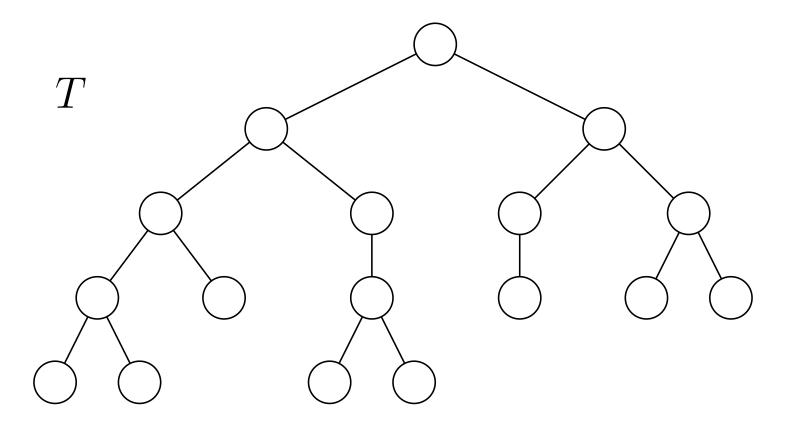
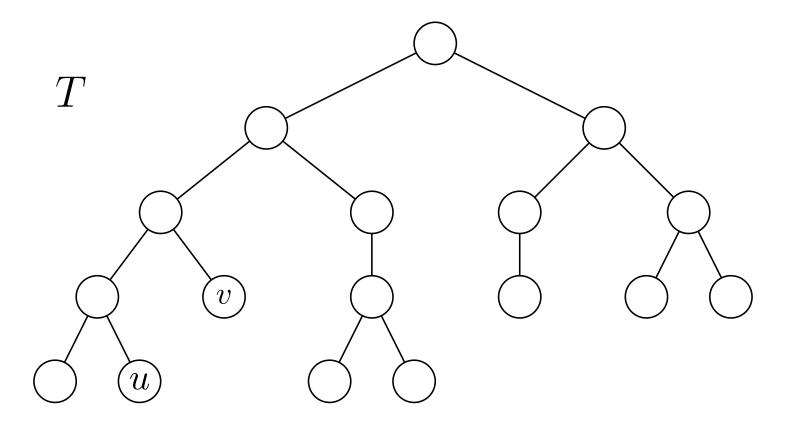
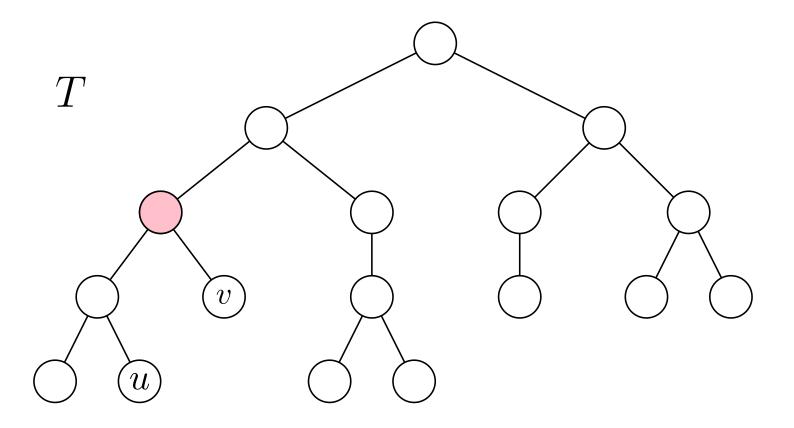
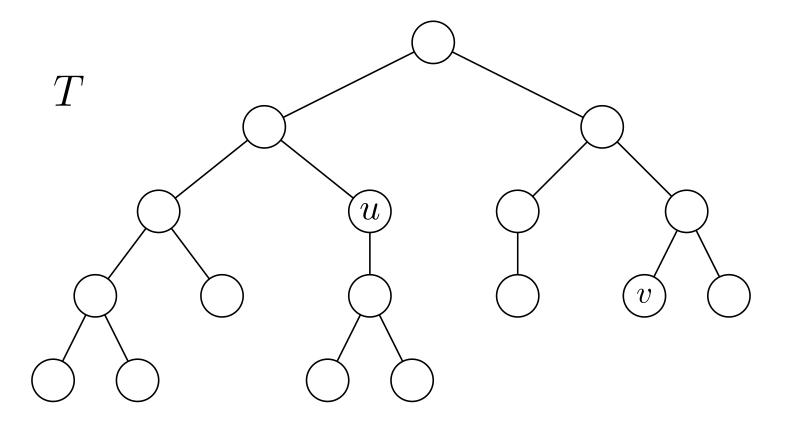
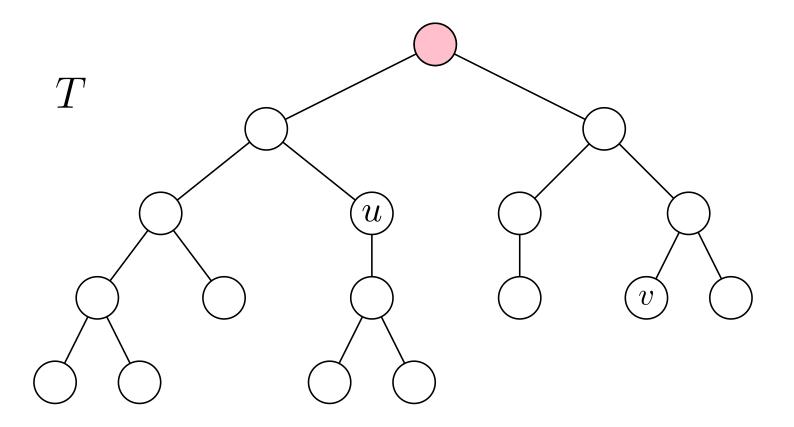
Lowest Common Ancestor Queries

