧ (x1 ∨ x3) ∧ (x3 ∨ x2) ∧ (x1 ∨ x4)

Formula

x1 = ⊥ x2 = ⊥ x3 = ⊤ x4 = ⊤

Satisfying assignment:

Example



ϕ = (x1 ∨ x2) ∧ (x2 ∨ x4) ∧ (x1 ∨ x3) ∧ (x3 ∨ x2) ∧ (x1 ∨ x4)

Formula

x1 = ⊥ x2 = ⊥ x3 = ⊤ x4 = ⊤

Satisfying assignment:

Example

Trivial solution O∗(2n)



An Observation

• A clause of the form (¬xi ∨ xj) corresponds to xi =⇒ xj

• If xi = ⊤ then, in any satisfying assignment, xj = ⊤

• We say that xj is implied.

• The same holds for any clause Cj = (c
(1)
j ∨ c

(2)
j )

• If c
(1)
j = ⊥, then c

(2)
j = ⊤

• We say that the variable xk corresponding to c
(2)
j implied.

• If c
(2)
j = xk, then xk = ⊤. If c

(2)
j = xk, then xk = ⊥.



ϕ = (x1 ∨ x2) ∧ (x2 ∨ x4) ∧ (x1 ∨ x3) ∧ (x3 ∨ x2) ∧ (x1 ∨ x4)

Example



ϕ = (x1 ∨ x2) ∧ (x2 ∨ x4) ∧ (x1 ∨ x3) ∧ (x3 ∨ x2) ∧ (x1 ∨ x4)

Example

Assume that x1 = ⊤



ϕ = (x1 ∨ x2) ∧ (x2 ∨ x4) ∧ (x1 ∨ x3) ∧ (x3 ∨ x2) ∧ (x1 ∨ x4)

Example

Assume that x1 = ⊤
x3 and x4 are implied. x3 = ⊥ and x4 = ⊥



ϕ = (x1 ∨ x2) ∧ (x2 ∨ x4) ∧ (x1 ∨ x3) ∧ (x3 ∨ x2) ∧ (x1 ∨ x4)

Example

Assume that x1 = ⊤
x3 and x4 are implied. x3 = ⊥ and x4 = ⊥
x2 = ⊤ is implied



ϕ = (x1 ∨ x2) ∧ (x2 ∨ x4) ∧ (x1 ∨ x3) ∧ (x3 ∨ x2) ∧ (x1 ∨ x4)

Example

Assume that x1 = ⊤
x3 and x4 are implied. x3 = ⊥ and x4 = ⊥
x2 = ⊤ is implied

x2 = ⊥ is implied, a contradiction!



ϕ = (x1 ∨ x2) ∧ (x2 ∨ x4) ∧ (x1 ∨ x3) ∧ (x3 ∨ x2) ∧ (x1 ∨ x4)

Example

Assume that x1 = ⊥



ϕ = (x1 ∨ x2) ∧ (x2 ∨ x4) ∧ (x1 ∨ x3) ∧ (x3 ∨ x2) ∧ (x1 ∨ x4)

Example

Assume that x1 = ⊥
x2 = ⊥ is implied.



ϕ = (x1 ∨ x2) ∧ (x2 ∨ x4) ∧ (x1 ∨ x3) ∧ (x3 ∨ x2) ∧ (x1 ∨ x4)

Example

Assume that x1 = ⊥
x2 = ⊥ is implied.

x4 = ⊤ is implied.



ϕ = (x1 ∨ x2) ∧ (x2 ∨ x4) ∧ (x1 ∨ x3) ∧ (x3 ∨ x2) ∧ (x1 ∨ x4)

Example

Assume that x1 = ⊥
x2 = ⊥ is implied.

x4 = ⊤ is implied.

We found a satisfying assignment.



The Implication Graph

Given ϕ we construct a directed graph Gϕ = (V,E) where:

• The vertices of G are all possible literals of ϕ, i.e., for each
variable xi we add both xi and xi to V .

