Lowest Common Ancestor Queries

Lowest Common Ancestors

Definition: The lowest common ancestor $\operatorname{LCA}_{T}(u, v)$ of u and v in a rooted tree T is the vertex of maximum depth that is an ancestor of both u and v.

Lowest Common Ancestors

Definition: The lowest common ancestor $\operatorname{LCA}_{T}(u, v)$ of u and v in a rooted tree T is the vertex of maximum depth that is an ancestor of both u and v.

Lowest Common Ancestors

Definition: The lowest common ancestor $\operatorname{LCA}_{T}(u, v)$ of u and v in a rooted tree T is the vertex of maximum depth that is an ancestor of both u and v.

Lowest Common Ancestors

Definition: The lowest common ancestor $\operatorname{LCA}_{T}(u, v)$ of u and v in a rooted tree T is the vertex of maximum depth that is an ancestor of both u and v.

Lowest Common Ancestors

Definition: The lowest common ancestor $\operatorname{LCA}_{T}(u, v)$ of u and v in a rooted tree T is the vertex of maximum depth that is an ancestor of both u and v.

Lowest Common Ancestors

Definition: The lowest common ancestor $\operatorname{LCA}_{T}(u, v)$ of u and v in a rooted tree T is the vertex of maximum depth that is an ancestor of both u and v.

Lowest Common Ancestors

Definition: The lowest common ancestor $\operatorname{LCA}_{T}(u, v)$ of u and v in a rooted tree T is the vertex of maximum depth that is an ancestor of both u and v.

The Problem

Given T, design a data structure that is able to preprocess T to answer LCA queries:

- Query (u, v) : report $\operatorname{LCA}_{T}(u, v)$.

The Problem

Given T, design a data structure that is able to preprocess T to answer LCA queries:

- Query (u, v) : report $\operatorname{LCA}_{T}(u, v)$.

Trivial solutions:
$n=\#$ of nodes

- Preprocessing time: none Size: $O(n)$ Query time: $O(n)$

The Problem

Given T, design a data structure that is able to preprocess T to answer LCA queries:

- Query (u, v) : report $\operatorname{LCA}_{T}(u, v)$.

Trivial solutions:

$$
n=\# \text { of nodes }
$$

- Preprocessing time: none Size: $O(n)$ Query time: $O(n)$

The Problem

Given T, design a data structure that is able to preprocess T to answer LCA queries:

- Query (u, v) : report $\operatorname{LCA}_{T}(u, v)$.

Trivial solutions:

$$
n=\# \text { of nodes }
$$

- Preprocessing time: none Size: $O(n)$ Query time: $O(n)$

The Problem

Given T, design a data structure that is able to preprocess T to answer LCA queries:

- Query (u, v) : report $\operatorname{LCA}_{T}(u, v)$.

Trivial solutions:

$$
n=\# \text { of nodes }
$$

- Preprocessing time: none Size: $O(n)$ Query time: $O(n)$

The Problem

Given T, design a data structure that is able to preprocess T to answer LCA queries:

- Query (u, v) : report $\operatorname{LCA}_{T}(u, v)$.

Trivial solutions:

$$
n=\# \text { of nodes }
$$

- Preprocessing time: none Size: $O(n)$ Query time: $O(n)$

The Problem

Given T, design a data structure that is able to preprocess T to answer LCA queries:

- Query (u, v) : report $\operatorname{LCA}_{T}(u, v)$.

Trivial solutions:

$$
n=\# \text { of nodes }
$$

- Preprocessing time: none Size: $O(n)$ Query time: $O(n)$

The Problem

Given T, design a data structure that is able to preprocess T to answer LCA queries:

- Query (u, v) : report $\operatorname{LCA}_{T}(u, v)$.

Trivial solutions:

$$
n=\# \text { of nodes }
$$

- Preprocessing time: none Size: $O(n)$ Query time: $O(n)$

The Problem

Given T, design a data structure that is able to preprocess T to answer LCA queries:

- Query (u, v) : report $\operatorname{LCA}_{T}(u, v)$.

Trivial solutions:

$$
n=\# \text { of nodes }
$$

- Preprocessing time: none Size: $O(n)$ Query time: $O(n)$

The Problem

Given T, design a data structure that is able to preprocess T to answer LCA queries:

- Query (u, v) : report $\operatorname{LCA}_{T}(u, v)$.

Trivial solutions:

$$
n=\# \text { of nodes }
$$

- Preprocessing time: none Size: $O(n)$ Query time: $O(n)$

The Problem

Given T, design a data structure that is able to preprocess T to answer $L C A$ queries:

- Query (u, v) : report $\operatorname{LCA}_{T}(u, v)$.