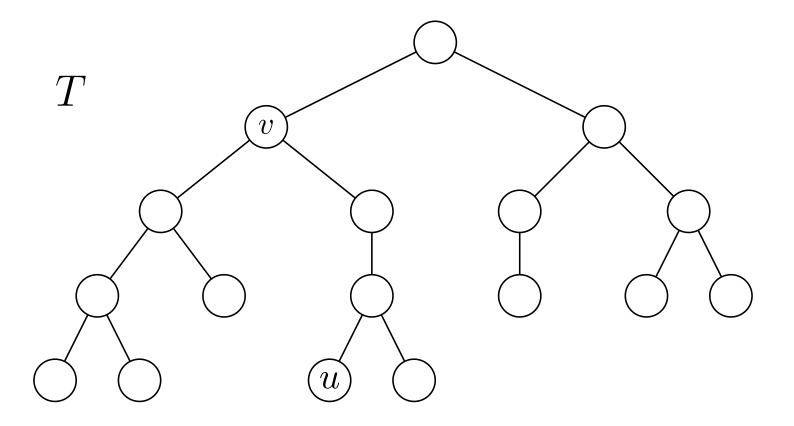


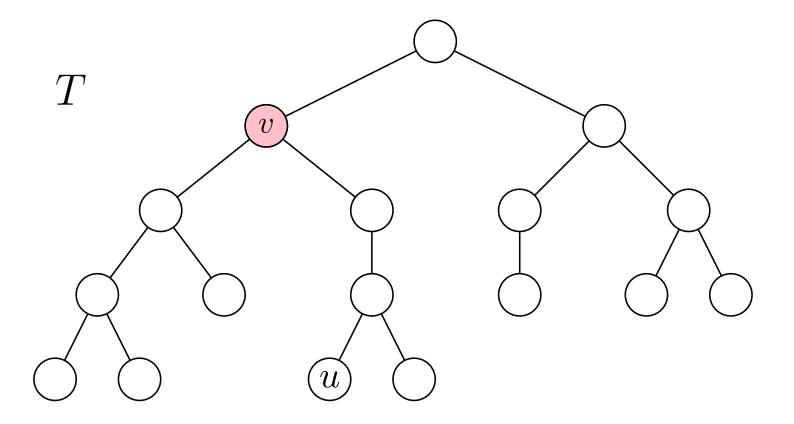












Given T, design a data structure that is able to preprocess T to answer LCA queries:

• Query(u, v): report LCA $_T(u, v)$.