• For each clause (ℓi ∨ ℓj):

• Add (ℓi, ℓj) to E

• Add (ℓj , ℓi) to E

• Intuitively (u, v) ∈ E means that if u = ⊤, then we must
set v = ⊤.



ϕ = (x1 ∨ x2) ∧ (x2 ∨ x4) ∧ (x1 ∨ x3) ∧ (x3 ∨ x4) ∧ (x1 ∨ x4)

x2

x2

x3x1x4

x3 x1 x4

Example



Claim: Gϕ is skew-simmetric: If there is a path P from ℓi to
ℓj in Gϕ, then there is also a path from ℓj to ℓi.

ℓj
ℓk+1

ℓk
ℓi

• The edge (ℓk, ℓk+1) must have been created from the
clause (ℓk ∨ ℓk+1).

• The clause (ℓk ∨ ℓk+1) also creates the edge (ℓk+1, ℓk).

• Pick any edge (ℓk, ℓk+1) of P .

A useful property



Strongly Connected Components
Definition: A strongly connected component of a graph
G = (V,E) is a maximal set C ⊆ V such that ∀x, y ∈ C,
there is a path from x to y in G.



ϕ = (x1 ∨ x2) ∧ (x2 ∨ x4) ∧ (x1 ∨ x3) ∧ (x3 ∨ x4) ∧ (x1 ∨ x4)

Strongly Connected Components
Definition: A strongly connected component of a graph
G = (V,E) is a maximal set C ⊆ V such that ∀x, y ∈ C,
there is a path from x to y in G.

x2

x2

x3x1x4

x3 x1 x4



ϕ = (x1 ∨ x2) ∧ (x2 ∨ x4) ∧ (x1 ∨ x3) ∧ (x3 ∨ x4) ∧ (x1 ∨ x4)

Strongly Connected Components
Definition: A strongly connected component of a graph
G = (V,E) is a maximal set C ⊆ V such that ∀x, y ∈ C,
there is a path from x to y in G.

x2

x2

x3x1x4

x3 x1 x4



Contracted Graph

x2

x2

x3x1x4

x3 x1 x4

Construct a new graph G′
ϕ = (V ′, E′) from Gϕ = (V,E):

• Each vertex in V ′ is a SCC of G.

• There is an edge between a pair of distinct connected
components (C,C ′) ∈ E iff ∃x ∈ C, y ∈ C ′ such that
(x, y) ∈ E.



Contracted Graph

x2

x2

x3x1x4

x1 x4

Construct a new graph G′
ϕ = (V ′, E′) from Gϕ = (V,E):

• Each vertex in V ′ is a SCC of G.

• There is an edge between a pair of distinct connected
components (C,C ′) ∈ E iff ∃x ∈ C, y ∈ C ′ such that
(x, y) ∈ E.

C1



Contracted Graph

x2 x3x1x4

Construct a new graph G′
ϕ = (V ′, E′) from Gϕ = (V,E):

• Each vertex in V ′ is a SCC of G.

• There is an edge between a pair of distinct connected
components (C,C ′) ∈ E iff ∃x ∈ C, y ∈ C ′ such that
(x, y) ∈ E.

C1 C2



Contracted Graph

x3

Construct a new graph G′
ϕ = (V ′, E′) from Gϕ = (V,E):

• Each vertex in V ′ is a SCC of G.

• There is an edge between a pair of distinct connected
components (C,C ′) ∈ E iff ∃x ∈ C, y ∈ C ′ such that
(x, y) ∈ E.

C1

C3

C2



Contracted Graph
Construct a new graph G′

ϕ = (V ′, E′) from Gϕ = (V,E):

• Each vertex in V ′ is a SCC of G.

• There is an edge between a pair of distinct connected
components (C,C ′) ∈ E iff ∃x ∈ C, y ∈ C ′ such that
(x, y) ∈ E.

C1

C4C3

C2



Toplogical Order
Observation: Contracting the SCCs of a directed graph yields
a directed acyclic graph.