Trivial solutions:

$$
n=\# \text { of nodes }
$$

- Preprocessing time: none Size: $O(n)$ Query time: $O(n)$

The Problem

Given T, design a data structure that is able to preprocess T to answer LCA queries:

- Query (u, v) : report $\operatorname{LCA}_{T}(u, v)$.

Trivial solutions:
$n=\#$ of nodes

- Preprocessing time: none Size: $O(n)$ Query time: $O(n)$
- Preprocessing time: $O\left(n^{3}\right)$ Size: $O\left(n^{2}\right)$ Query time: $O(1)$

The Problem

Given T, design a data structure that is able to preprocess T to answer LCA queries:

- Query (u, v) : report $\operatorname{LCA}_{T}(u, v)$.

Trivial solutions:
$n=\#$ of nodes

- Preprocessing time: none Size: $O(n)$ Query time: $O(n)$
- Preprocessing time: $O\left(n^{3}\right)$ Size: $O\left(n^{2}\right)$ Query time: $O(1)$ (precompute the answer to all possible queries)

The Problem

Given T, design a data structure that is able to preprocess T to answer LCA queries:

- Query (u, v) : report $\operatorname{LCA}_{T}(u, v)$.

Trivial solutions:
$n=\#$ of nodes

- Preprocessing time: none Size: $O(n)$ Query time: $O(n)$
- Preprocessing time: $O\left(n^{3}\right)$ Size: $O\left(n^{2}\right)$ Query time: $O(1)$
- Preprocessing time: $O\left(n^{2}\right)$ Size: $O\left(n^{2}\right)$ Query time: $O(1)$ $\operatorname{LCA}_{T}(u, v)= \begin{cases}\operatorname{LCA}_{T}(u, v)=u & \text { if } u \text { is an ancestor of } v \\ \operatorname{LCA}_{T}(u, v)=\operatorname{LCA}_{T}(\operatorname{parent}(u), v) & \text { otherwise }\end{cases}$

A Related Problem

Given an array $A=\left\langle a_{1}, \ldots, a_{n}\right\rangle$, design a data structure that is able to preprocess A to answer range minimum queries:

- $\mathbf{R M Q}(i, j)$: report an element in $\arg \min _{k=i, \ldots, j} a_{k}$.

A Related Problem

Given an array $A=\left\langle a_{1}, \ldots, a_{n}\right\rangle$, design a data structure that is able to preprocess A to answer range minimum queries:

- $\mathbf{R M Q}(i, j)$: report an element in $\arg \min _{k=i, \ldots, j} a_{k}$.

A Related Problem

Given an array $A=\left\langle a_{1}, \ldots, a_{n}\right\rangle$, design a data structure that is able to preprocess A to answer range minimum queries:

- $\mathbf{R M Q}(i, j)$: report an element in $\arg \min _{k=i, \ldots, j} a_{k}$.

$$
\begin{aligned}
& \begin{array}{c}
\\
\hline
\end{array} \begin{array}{|l|l|l|l|l|l|l|l|l|l|}
8 & 2 & 5 & 7 & 3 & 6 & 9 & 2 & 4 & 1 \\
\hline
\end{array} \\
& \operatorname{RMQ}(3,7)=5
\end{aligned}
$$

Trivial solutions:

- Preprocessing time: none Size: $O(n)$ Query time: $O(n)$
- Preprocessing time: $O\left(n^{3}\right)$ Size: $O\left(n^{2}\right)$ Query time: $O(1)$
- Preprocessing time: $O\left(n^{2}\right)$ Size: $O\left(n^{2}\right)$ Query time: $O(1)$

Reducing LCA Queries to RMQ

Reducing LCA Queries to RMQ

Reducing LCA Queries to RMQ

Euler tour of T

D| 0 | 1 | 2 | 3 | 2 | 3 | 2 | 1 | 2 | 1 | 0 | 1 | 0 | 1 | 2 | 3 | 2 | 3 | 2 | 1 | 0 |
| :--- |

Reducing LCA Queries to RMQ

Reducing LCA Queries to RMQ

Reducing LCA Queries to RMQ

Reducing LCA Queries to RMQ

Let $u, v \in T$ and i (resp. j) be the index of the first occurrence of u (resp. v) in E

Claim: $\operatorname{LCA}_{T}(u, v)=E[\operatorname{RMQ}(i, j)]$

Proof:

Let d_{w} be the depth of $w=\operatorname{LCA}_{T}(u, v)$ in T
The Euler tour from i to j must pass through w, hence $d_{w} \in D[i: j]$

Except for w, no other vertex with depth at most d_{w} appears in the Euler tour from i to j
$E[\operatorname{RMQ}(i, j)]=\operatorname{LCA}_{T}(u, v)$