Given T, design a data structure that is able to preprocess T to answer LCA queries:

• Query(u, v): report LCA $_T(u, v)$.

Trivial solutions:

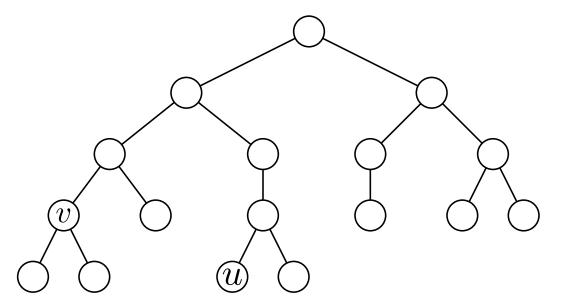
n=# of nodes

Given T, design a data structure that is able to preprocess T to answer LCA queries:

• Query(u, v): report LCA $_T(u, v)$.

Trivial solutions:

n=# of nodes

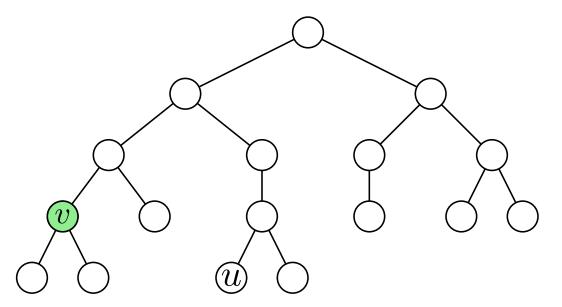


Given T, design a data structure that is able to preprocess T to answer LCA queries:

• Query(u, v): report LCA $_T(u, v)$.

Trivial solutions:

n=# of nodes

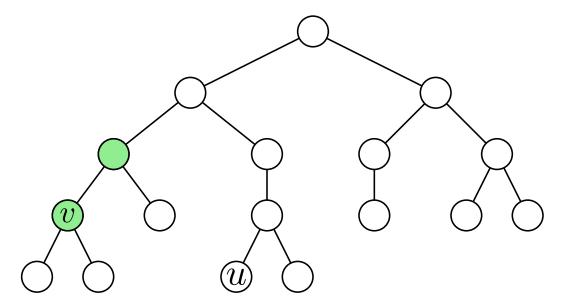


Given T, design a data structure that is able to preprocess T to answer LCA queries:

• Query(u, v): report LCA $_T(u, v)$.

Trivial solutions:

n=# of nodes

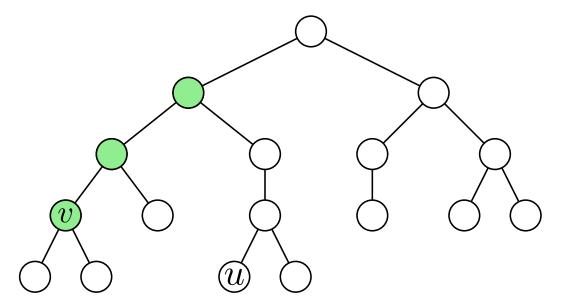


Given T, design a data structure that is able to preprocess T to answer LCA queries:

• Query(u, v): report LCA $_T(u, v)$.