C1

C4C3

C2



Toplogical Order
Observation: Contracting the SCCs of a directed graph yields
a directed acyclic graph.

Definition: A topological order of a directed acyclic graph is a
linear order v1, v2, . . . of the vertices such that, for any edge
(vi, vj), we have i < j.

C2C4C3 C1

C1

C4C3

C2



Claim 1: If, for some xi, both xi and xi belong to the
same SCC C, then ϕ is not satisfiable.

Relation between SSCs and 2-SAT



Claim 1: If, for some xi, both xi and xi belong to the
same SCC C, then ϕ is not satisfiable.

• Since xi and xi are in the same SCC, there is a path P in
G from xi to xi and a path P ′ from xi to xi.

xi xi

Relation between SSCs and 2-SAT

P

P ′



Claim 1: If, for some xi, both xi and xi belong to the
same SCC C, then ϕ is not satisfiable.

• Since xi and xi are in the same SCC, there is a path P in
G from xi to xi and a path P ′ from xi to xi.

xi xi

• In any satisfying assignment, we cannot have xi = ⊤, since
it would imply (through P ) that xi = ⊤, i.e., xi = ⊥. �

Relation between SSCs and 2-SAT

P

P ′



Claim 1: If, for some xi, both xi and xi belong to the
same SCC C, then ϕ is not satisfiable.

• Since xi and xi are in the same SCC, there is a path P in
G from xi to xi and a path P ′ from xi to xi.

xi xi

• In any satisfying assignment, we cannot have xi = ⊤, since
it would imply (through P ) that xi = ⊤, i.e., xi = ⊥. �

• A symmetric argument shows that we cannot have xi = ⊥
since it would imply xi = ⊤ through P ′. �

Relation between SSCs and 2-SAT

P

P ′



Assumption: for all xi, xi and xi belong to different SCCs.

• ∀ SCC C = C1, C2, . . . of G in reverse topological order.

• Assign all unassigned literals of C to ⊤ and their
complement to ⊥.

An algorithm:

Relation between SSCs and 2-SAT



Assumption: for all xi, xi and xi belong to different SCCs.

• ∀ SCC C = C1, C2, . . . of G in reverse topological order.

• Assign all unassigned literals of C to ⊤ and their
complement to ⊥.

Claim 2: When ℓi is set to ⊤, all literals ℓj reachable from
ℓi in G are set to ⊤.

Proof: By induction on the index k of the SCC Ck containing ℓi.

An algorithm:

Relation between SSCs and 2-SAT



Suppose that there is a neighbor ℓj of ℓi such that ℓj = ⊥.

ℓj is set to ⊤ and must belong to a SCC Ch for some h ≤ k.

By skew-simmetry G contains the edge (ℓj , ℓi)

If h = k:

Relation between SSCs and 2-SAT



Suppose that there is a neighbor ℓj of ℓi such that ℓj = ⊥.

ℓj is set to ⊤ and must belong to a SCC Ch for some h ≤ k.

By skew-simmetry G contains the edge (ℓj , ℓi)

If h = k:

ℓi

ℓjℓj

ℓi

Relation between SSCs and 2-SAT

Ck



Suppose that there is a neighbor ℓj of ℓi such that ℓj = ⊥.

ℓj is set to ⊤ and must belong to a SCC Ch for some h ≤ k.

By skew-simmetry G contains the edge (ℓj , ℓi)

If h = k:

ℓi

ℓjℓj

ℓi

Relation between SSCs and 2-SAT

Ck



Suppose that there is a neighbor ℓj of ℓi such that ℓj = ⊥.

ℓj is set to ⊤ and must belong to a SCC Ch for some h ≤ k.

By skew-simmetry G contains the edge (ℓj , ℓi)

If h = k:

ℓi

ℓjℓj

ℓi

Relation between SSCs and 2-SAT

Ck Ct̸=

• Ck ̸= Ct (otherwise ℓi, ℓi ∈ Ck)



Suppose that there is a neighbor ℓj of ℓi such that ℓj = ⊥.