Solutions to the RMQ problem

"Sparse Table" Solution to RMQ

For $i=1, \ldots, n$ and $\ell=2^{0}, 2^{1}, \ldots, 2^{\lfloor\log n\rfloor}$, define:

$$
M[i, \ell]=\arg \min _{i \leq k<i+\ell} a_{k}
$$

"Sparse Table" Solution to RMQ

For $i=1, \ldots, n$ and $\ell=2^{0}, 2^{1}, \ldots, 2^{\lfloor\log n\rfloor}$, define:

$$
M[i, \ell]=\arg \min _{i \leq k<i+\ell} a_{k}
$$

Preprocessing:
$M[i, \ell]= \begin{cases}i & \text { if } \ell=1 \\ \arg \min \\ k \in\left\{M\left[i, \frac{\ell}{2}\right], M\left[i+\frac{\ell}{2}, \frac{\ell}{2}\right]\right\}^{a_{k}} & \text { if } \ell>1\end{cases}$

"Sparse Table" Solution to RMQ

For $i=1, \ldots, n$ and $\ell=2^{0}, 2^{1}, \ldots, 2^{\lfloor\log n\rfloor}$, define:

$$
M[i, \ell]=\arg \min _{i \leq k<i+\ell} a_{k}
$$

Preprocessing:
$M[i, \ell]= \begin{cases}i & \text { if } \ell=1 \\ \arg \min \\ k \in\left\{M\left[i, \frac{\ell}{2}\right], M\left[i+\frac{\ell}{2}, \frac{\ell}{2}\right]\right\}^{a_{k}} & \text { if } \ell>1\end{cases}$
Answering a query:

$$
\begin{aligned}
& \text { Let } \ell=2^{\lfloor\log (j-i+1)\rfloor} \quad \operatorname{RMQ}(i, j)=\arg \min _{k \in\{M[i, \ell], M[j-\ell+1, \ell]\}} a_{k}
\end{aligned}
$$

"Sparse Table" Solution to RMQ

For $i=1, \ldots, n$ and $\ell=2^{0}, 2^{1}, \ldots, 2^{\lfloor\log n\rfloor}$, define:

$$
M[i, \ell]=\arg \min _{i \leq k<i+\ell} a_{k}
$$

Preprocessing:
$M[i, \ell]= \begin{cases}i & \text { if } \ell=1 \\ \arg \min \\ k \in\left\{M\left[i, \frac{\ell}{2}\right], M\left[i+\frac{\ell}{2}, \frac{\ell}{2}\right]\right\}^{a_{k}} & \text { if } \ell>1\end{cases}$
Answering a query:
Let $\ell=2^{\lfloor\log (j-i+1)\rfloor} \quad \mathrm{RMQ}(i, j)=\arg \min _{k \in\{M[i, \ell], M[j-\ell+1, \ell]\}} a_{k}$

- Preprocessing time: $O(n \log n)$
- Size: $O(n \log n)$
- Query time: $O(1)$

RMQ Solutions so far

Size
$O(n)$
$O\left(n^{2}\right)$
$O\left(n^{2}\right)$

Preprocessing	Query Time
Time	
-	$O(n)$
$O\left(n^{3}\right)$	$O(1)$
$O\left(n^{2}\right)$	$O(1)$

Notes

RMQ Solutions so far

Size
 $O(n)$
 $O\left(n^{2}\right)$
 $O\left(n^{2}\right)$
 $O(n \log n)$
 $\left|\begin{array}{c}\text { Preprocessing } \\ \text { Time } \\ - \\ O\left(n^{3}\right) \\ O\left(n^{2}\right) \\ O(n \log n)\end{array}\right|$
 Query Time
 Notes
 $O(n)$
 $O(1)$
 $O(1)$
 $O(1)$
 Sparse Table

RMQ Solutions so far

Size	Preprocessing	Query Time	Notes
$O(n)$	Time		
$O\left(n^{2}\right)$	$O\left(n^{3}\right)$	$O(1)$	
$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	$O(1)$	
$O(\underline{n \log n)}$	$O(n \log n)$	$O(1)$	Sparse Table

We want to get rid of the $\log n$ factor!

A more compact RMQ oracle

- Logically split A into $\Theta\left(\frac{n}{\log n}\right)$ "blocks" of $d=\Theta(\log n)$ elements each.

A more compact RMQ oracle

- Logically split A into $\Theta\left(\frac{n}{\log n}\right)$ "blocks" of $d=\Theta(\log n)$ elements each.

