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The Problem

Given T , design a data structure that is able to preprocess T to
answer LCA queries:

• Query(u, v): report LCAT (u, v).

Trivial solutions:

• Preprocessing time: none Size: O(n) Query time: O(n)

• Preprocessing time: O(n3) Size: O(n2) Query time: O(1)

• Preprocessing time: O(n2) Size: O(n2) Query time: O(1)

LCAT (u, v) =

(
LCAT (u, v) = u if u is an ancestor of v

LCAT (u, v) = LCAT (parent(u), v) otherwise

n = # of nodes



A Related Problem

Given an array A = ⟨a1, . . . , an⟩, design a data structure that is
able to preprocess A to answer range minimum queries:

• RMQ(i, j): report an element in arg min
k=i,...,j

ak.
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A Related Problem

Given an array A = ⟨a1, . . . , an⟩, design a data structure that is
able to preprocess A to answer range minimum queries:

• RMQ(i, j): report an element in arg min
k=i,...,j

ak.

8 2 5 2 1

i j

37 6 9 4
1 2 3 4 5 6 7 8 9 10

RMQ(3, 7)=5

Trivial solutions:

• Preprocessing time: none Size: O(n) Query time: O(n)

• Preprocessing time: O(n3) Size: O(n2) Query time: O(1)

• Preprocessing time: O(n2) Size: O(n2) Query time: O(1)

A
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Claim: LCAT (u, v) = E[RMQ(i, j)]

Let u, v ∈ T and i (resp. j) be the index of the first
occurrence of u (resp. v) in E

Proof:

The Euler tour from i to j must pass through w, hence
dw ∈ D[i : j]

Let dw be the depth of w = LCAT (u, v) in T

Except for w, no other vertex with depth at most dw appears
in the Euler tour from i to j

E[RMQ(i, j)] = LCAT (u, v)

u v

dw

Reducing LCA Queries to RMQ

w



Solutions to the RMQ problem



“Sparse Table” Solution to RMQ
For i = 1, . . . , n and ℓ = 20, 21, . . . , 2⌊log n⌋, define:

M [i, ℓ] = arg min
i≤k<i+ℓ
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“Sparse Table” Solution to RMQ
For i = 1, . . . , n and ℓ = 20, 21, . . . , 2⌊log n⌋, define:
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• Preprocessing time: O(n log n)

• Size: O(n log n)

M [i, ℓ] = arg min
i≤k<i+ℓ

ak

Preprocessing:

Answering a query:

RMQ(i, j) = arg min
k∈{M [i,ℓ],M [j−ℓ+1,ℓ]}

akLet ℓ = 2⌊log(j−i+1)⌋

• Query time: O(1)
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We want to get rid of the log n factor!
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• Logically split A into Θ( n
log n ) “blocks” of d = Θ(log n)

elements each.

A more compact RMQ oracle

1 2 ... n

| {z }
B1

• Store the minimum of each block in a new array A′

A

A′

| {z }

min

| {z }
B2

1 n′

Time needed to build A′: O(n)

...
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• Build the “Sparse Table” oracle O on A′

O(n′ · log n′) = O( n
log n · log n

log n ) = O(n)Size / time:

Preprocessing:

1 ... n′
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A

A′
Answering a query:

To answer RMQ(i, j):

• If i, j ∈ Bk return the position of the minimum in A[i : j]

• If i ∈ Bh and j ∈ Bk, with k > h, answer with the position
of the smallest element among:

1) The minimum in A[i : hd]

2) The minimum in A[(k − 1)d+ 1 : j]
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Time: O(log n)

O(log n)

O(log n)

O(log n)

O(1)



A more compact RMQ oracle (alternative)

1 2 n

A

A′

• Build the “Sparse Table” oracle O on A′

O(n′ · log n′) = O( n
log n · log n

log n ) = O(n)Size / time:

Preprocessing:

1 ... n′



A more compact RMQ oracle (alternative)

1 2 n

A

A′

• Build the “Sparse Table” oracle O on A′

O(n′ · log n′) = O( n
log n · log n

log n ) = O(n)

• Build the “Sparse Table” oracle Oi each Bi

O( n
log n · (log n)(log log n)) = O(n log log n)

Size / time:

Size / time:

Preprocessing:

1 ... n′



A more compact RMQ oracle (alternative)

1 2 n

A

A′

• Build the “Sparse Table” oracle O on A′

O(n′ · log n′) = O( n
log n · log n

log n ) = O(n)

• Build the “Sparse Table” oracle Oi each Bi

O( n
log n · (log n)(log log n)) = O(n log log n)

Total size / time: O(n log log n)

Size / time:

Size / time:
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A more compact RMQ oracle

A

A′
Answering a query:

To answer RMQ(i, j):

• If i and j are in the same block Bk: query Ok

• If i ∈ Bh and j ∈ Bk, with k > h, answer with the position
of the smallest element among those returned by:

1) A query to Oh to get the minimum in A[i : hd]

2) A query to Ok to get the minimum in A[(k − 1)d+ 1 : j]

3) A query to O to get the minimum A[hd+ 1 : (k − 1)d]

i j

1 2

3

3 Time: O(1)
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A Special Case
• Assume that ai+1 − ai ∈ {+1,−1}.

• This is the case of the instances obtained from LCA !
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Logically split A into Θ( n
log n ) “blocks” of d = c log n elements.

Definition: Two blocks have the same type if they have the
same sequence of ±1 differences between consecutive elements.

How many block types are there?