ℓj is set to ⊤ and must belong to a SCC Ch for some h ≤ k.

By skew-simmetry G contains the edge (ℓj , ℓi)

If h = k:

ℓi

ℓjℓj

ℓi

Relation between SSCs and 2-SAT

Ck Ct̸=

• Ck ̸= Ct (otherwise ℓi, ℓi ∈ Ck)

• (Ck, Ct) ∈ E′ =⇒ t < k



Suppose that there is a neighbor ℓj of ℓi such that ℓj = ⊥.

ℓj is set to ⊤ and must belong to a SCC Ch for some h ≤ k.

By skew-simmetry G contains the edge (ℓj , ℓi)

If h = k:

ℓi

ℓjℓj

ℓi

Relation between SSCs and 2-SAT

Ck Ct̸=

• Ck ̸= Ct (otherwise ℓi, ℓi ∈ Ck)

• (Ck, Ct) ∈ E′ =⇒ t < k

• After Ct was considered
ℓi = ⊤ =⇒ ℓi = ⊥. �



Suppose that there is a neighbor ℓj of ℓi such that ℓj = ⊥.

ℓj is set to ⊤ and must belong to a SCC Ch for some h ≤ k.

By skew-simmetry G contains the edge (ℓj , ℓi)

By inductive hyphotesis, all neighbors of ℓj are set to ⊤, i.e.,
ℓi = ⊤ =⇒ ℓi = ⊥.

If h = k:

ℓi

ℓjℓj

ℓi

If h < k:

Relation between SSCs and 2-SAT

Ck

�

Ct̸=

• Ck ̸= Ct (otherwise ℓi, ℓi ∈ Ck)

• (Ck, Ct) ∈ E′ =⇒ t < k

• After Ct was considered
ℓi = ⊤ =⇒ ℓi = ⊥. �



Assumption: ∀xi, xi and xi belong to different SCCs.

Relation between SSCs and 2-SAT

Claim 2: When ℓi is set to ⊤, all literals ℓj reachable from
ℓi in G are set to ⊤.

Claim 1: If, for some xi, both xi and xi belong to the
same SCC C, then ϕ is not satisfiable.



Corollary: ϕ is satisfiable iff ∀xi, xi and xi belong to different
SCCs. The algorithm computes a satisfying assignment.

Assumption: ∀xi, xi and xi belong to different SCCs.

• Consider a generic clause (ℓi ∨ ℓj)

• If ℓi is set to ⊤, the clause is satisfied.

• If ℓi is set to ⊥: ℓi = ⊤ and G contains the edge (ℓi, ℓj).
The claim implies that ℓj = ⊤.

Relation between SSCs and 2-SAT

Claim 2: When ℓi is set to ⊤, all literals ℓj reachable from
ℓi in G are set to ⊤.

Claim 1: If, for some xi, both xi and xi belong to the
same SCC C, then ϕ is not satisfiable.



Time Complexity

• Construct the implication graph Gϕ

• Compute the SSCs of Gϕ

• If a SCC of G contains both xi and xi, for some xi:

• Return “ϕ is not satisfiable”

• Return “ϕ is satisfiable”

Satisfiability

O(n)

O(m)

O(m)

(Assuming m = Ω(n))



Time Complexity

• ∀ SCC C of G in reverse topological order.

• Assign all unassigned literals of C to ⊤ and
their complement to ⊥.

• Construct the implication graph Gϕ

• Compute the SSCs of Gϕ

• G′
ϕ ← Contract the SCCs of Gϕ

• Topologically sort G′

• If a SCC of G contains both xi and xi, for some xi:

• Return “ϕ is not satisfiable”

O(m)

O(m)




O(n)

Satisfying assignment

O(n)

O(m)

O(m)

(Assuming m = Ω(n))



Time Complexity

• ∀ SCC C of G in reverse topological order.

• Assign all unassigned literals of C to ⊤ and
their complement to ⊥.