- Store the minimum of each block in a new array A^{\prime}

min

Time needed to build $A^{\prime}: O(n)$

A more compact RMQ oracle

Preprocessing:

- Build the "Sparse Table" oracle \mathcal{O} on A^{\prime}

A more compact RMQ oracle

Preprocessing:

- Build the "Sparse Table" oracle \mathcal{O} on A^{\prime}

Size / time: $\quad O\left(n^{\prime} \cdot \log n^{\prime}\right)=O\left(\frac{n}{\log n} \cdot \log \frac{n}{\log n}\right)=O(n)$

A more compact RMQ oracle

A

Answering a query:
To answer $\operatorname{RMQ}(i, j)$:

- If $i, j \in B_{k}$ return the position of the minimum in $A[i: j]$

A more compact RMQ oracle

Answering a query:

To answer $\operatorname{RMQ}(i, j)$:

- If $i, j \in B_{k}$ return the position of the minimum in $A[i: j]$
- If $i \in B_{h}$ and $j \in B_{k}$, with $k>h$, answer with the position of the smallest element among:

1) The minimum in $A[i: h d]$

A more compact RMQ oracle

Answering a query:

To answer $\operatorname{RMQ}(i, j)$:

- If $i, j \in B_{k}$ return the position of the minimum in $A[i: j]$
- If $i \in B_{h}$ and $j \in B_{k}$, with $k>h$, answer with the position of the smallest element among:

1) The minimum in $A[i: h d]$
2) The minimum in $A[(k-1) d+1: j]$

A more compact RMQ oracle

To answer RMQ (i, j) :

- If $i, j \in B_{k}$ return the position of the minimum in $A[i: j]$
- If $i \in B_{h}$ and $j \in B_{k}$, with $k>h$, answer with the position of the smallest element among:

1) The minimum in $A[i: h d]$
2) The minimum in $A[(k-1) d+1: j]$
3) A query to \mathcal{O} to get $\min A[h d+1:(k-1) d]$

A more compact RMQ oracle

A

Time: $O(\log n)$
Answering a query:

To answer $\operatorname{RMQ}(i, j)$:
$O(\log n)$

- If $i, j \in B_{k}$ return the position of the minimum in $A[i: j]$
- If $i \in B_{h}$ and $j \in B_{k}$, with $k>h$, answer with the position of the smallest element among:

1) The minimum in $A[i: h d]$
$O(\log n)$
2) The minimum in $A[(k-1) d+1: j]$
$O(\log n)$
3) A query to \mathcal{O} to get $\min A[h d+1:(k-1) d]$

A more compact RMQ oracle (alternative)

Preprocessing:

- Build the "Sparse Table" oracle \mathcal{O} on A^{\prime}

Size / time: $\quad O\left(n^{\prime} \cdot \log n^{\prime}\right)=O\left(\frac{n}{\log n} \cdot \log \frac{n}{\log n}\right)=O(n)$

A more compact RMQ oracle (alternative)

Preprocessing:

- Build the "Sparse Table" oracle \mathcal{O} on A^{\prime}

Size / time: $\quad O\left(n^{\prime} \cdot \log n^{\prime}\right)=O\left(\frac{n}{\log n} \cdot \log \frac{n}{\log n}\right)=O(n)$

- Build the "Sparse Table" oracle \mathcal{O}_{i} each B_{i}

Size / time: $\quad O\left(\frac{n}{\log n} \cdot(\log n)(\log \log n)\right)=O(n \log \log n)$

A more compact RMQ oracle (alternative)

Preprocessing:

- Build the "Sparse Table" oracle \mathcal{O} on A^{\prime}

Size / time: $\quad O\left(n^{\prime} \cdot \log n^{\prime}\right)=O\left(\frac{n}{\log n} \cdot \log \frac{n}{\log n}\right)=O(n)$

- Build the "Sparse Table" oracle \mathcal{O}_{i} each B_{i}

Size / time: $\quad O\left(\frac{n}{\log n} \cdot(\log n)(\log \log n)\right)=O(n \log \log n)$

$$
\text { Total size / time: } O(n \log \log n)
$$

A more compact RMQ oracle

Answering a query:
To answer $\operatorname{RMQ}(i, j)$:

Time: $O(1)$

- If i and j are in the same block B_{k} : query \mathcal{O}_{k}
- If $i \in B_{h}$ and $j \in B_{k}$, with $k>h$, answer with the position of the smallest element among those returned by:

1) A query to \mathcal{O}_{h} to get the minimum in $A[i: h d]$
2) A query to \mathcal{O}_{k} to get the minimum in $A[(k-1) d+1: j]$
3) A query to \mathcal{O} to get the minimum $A[h d+1:(k-1) d]$