Trivial solutions:

n=# of nodes

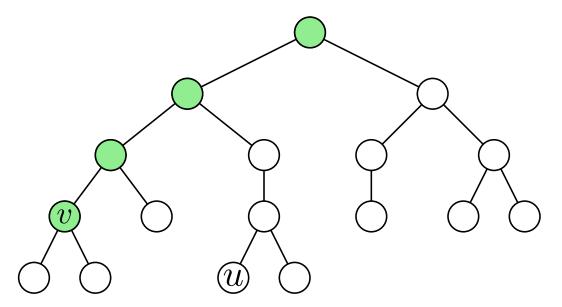


Given T, design a data structure that is able to preprocess T to answer LCA queries:

• Query(u, v): report LCA $_T(u, v)$.

Trivial solutions:

n=# of nodes

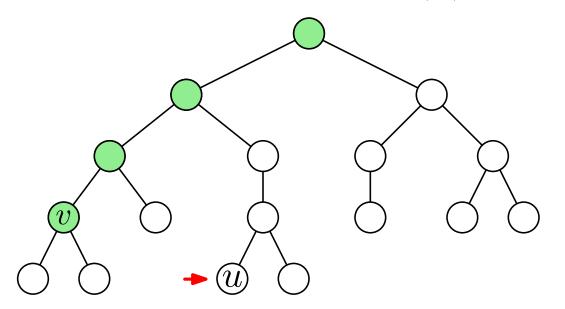


Given T, design a data structure that is able to preprocess T to answer LCA queries:

• Query(u, v): report LCA $_T(u, v)$.

Trivial solutions:

n=# of nodes

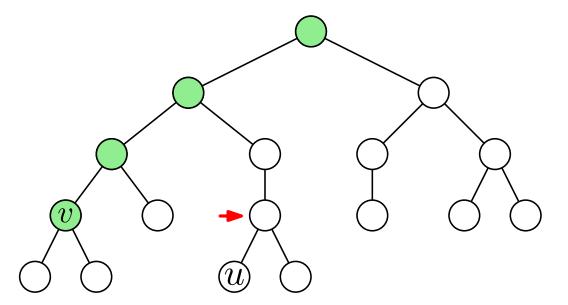


Given T, design a data structure that is able to preprocess T to answer LCA queries:

• Query(u, v): report LCA $_T(u, v)$.

Trivial solutions:

n=# of nodes

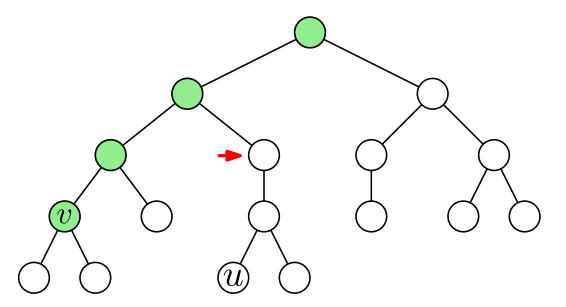


Given T, design a data structure that is able to preprocess T to answer LCA queries:

• Query(u, v): report LCA $_T(u, v)$.

Trivial solutions:

n=# of nodes



Given T, design a data structure that is able to preprocess T to answer LCA queries:

• Query(u, v): report LCA $_T(u, v)$.

Trivial solutions:

n=# of nodes



Given T, design a data structure that is able to preprocess T to answer LCA queries:

• Query(u, v): report LCA $_T(u, v)$.

Trivial solutions:

n=# of nodes

- Preprocessing time: none Size: O(n) Query time: O(n)
- ullet Preprocessing time: $O(n^3)$ Size: $O(n^2)$ Query time: O(1)

Given T, design a data structure that is able to preprocess T to answer LCA queries:

• Query(u, v): report LCA $_T(u, v)$.

Trivial solutions:

n=# of nodes

- Preprocessing time: none Size: O(n) Query time: O(n)
- Preprocessing time: $O(n^3)$ Size: $O(n^2)$ Query time: O(1) (precompute the answer to all possible queries)

Given T, design a data structure that is able to preprocess T to answer LCA queries:

• Query(u, v): report LCA $_T(u, v)$.