• Construct the implication graph Gϕ

• Compute the SSCs of Gϕ

• G′
ϕ ← Contract the SCCs of Gϕ

• Topologically sort G′

• If a SCC of G contains both xi and xi, for some xi:

• Return “ϕ is not satisfiable”

How?

O(m)

O(m)




O(n)

Satisfying assignment

O(n)

O(m)

O(m)

(Assuming m = Ω(n))



Tarjan’s algorithm

T

η(v) = DFS number of v



Tarjan’s algorithm

1

2

3

4

5

6

T

η(v) = DFS number of v



Tarjan’s algorithm

1

2

3

4

5

6

exit(v) = minimum DFS number of a vertex u
in a yet undiscovered SCC such that u is
reachable from v via a path in T followed by at
most one final non-tree edge.

T

η(v) = DFS number of v



Tarjan’s algorithm

1

2

3

4

5

6

3

3

3

5

exit(v) = minimum DFS number of a vertex u
in a yet undiscovered SCC such that u is
reachable from v via a path in T followed by at
most one final non-tree edge.

T

η(v) = DFS number of v



Tarjan’s algorithm

1

2

3

4

5

6

3

3

3

5

exit(v) = minimum DFS number of a vertex u
in a yet undiscovered SCC such that u is
reachable from v via a path in T followed by at
most one final non-tree edge.

T

η(v) = DFS number of v



Tarjan’s algorithm

1

2

3

4

5

6

3

3

3

5

exit(v) = minimum DFS number of a vertex u
in a yet undiscovered SCC such that u is
reachable from v via a path in T followed by at
most one final non-tree edge.

T

η(v) = DFS number of v



Tarjan’s algorithm

1

2

3

4

5

6 9

3

3

3

5

7

8

exit(v) = minimum DFS number of a vertex u
in a yet undiscovered SCC such that u is
reachable from v via a path in T followed by at
most one final non-tree edge.

T

η(v) = DFS number of v



Tarjan’s algorithm

1

2

3

4

5

6 9

3

3

3

5

2 8

1

1 7

8

exit(v) = minimum DFS number of a vertex u
in a yet undiscovered SCC such that u is
reachable from v via a path in T followed by at
most one final non-tree edge.

T

η(v) = DFS number of v



Tarjan’s algorithm

1

2

3

4

5

6 9

10 11

12 13

14

3

3

3

5

2 8

1

1

7

11

14

7

8

exit(v) = minimum DFS number of a vertex u
in a yet undiscovered SCC such that u is
reachable from v via a path in T followed by at
most one final non-tree edge.

T

η(v) = DFS number of v



Tarjan’s algorithm

1

2

3

4

5

6 9

10 11

12 13

14

3

3

3

5

2 8

1

1

7
11

11

12

14

7

8

exit(v) = minimum DFS number of a vertex u
in a yet undiscovered SCC such that u is
reachable from v via a path in T followed by at
most one final non-tree edge.

T

η(v) = DFS number of v



Tarjan’s algorithm

1

2

3

4

5

6 9

10 11

12 13

14

3

3

3

5

2 8

1

1

7

1

11

11

12

14

7

8

exit(v) = minimum DFS number of a vertex u
in a yet undiscovered SCC such that u is
reachable from v via a path in T followed by at
most one final non-tree edge.

T

η(v) = DFS number of v



Proof of correctness
Claim: Let C be a SCC. The subgraph T [C] of T induced by
C is connected.
Proof:
Let u be the first vertex of C that is visited by the algorithm.
Let v ∈ C, with v ̸= u.
• u must be an ancestor of v in T (by the properties of DFS).

u

v

P



Proof of correctness
Claim: Let C be a SCC. The subgraph T [C] of T induced by
C is connected.
Proof:
Let u be the first vertex of C that is visited by the algorithm.
Let v ∈ C, with v ̸= u.
• u must be an ancestor of v in T (by the properties of DFS).

u

v

P



Proof of correctness
Claim: Let C be a SCC. The subgraph T [C] of T induced by
C is connected.
Proof:
Let u be the first vertex of C that is visited by the algorithm.
Let v ∈ C, with v ̸= u.
• u must be an ancestor of v in T (by the properties of DFS).

u

v

P



Proof of correctness
Claim: Let C be a SCC. The subgraph T [C] of T induced by
C is connected.
Proof:
Let u be the first vertex of C that is visited by the algorithm.
Let v ∈ C, with v ̸= u.
• u must be an ancestor of v in T (by the properties of DFS).

u

v

• There is a path from u to v in G =⇒ the vertices in P
are in C =⇒ u and v must also be connected in T [C].