RMQ Solutions so far

Size	Preprocessing	Query Time	Notes
$O(n)$	Time	$O(n)$	
$O\left(n^{2}\right)$	$O\left(n^{3}\right)$	$O(1)$	
$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	$O(1)$	
$O(n \log n)$	$O(n \log n)$	$O(1)$	Sparse Table

RMQ Solutions so far

Size	Preprocessing	Query Time	Notes
$O(n)$	Time	$O(n)$	
$O\left(n^{2}\right)$	$O\left(n^{3}\right)$	$O(1)$	
$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	$O(1)$	
$O(n \log n)$	$O(n \log n)$	$O(1)$	Sparse Table
$O(n)$	$O(n)$	$O(\log n)$	

RMQ Solutions so far

Size	Preprocessing	Query Time	Notes
$O(n)$	-	$O(n)$	
$O\left(n^{2}\right)$	$O\left(n^{3}\right)$	$O(1)$	
$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	$O(1)$	
$O(n \log n)$	$O(n \log n)$	$O(1)$	Sparse Table
$O(n)$	$O(n)$	$O(\log n)$	
$O(n \log \log n)$	$O(n \log \log n)$	$O(1)$	

RMQ Solutions so far

Size	Preprocessing	Query Time	Notes
$O(n)$	-	$O(n)$	
$O\left(n^{2}\right)$	$O\left(n^{3}\right)$	$O(1)$	
$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	$O(1)$	
$O(n \log n)$	$O(n \log n)$	$O(1)$	Sparse Table
$O(n)$	$O(n)$	$O(\log n)$	
$O(n \underline{\log \log n)}$	$O(n \log \log n)$	$O(1)$	

Almost...

A Special Case

- Assume that $a_{i+1}-a_{i} \in\{+1,-1\}$.

$$
\begin{array}{l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 1 & 2 & 3 & 2 & 3 & 2 & 1 & 2 & 1 & 0 \\
\hline
\end{array}
$$

A Special Case

- Assume that $a_{i+1}-a_{i} \in\{+1,-1\}$.

$$
\begin{array}{l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 2 & 3 & 2 & 1 & 2 & 1 & 0 \\
\hline
\end{array}
$$

- This is the case of the instances obtained from LCA!

A Special Case

Logically split A into $\Theta\left(\frac{n}{\log n}\right)$ "blocks" of $d=c \log n$ elements.

A Special Case

Logically split A into $\Theta\left(\frac{n}{\log n}\right)$ "blocks" of $d=c \log n$ elements.
Definition: Two blocks have the same type if they have the same sequence of ± 1 differences between consecutive elements.

$$
B_{i} \frac{3 \times 4 \times 3 / 4|5| 6|5| 6}{+1-1+1+1+1-1+1} \quad B_{j} \frac{7|8| 7|8| 9|10| 9 \mid 10}{+1-1+1+1+1-1+1}
$$

A Special Case

Logically split A into $\Theta\left(\frac{n}{\log n}\right)$ "blocks" of $d=c \log n$ elements.
Definition: Two blocks have the same type if they have the same sequence of ± 1 differences between consecutive elements.

Observation: The answer to the same RMQ query on two blocks of the same type is the same.

A Special Case

Logically split A into $\Theta\left(\frac{n}{\log n}\right)$ "blocks" of $d=c \log n$ elements.
Definition: Two blocks have the same type if they have the same sequence of ± 1 differences between consecutive elements.

Observation: The answer to the same RMQ query on two blocks of the same type is the same.

How many block types are there?

- Encode a block by its sequence of differences.
- At most $2^{c \log n}=n^{c}$ block types.

A Special Case

Logically split A into $\Theta\left(\frac{n}{\log n}\right)$ "blocks" of $d=c \log n$ elements.

- Compute A^{\prime} and build the "Sparse Table" oracle \mathcal{O} on A^{\prime}.
- Size/time: $O(n)$

A Special Case

Logically split A into $\Theta\left(\frac{n}{\log n}\right)$ "blocks" of $d=c \log n$ elements.

- Compute A^{\prime} and build the "Sparse Table" oracle \mathcal{O} on A^{\prime}.
- Size/time: $O(n)$
- For each type t of the at most n^{c} block types:
- Build the RMQ oracle \mathcal{O}_{t} with quadratic preprocessing time/size and constant query time.
- Size/time: $O\left(n^{c} \log ^{2} n\right)$

A Special Case

Logically split A into $\Theta\left(\frac{n}{\log n}\right)$ "blocks" of $d=c \log n$ elements.