Trivial solutions:

n=# of nodes

- ullet Preprocessing time: none Size: O(n) Query time: O(n)
- Preprocessing time: $O(n^3)$ Size: $O(n^2)$ Query time: O(1)
- Preprocessing time: $O(n^2)$ Size: $O(n^2)$ Query time: O(1)

$$\mathsf{LCA}_T(u,v) = \begin{cases} \mathsf{LCA}_T(u,v) = u & \text{if } u \text{ is an ancestor of } v \\ \mathsf{LCA}_T(u,v) = \mathsf{LCA}_T(\mathsf{parent}(u),v) & \text{otherwise} \end{cases}$$

A Related Problem

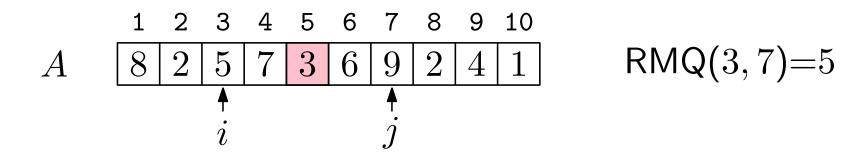
Given an array $A = \langle a_1, \dots, a_n \rangle$, design a data structure that is able to preprocess A to answer range minimum queries:

• **RMQ**(i,j): report an element in $\arg\min_{k=i,...,j} a_k$.

A Related Problem

Given an array $A = \langle a_1, \dots, a_n \rangle$, design a data structure that is able to preprocess A to answer range minimum queries:

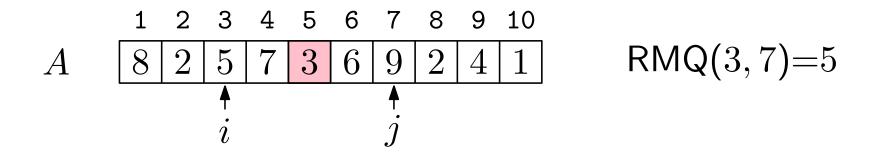
• **RMQ**(i, j): report an element in $\arg \min_{k=i,...,j} a_k$.



A Related Problem

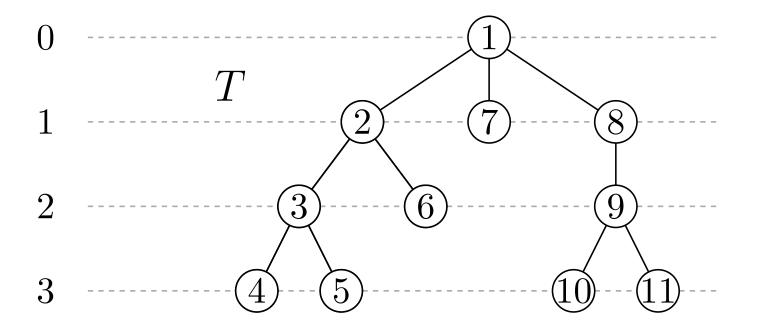
Given an array $A = \langle a_1, \dots, a_n \rangle$, design a data structure that is able to preprocess A to answer range minimum queries:

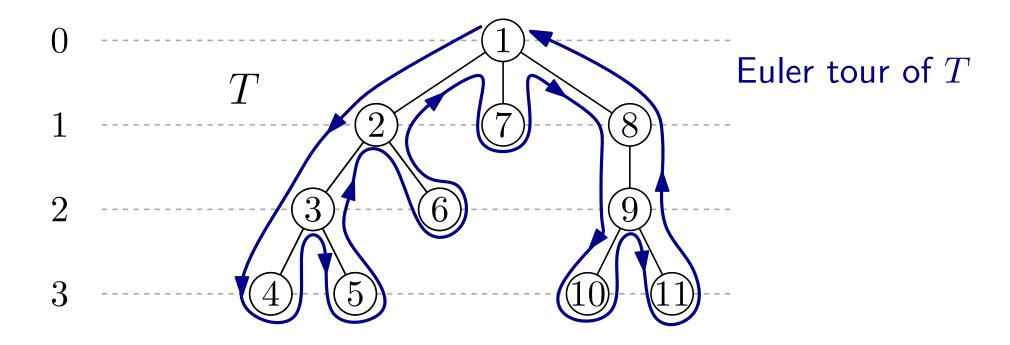
• **RMQ**(i,j): report an element in $\arg\min_{k=i,...,j} a_k$.