A Special Case

3 4 3 4 5 6 5 7 8 7 8 9 106 9 10
+1 -1 +1 +1 +1 -1 +1 +1 -1 +1 +1 +1 -1 +1

Bi Bj

Observation: The answer to the same RMQ query on two
blocks of the same type is the same.

• Encode a block by its sequence of differences.

• At most 2c logn = nc block types.



Logically split A into Θ( n
log n ) “blocks” of d = c log n elements.

A′

• Compute A′ and build the “Sparse Table” oracle O on A′.

• Size/time: O(n)
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Logically split A into Θ( n
log n ) “blocks” of d = c log n elements.

• Build the RMQ oracle Ot with quadratic preprocessing
time/size and constant query time.

• For each type t of the at most nc block types:

• Size/time: O(nc log2 n)

• For each block Bi, store the index ti of its type.

• Size/time: O( n
log n · log nc) = O(n).

Total size/time: O(n+ nc log2 n)

A′

• Compute A′ and build the “Sparse Table” oracle O on A′.

For (constant) c < 1: O(n)

• Size/time: O(n)

A

A Special Case
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Answering a query:
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• If i and j are in the same block Bk: query Otk

• If i ∈ Bh and j ∈ Bk, with k > h, answer with the position
of the smallest element among those returned by:
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A Special Case

Answering a query:

To answer RMQ(i, j):

• If i and j are in the same block Bk: query Otk

• If i ∈ Bh and j ∈ Bk, with k > h, answer with the position
of the smallest element among those returned by:

1) A query to Oth to get the minimum in A[i : hd]

2) A query to Otk to get the minimum in A[(k − 1)d+ 1 : j]

3) A query to O to get the minimum A[hd+ 1 : (k − 1)d]
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A Special Case

Answering a query:

To answer RMQ(i, j):

• If i and j are in the same block Bk: query Otk

• If i ∈ Bh and j ∈ Bk, with k > h, answer with the position
of the smallest element among those returned by:

1) A query to Oth to get the minimum in A[i : hd]

2) A query to Otk to get the minimum in A[(k − 1)d+ 1 : j]

3) A query to O to get the minimum A[hd+ 1 : (k − 1)d]

A

i j3

1 2

A′

3 Time: O(1)
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Size Preprocessing
Time

Query Time

O(n log n) O(n log n) O(1)

O(n) O(n)–

O(n2) O(1)O(n3)

O(n2) O(1)O(n2)

O(n log log n) O(1)O(n log log n)

Notes

Sparse Table

±1 RMQ

O(n) O(log n)O(n)

O(n) O(1)O(n)

What about the general case?



The General Case

Least Common
Ancestor Oracle

±1 RMQ Oracle

Preprocessing / size O(n).
Query time O(1).

Linear-time reduction
(using Euler tours)



The General Case

General RMQ
Oracle

Least Common
Ancestor Oracle

±1 RMQ Oracle

Preprocessing / size O(n).
Query time O(1).

Linear-time reduction

Linear-time reduction

(using Euler tours)

(using Cartesian trees)



Cartesian Trees

8 2 5 327 9 4
1 2 3 4 5 6 7 8 9 10

61A



Cartesian Trees

8 2 5 327 9 4
1 2 3 4 5 6 7 8 9 10

61

8 2 5 27 39 4 6

• The root r of the Cartesian tree is the index i of a
minimum element ai of A

6

A



Cartesian Trees

8 2 5 327 9 4
1 2 3 4 5 6 7 8 9 10

61

8 2 5 27 39 4 6

8 5 27 9 4 6

• The root r of the Cartesian tree is the index i of a
minimum element ai of A

• The left and right subtrees r are the Cartesian trees of
A[1 : i− 1] and A[i+ 1 : n] (if not empty).
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Observation: A symmetric visit of TA visits the nodes in increasing order
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Constructing a Cartesian Tree

• When a new vertex ai is inserted, it is compared with
1 + ηi vertices u0, u1, . . . , uηi on the rightmost path of T .

• After ai is inserted, all vertices u1, . . . , uηi
will leave the

rightmost path of T (and will never join the path again).

• Total number of comparisons:Pn
i=1(1 + ηi) = n+

Pn
i=1 ηi = n+O(n) = O(n).

1

4

3 u1

u2

ai

2

5



Cartesian Trees and RMQs

• Let T be the Cartesian tree of A.

• A[RMQ(i, j)] = A[LCAT (i, j)]

10

71

4

3

5

6

9

TA

8 2 327 9 4
1 2 3 4 5 6 7 8 9 10

61A

2

5

8



Cartesian Trees and RMQs
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Proof of A[LCAT (i, j)] ≥ A[RMQ(i, j)]

• A[u] ≥ minA[i : j] = A[RMQ(i, j)]

• Let u = LCAT (i, j), Vℓ and Vr be the set vertices in the
left and right subtree of u, respectively.

• i ∈ Vℓ ∪ {u} and j ∈ Vr ∪ {u}
• i ≤ u ≤ j

Cartesian Trees and RMQs

j

i

u
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Cartesian Trees and RMQs
Proof of A[LCAT (i, j)] ≤ A[RMQ(i, j)]

• All vertices k in the subtree T ′ of T rooted in LCAT (i, j)
are such that A[k] ≥ A[LCAT (i, j)]

• All subtrees of T correspond to contiguous subarrays of A

i

• Since i, j ∈ T ′, all k ∈ {i, . . . , j} also belong to T ′

• RMQ(i, j) ∈ {i, . . . , j}=⇒A[RMQ(i, j)] ≥ A[LCAT (i, j)]

u

j

ui j
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