- Compute A^{\prime} and build the "Sparse Table" oracle \mathcal{O} on A^{\prime}.
- Size/time: $O(n)$
- For each type t of the at most n^{c} block types:
- Build the RMQ oracle \mathcal{O}_{t} with quadratic preprocessing time/size and constant query time.
- Size/time: $O\left(n^{c} \log ^{2} n\right)$
- For each block B_{i}, store the index t_{i} of its type.
- Size/time: $O\left(\frac{n}{\log n} \cdot \log n^{c}\right)=O(n)$.

A Special Case

Logically split A into $\Theta\left(\frac{n}{\log n}\right)$ "blocks" of $d=c \log n$ elements.

- Compute A^{\prime} and build the "Sparse Table" oracle \mathcal{O} on A^{\prime}.
- Size/time: $O(n)$
- For each type t of the at most n^{c} block types:
- Build the RMQ oracle \mathcal{O}_{t} with quadratic preprocessing time/size and constant query time.
- Size/time: $O\left(n^{c} \log ^{2} n\right)$
- For each block B_{i}, store the index t_{i} of its type.
- Size/time: $O\left(\frac{n}{\log n} \cdot \log n^{c}\right)=O(n)$.

Total size/time: $O\left(n+n^{c} \log ^{2} n\right) \quad$ For (constant) $c<1: O(n)$

A Special Case

A

Answering a query:

To answer RMQ (i, j) :

- If i and j are in the same block B_{k} : query $\mathcal{O}_{t_{k}}$

A Special Case

Answering a query:

To answer $\operatorname{RMQ}(i, j)$:

- If i and j are in the same block B_{k} : query $\mathcal{O}_{t_{k}}$
- If $i \in B_{h}$ and $j \in B_{k}$, with $k>h$, answer with the position of the smallest element among those returned by:

1) A query to $\mathcal{O}_{t_{h}}$ to get the minimum in $A[i: h d]$

A Special Case

Answering a query:

To answer $\operatorname{RMQ}(i, j)$:

- If i and j are in the same block B_{k} : query $\mathcal{O}_{t_{k}}$
- If $i \in B_{h}$ and $j \in B_{k}$, with $k>h$, answer with the position of the smallest element among those returned by:

1) A query to $\mathcal{O}_{t_{h}}$ to get the minimum in $A[i: h d]$
2) A query to $\mathcal{O}_{t_{k}}$ to get the minimum in $A[(k-1) d+1: j]$

A Special Case

Answering a query:
To answer $\operatorname{RMQ}(i, j)$:

- If i and j are in the same block B_{k} : query $\mathcal{O}_{t_{k}}$
- If $i \in B_{h}$ and $j \in B_{k}$, with $k>h$, answer with the position of the smallest element among those returned by:

1) A query to $\mathcal{O}_{t_{h}}$ to get the minimum in $A[i: h d]$
2) A query to $\mathcal{O}_{t_{k}}$ to get the minimum in $A[(k-1) d+1: j]$
3) A query to \mathcal{O} to get the minimum $A[h d+1:(k-1) d]$

A Special Case

Answering a query:
To answer RMQ (i, j) :

Time: $O(1)$

- If i and j are in the same block B_{k} : query $\mathcal{O}_{t_{k}}$
- If $i \in B_{h}$ and $j \in B_{k}$, with $k>h$, answer with the position of the smallest element among those returned by:

1) A query to $\mathcal{O}_{t_{h}}$ to get the minimum in $A[i: h d]$
2) A query to $\mathcal{O}_{t_{k}}$ to get the minimum in $A[(k-1) d+1: j]$
3) A query to \mathcal{O} to get the minimum $A[h d+1:(k-1) d]$

RMQ Solutions so far

Size	Preprocessing	Query Time	Notes
$O(n)$	-	$O(n)$	
$O\left(n^{2}\right)$	$O\left(n^{3}\right)$	$O(1)$	
$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	$O(1)$	
$O(n \log n)$	$O(n \log n)$	$O(1)$	Sparse Table
$O(n)$	$O(n)$	$O(\log n)$	
$O(n \log \log n)$	$O(n \log \log n)$	$O(1)$	

RMQ Solutions so far

Size	Preprocessing	Query Time	Notes
$O(n)$	Time		
$O\left(n^{2}\right)$	-	$O(n)$	
$O\left(n^{2}\right)$	$O\left(n^{3}\right)$	$O(1)$	
$O(n \log n)$	$O(n \log n)$	$O(1)$	Sparse Table
$O(n)$	$O(n)$	$O(\log n)$	
$O(n \log \log n)$	$O(n \log \log n)$	$O(1)$	
$O(n)$	$O(n)$	$O(1)$	$\pm 1 \mathrm{RMQ}$

RMQ Solutions so far

Size	Preprocessing	Query Time	Notes
$O(n)$	Time		
$O\left(n^{2}\right)$	$O\left(n^{3}\right)$	$O(1)$	
$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	$O(1)$	
$O(n \log n)$	$O(n \log n)$	$O(1)$	Sparse Table
$O(n)$	$O(n)$	$O(\log n)$	
$O(n \log \log n)$	$O(n \log \log n)$	$O(1)$	
$O(n)$	$O(n)$	$O(1)$	$\pm 1 \mathrm{RMQ}$

What about the general case?