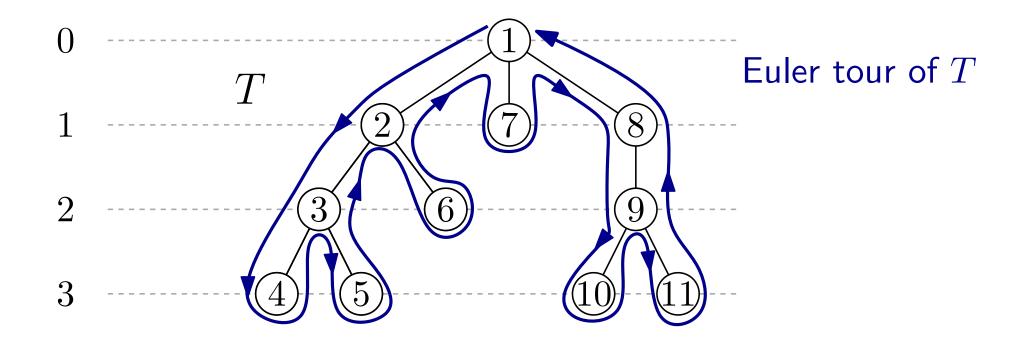


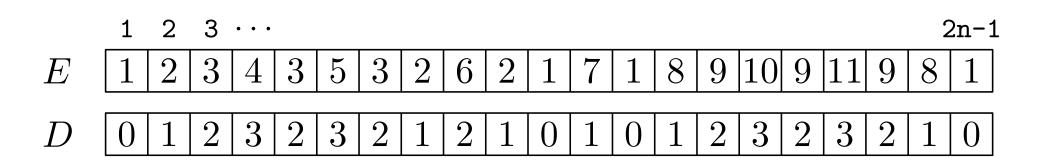
Trivial solutions:

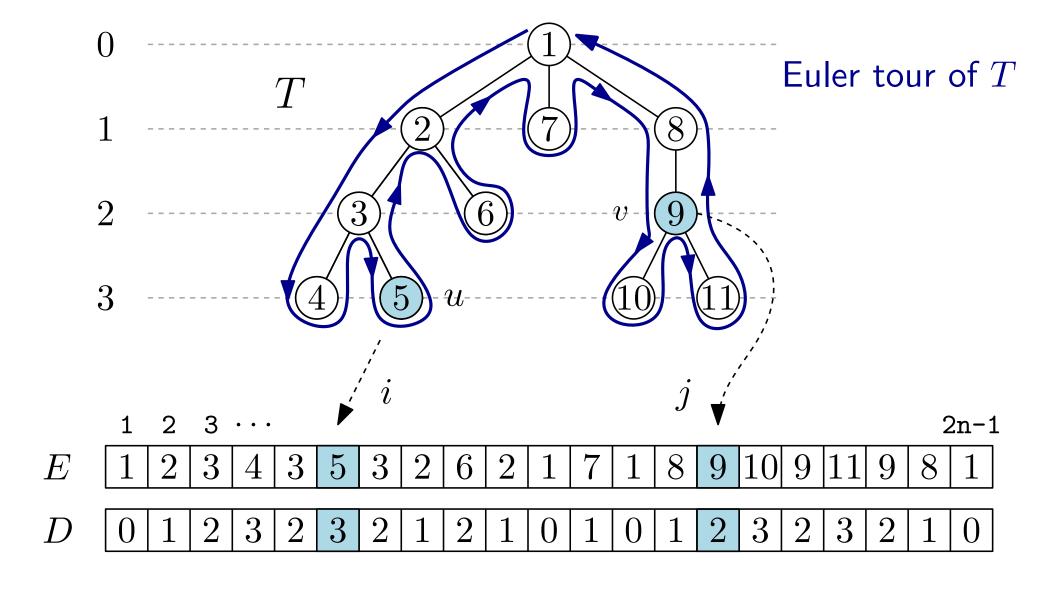
- Preprocessing time: none Size: O(n) Query time: O(n)
- Preprocessing time: $O(n^3)$ Size: $O(n^2)$ Query time: O(1)
- ullet Preprocessing time: $O(n^2)$ Size: $O(n^2)$ Query time: O(1)