□

P



Definition: the head u of a SCC C is the (unique!) vertex of
C having minimum depth in T .

Proof of correctness



Definition: the head u of a SCC C is the (unique!) vertex of
C having minimum depth in T .

Proof of correctness

Claim: ∀v ∈ C \ {u}, η(v) ̸= exit(v).

u

v



Definition: the head u of a SCC C is the (unique!) vertex of
C having minimum depth in T .

Proof of correctness

Claim: ∀v ∈ C \ {u}, η(v) ̸= exit(v).

• There is a path P from v to u.

u

v



Definition: the head u of a SCC C is the (unique!) vertex of
C having minimum depth in T .

Proof of correctness

Claim: ∀v ∈ C \ {u}, η(v) ̸= exit(v).

• There is a path P from v to u.

• Consider the first edge (x, y) of P such that y ̸∈ Tv.

y x

u

v



Definition: the head u of a SCC C is the (unique!) vertex of
C having minimum depth in T .

Proof of correctness

Claim: ∀v ∈ C \ {u}, η(v) ̸= exit(v).

• There is a path P from v to u.

• Consider the first edge (x, y) of P such that y ̸∈ Tv.

y x

u

v

• y is visited before v in the DFS.



Definition: the head u of a SCC C is the (unique!) vertex of
C having minimum depth in T .

Proof of correctness

Claim: ∀v ∈ C \ {u}, η(v) ̸= exit(v).

• There is a path P from v to u.

• Consider the first edge (x, y) of P such that y ̸∈ Tv.

• exit(v) ≤ η(y) < η(v).

y x □

u

v

• y is visited before v in the DFS.



Proof of correctness
Claim: Let u be the first encountered head in postorder.
η(u) = exit(u).

• Assume that there is a vertex v s.t. η(v) = exit(u) < η(u).



Proof of correctness
Claim: Let u be the first encountered head in postorder.
η(u) = exit(u).

• Assume that there is a vertex v s.t. η(v) = exit(u) < η(u).

• v cannot be an ancestor of u (otherwise v ∈ C and u is not
the head of C).

u

v



Proof of correctness
Claim: Let u be the first encountered head in postorder.
η(u) = exit(u).

• Assume that there is a vertex v s.t. η(v) = exit(u) < η(u).

• v cannot be an ancestor of u (otherwise v ∈ C and u is not
the head of C).

uv



Proof of correctness
Claim: Let u be the first encountered head in postorder.
η(u) = exit(u).

• Assume that there is a vertex v s.t. η(v) = exit(u) < η(u).

• v cannot be an ancestor of u (otherwise v ∈ C and u is not
the head of C).

• If v ∈ C, then u and v are connected in T [C] =⇒ the
lowest common ancestor of u and v is in C.

uv



Proof of correctness
Claim: Let u be the first encountered head in postorder.
η(u) = exit(u).

• Assume that there is a vertex v s.t. η(v) = exit(u) < η(u).

• v cannot be an ancestor of u (otherwise v ∈ C and u is not
the head of C).

• If v ∈ C, then u and v are connected in T [C] =⇒ the
lowest common ancestor of u and v is in C.

uv

�
head of C



Proof of correctness
Claim: Let u be the first encountered head in postorder.
η(u) = exit(u).

• Assume that there is a vertex v s.t. η(v) = exit(u) < η(u).

• v cannot be an ancestor of u (otherwise v ∈ C and u is not
the head of C).