The General Case

The General Case

Preprocessing / size $O(n)$.
Query time $O(1)$.

Cartesian Trees

| 8 | 2 | 5 | 7 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | (6) \quad| 9 | 3 | 4 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |

- The root r of the Cartesian tree is the index i of a minimum element a_{i} of A

Cartesian Trees

	1	2			4	5	6	6	7	8	9	9	10
A	8	2	5		7	2	1	1	9	3	4	4	6

- The root r of the Cartesian tree is the index i of a minimum element a_{i} of A
- The left and right subtrees r are the Cartesian trees of $A[1: i-1]$ and $A[i+1: n]$ (if not empty).

Cartesian Trees

	1	2	3	4	5	6	7	8		10	
A	8	2	5	7	2	1	9	3	4		

Cartesian Trees

	1	2	3		4	5	6	7	7	8	9		10
A	8	2	5	7	7	2	1	9	9	3	4		6

Cartesian Trees

	1	2	3		4	5	6	7	7	8	9		10
A	8	2	5	7	7	2	1	9	9	3	4		6

Cartesian Trees

Cartesian Trees

| |
| :---: | | 1 | 2 | 2 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 8 | 2 | 5 | 7 | 2 | 1 | 9 | 3 | 4 | 6 |

Observation: A symmetric visit of T_{A} visits the nodes in increasing order

Constructing a Cartesian Tree

A | | 2 | 2 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 8 | 2 | 5 | 7 | 2 | 1 | 9 | 3 | 4 |

Constructing a Cartesian Tree

The vertex corresponding to a_{i+1} must belong to the rightmost path of the Cartesian tree of $A[1: i]$.

Constructing a Cartesian Tree

The vertex corresponding to a_{i+1} must belong to the rightmost path of the Cartesian tree of $A[1: i]$.

Constructing a Cartesian Tree

The vertex corresponding to a_{i+1} must belong to the rightmost path of the Cartesian tree of $A[1: i]$.

Constructing a Cartesian Tree

The vertex corresponding to a_{i+1} must belong to the rightmost path of the Cartesian tree of $A[1: i]$.

Constructing a Cartesian Tree

A | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 8 | 2 | 5 | 7 | 2 | 1 | 9 | 3 | 4 |

The vertex corresponding to a_{i+1} must belong to the rightmost path of the Cartesian tree of $A[1: i]$.

Constructing a Cartesian Tree

	1	2	3	4	5	6	7	8	9	10
A	8	2	5	7	2	1	9	3	4	6

The vertex corresponding to a_{i+1} must belong to the rightmost path of the Cartesian tree of $A[1: i]$.

Constructing a Cartesian Tree

The vertex corresponding to a_{i+1} must belong to the rightmost path of the Cartesian tree of $A[1: i]$.

Constructing a Cartesian Tree

The vertex corresponding to a_{i+1} must belong to the rightmost path of the Cartesian tree of $A[1: i]$.

Constructing a Cartesian Tree

A | | 2 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

The vertex corresponding to a_{i+1} must belong to the rightmost path of the Cartesian tree of $A[1: i]$.

Constructing a Cartesian Tree

The vertex corresponding to a_{i+1} must belong to the rightmost path of the Cartesian tree of $A[1: i]$.

Constructing a Cartesian Tree

- When a new vertex a_{i} is inserted, it is compared with $1+\eta_{i}$ vertices $u_{0}, u_{1}, \ldots, u_{\eta_{i}}$ on the rightmost path of T.

Constructing a Cartesian Tree

- When a new vertex a_{i} is inserted, it is compared with $1+\eta_{i}$ vertices $u_{0}, u_{1}, \ldots, u_{\eta_{i}}$ on the rightmost path of T.
- After a_{i} is inserted, all vertices $u_{1}, \ldots, u_{\eta_{i}}$ will leave the rightmost path of T (and will never join the path again).

Constructing a Cartesian Tree

- When a new vertex a_{i} is inserted, it is compared with $1+\eta_{i}$ vertices $u_{0}, u_{1}, \ldots, u_{\eta_{i}}$ on the rightmost path of T.
- After a_{i} is inserted, all vertices $u_{1}, \ldots, u_{\eta_{i}}$ will leave the rightmost path of T (and will never join the path again).
- Total number of comparisons:

$$
\sum_{i=1}^{n}\left(1+\eta_{i}\right)=n+\sum_{i=1}^{n} \eta_{i}=n+O(n)=O(n)
$$

Cartesian Trees and RMQs

- Let T be the Cartesian tree of A.
- $A[\mathrm{RMQ}(i, j)]=A\left[\mathrm{LCA}_{T}(i, j)\right]$

Cartesian Trees and RMQs

- Let T be the Cartesian tree of A.
- $A[\mathrm{RMQ}(i, j)]=A\left[\mathrm{LCA}_{T}(i, j)\right]$

Cartesian Trees and RMQs

Proof of $A\left[\mathrm{LCA}_{T}(i, j)\right] \geq A[\mathrm{RMQ}(i, j)]$

- Let $u=\mathrm{LCA}_{T}(i, j), V_{\ell}$ and V_{r} be the set vertices in the left and right subtree of u, respectively.
- $i \in V_{\ell} \cup\{u\}$ and $j \in V_{r} \cup\{u\}$
- $i \leq u \leq j$
- $A[u] \geq \min A[i: j]=A[\operatorname{RMQ}(i, j)]$

Cartesian Trees and RMQs

Proof of $A\left[\mathrm{LCA}_{T}(i, j)\right] \leq A[\mathrm{RMQ}(i, j)]$

- All vertices k in the subtree T^{\prime} of T rooted in $\operatorname{LCA}_{T}(i, j)$ are such that $A[k] \geq A\left[\mathrm{LCA}_{T}(i, j)\right]$

Cartesian Trees and RMQs

Proof of $A\left[\mathrm{LCA}_{T}(i, j)\right] \leq A[\mathrm{RMQ}(i, j)]$

- All vertices k in the subtree T^{\prime} of T rooted in $\operatorname{LCA}_{T}(i, j)$ are such that $A[k] \geq A\left[\mathrm{LCA}_{T}(i, j)\right]$
- All subtrees of T correspond to contiguous subarrays of A

Cartesian Trees and RMQs

Proof of $A\left[\mathrm{LCA}_{T}(i, j)\right] \leq A[\mathrm{RMQ}(i, j)]$

- All vertices k in the subtree T^{\prime} of T rooted in $\operatorname{LCA}_{T}(i, j)$ are such that $A[k] \geq A\left[\mathrm{LCA}_{T}(i, j)\right]$
- All subtrees of T correspond to contiguous subarrays of A
- Since $i, j \in T^{\prime}$, all $k \in\{i, \ldots, j\}$ also belong to T^{\prime}

Cartesian Trees and RMQs

Proof of $A\left[\mathrm{LCA}_{T}(i, j)\right] \leq A[\mathrm{RMQ}(i, j)]$

- All vertices k in the subtree T^{\prime} of T rooted in $\operatorname{LCA}_{T}(i, j)$ are such that $A[k] \geq A\left[\mathrm{LCA}_{T}(i, j)\right]$
- All subtrees of T correspond to contiguous subarrays of A
- Since $i, j \in T^{\prime}$, all $k \in\{i, \ldots, j\}$ also belong to T^{\prime}
- $\operatorname{RMQ}(i, j) \in\{i, \ldots, j\} \Longrightarrow A[\mathrm{RMQ}(i, j)] \geq A\left[\mathrm{LCA}_{T}(i, j)\right]$

The General Case

RMQ Solutions: Recap

Size	Preprocessing	Query Time	Notes
$O(n)$	$O(n)$	$O(n)$	
$O\left(n^{2}\right)$	$O\left(n^{3}\right)$	$O(1)$	
$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	$O(1)$	
$O(n \log n)$	$O(n \log n)$	$O(1)$	Sparse Table
$O(n)$	$O(n)$	$O(\log n)$	
$O(n \log \log n)$	$O(n \log \log n)$	$O(1)$	
$O(n)$	$O(n)$	$O(1)$	$\pm 1 \mathrm{RMQ}$

RMQ Solutions: Recap

Size	Preprocessing	Query Time	Notes
$O(n)$	$O(n)$	$O(n)$	
$O\left(n^{2}\right)$	$O\left(n^{3}\right)$	$O(1)$	
$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	$O(1)$	
$O(n \log n)$	$O(n \log n)$	$O(1)$	Sparse Table
$O(n)$	$O(n)$	$O(\log n)$	
$O(n \log \log n)$	$O(n \log \log n)$	$O(1)$	
$O(n)$	$O(n)$	$O(1)$	± 1 RMQ
$O(n)$	$O(n)$	$O(1)$	General case