• If v ∈ C, then u and v are connected in T [C] =⇒ the
lowest common ancestor of u and v is in C.

• If v ∈ C ′ ̸= C then the head z of C ′ must be an ancestor
of u =⇒ there is a path from u to z and vice-versa.

uv

�



Proof of correctness
Claim: Let u be the first encountered head in postorder.
η(u) = exit(u).

• Assume that there is a vertex v s.t. η(v) = exit(u) < η(u).

• v cannot be an ancestor of u (otherwise v ∈ C and u is not
the head of C).

• If v ∈ C, then u and v are connected in T [C] =⇒ the
lowest common ancestor of u and v is in C.

• If v ∈ C ′ ̸= C then the head z of C ′ must be an ancestor
of u =⇒ there is a path from u to z and vice-versa.

uv

�

z



Proof of correctness
Claim: Let u be the first encountered head in postorder.
η(u) = exit(u).

• Assume that there is a vertex v s.t. η(v) = exit(u) < η(u).

• v cannot be an ancestor of u (otherwise v ∈ C and u is not
the head of C).

• If v ∈ C, then u and v are connected in T [C] =⇒ the
lowest common ancestor of u and v is in C.

• If v ∈ C ′ ̸= C then the head z of C ′ must be an ancestor
of u =⇒ there is a path from u to z and vice-versa.

uv

�

z



Proof of correctness
Claim: Let u be the first encountered head in postorder.
η(u) = exit(u).

• Assume that there is a vertex v s.t. η(v) = exit(u) < η(u).

• v cannot be an ancestor of u (otherwise v ∈ C and u is not
the head of C).

• If v ∈ C, then u and v are connected in T [C] =⇒ the
lowest common ancestor of u and v is in C.

• If v ∈ C ′ ̸= C then the head z of C ′ must be an ancestor
of u =⇒ there is a path from u to z and vice-versa.

uv

�

z

�



The Algorithm

• η(u) ← cnt; cnt ← cnt +1; exit(u) ← η(u)

SCC(u):

• cnt ← 0; T ← ({u}, ∅)

• For each (u, v) ∈ E:

• If v has not yet been visited:

• Add (u, v) to T

• SCC(v)

• exit(u) ← min{exit(u), exit(v)}
• Else:

• exit(u) ← min{exit(u), η(v)}
• If exit(u) = η(u):

• Report a new SCC C containing all the descendants of u in T

• Delete the vertices in C from G and T

While ∃ vertex u ∈ G (that has not been deleted):

• SCC(u)

(vertices can be “deleted” in constant time by marking them)



The Algorithm

• η(u) ← cnt; cnt ← cnt +1; exit(u) ← η(u)

SCC(u):

• cnt ← 0; T ← ({u}, ∅)

• For each (u, v) ∈ E:

• If v has not yet been visited:

• Add (u, v) to T

• SCC(v)

• exit(u) ← min{exit(u), exit(v)}
• Else:

• exit(u) ← min{exit(u), η(v)}
• If exit(u) = η(u):

• Report a new SCC C containing all the descendants of u in T

• Delete the vertices in C from G and T

While ∃ vertex u ∈ G (that has not been deleted):

• SCC(u)

(vertices can be “deleted” in constant time by marking them)



The Algorithm

• η(u) ← cnt; cnt ← cnt +1; exit(u) ← η(u)

SCC(u):

• cnt ← 0; T ← ({u}, ∅)

• For each (u, v) ∈ E:

• If v has not yet been visited:

• Add (u, v) to T

• SCC(v)

• exit(u) ← min{exit(u), exit(v)}
• Else:

• exit(u) ← min{exit(u), η(v)}
• If exit(u) = η(u):

• Delete the vertices in C from G and T

While ∃ vertex u ∈ G (that has not been deleted):

• SCC(u)

S ← Empty stack

Push u into S

• C = ∅; do z ← Pop from S; C ← C ∪ {z} while z ̸= u;

(vertices can be “deleted” in constant time by marking them)