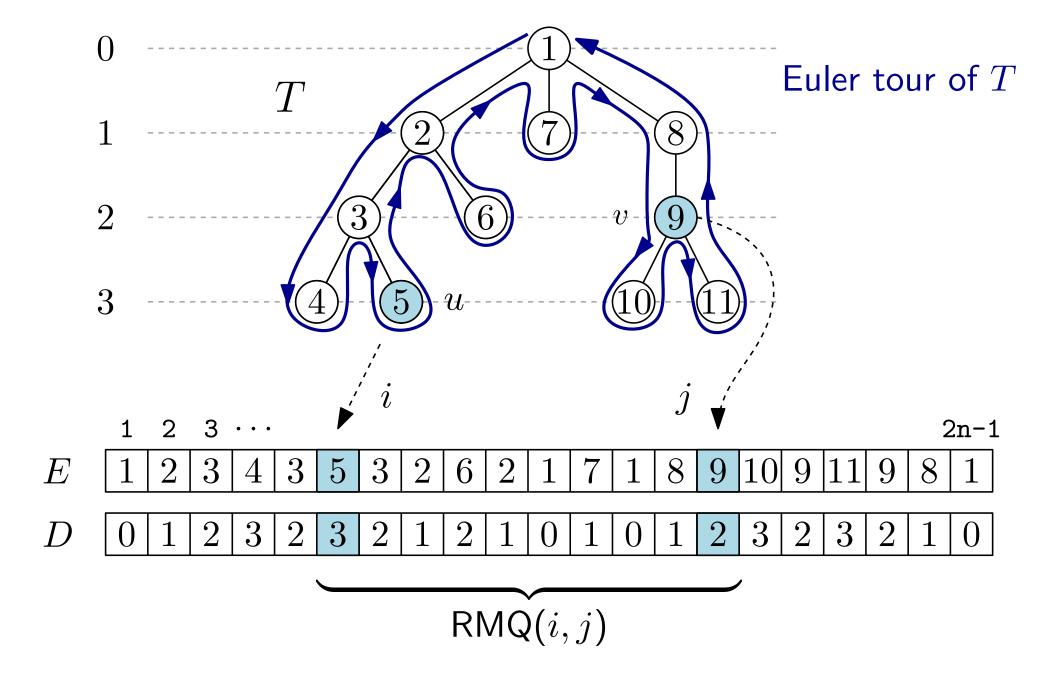


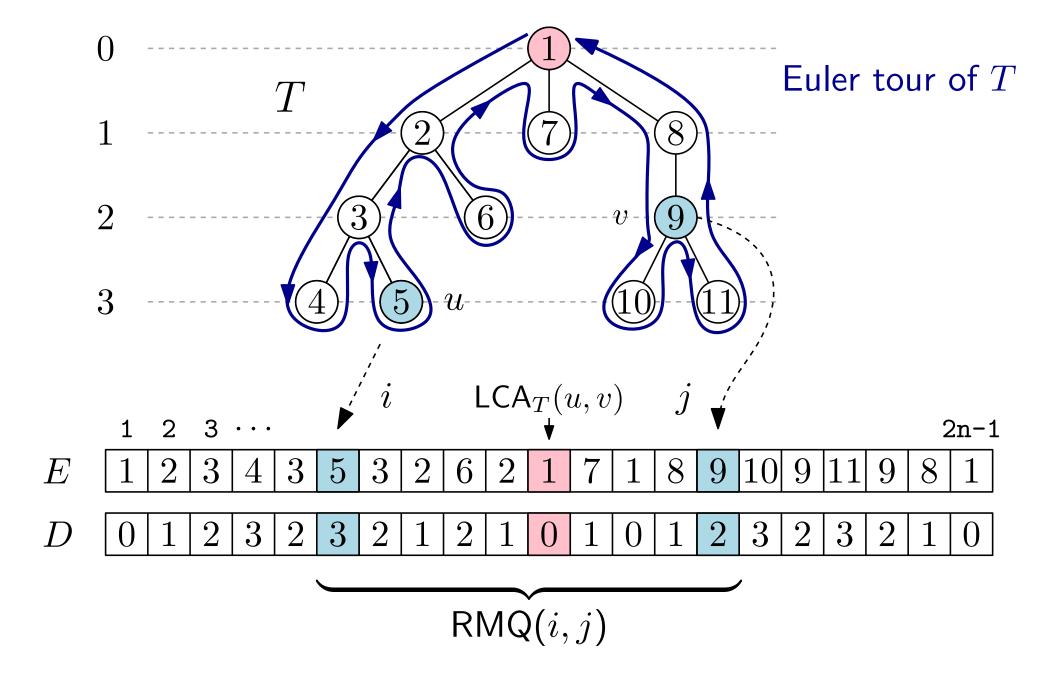






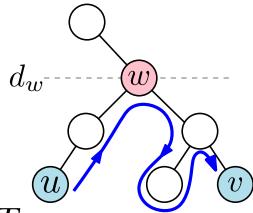






Let $u, v \in T$ and i (resp. j) be the index of the first occurrence of u (resp. v) in E

Claim: $LCA_T(u, v) = E[RMQ(i, j)]$



Proof:

Let d_w be the depth of $w = LCA_T(u, v)$ in T

The Euler tour from i to j must pass through w, hence $d_w \in D[i:j]$

Except for w, no other vertex with depth at most d_w appears in the Euler tour from i to j

$$E[\mathsf{RMQ}(i,j)] = \mathsf{LCA}_T(u,v)$$

Solutions to the RMQ problem

"Sparse Table" Solution to RMQ

For $i=1,\dots,n$ and $\ell=2^0,2^1,\dots,2^{\lfloor \log n \rfloor}$, define: $M[i,\ell]=\arg\min_{i\leq k< i+\ell}a_k$

"Sparse Table" Solution to RMQ

For $i=1,\ldots,n$ and $\ell=2^0,2^1,\ldots,2^{\lfloor \log n \rfloor}$, define:

$$M[i, \ell] = \arg\min_{i \le k < i + \ell} a_k$$

Preprocessing:

$$M[i,\ell] = \begin{cases} i & \text{if } \ell = 1 \\ \arg\min_{k \in \{M\left[i, \frac{\ell}{2}\right], M\left[i + \frac{\ell}{2}, \frac{\ell}{2}\right]\}} a_k & \text{if } \ell > 1 \end{cases}$$

$$M[2,8]$$
1 2 3 4 5 6 7 8 9 10
8 2 5 7 3 6 9 2 4 1
 $M[2,4]$ $M[6,4]$

"Sparse Table" Solution to RMQ

For $i=1,\ldots,n$ and $\ell=2^0,2^1,\ldots,2^{\lfloor \log n \rfloor}$, define:

$$M[i, \ell] = \arg\min_{i \le k < i + \ell} a_k$$

Preprocessing:

$$M[i,\ell] = \begin{cases} i & \text{if } \ell = 1 \\ \arg\min_{k \in \{M\left[i, \frac{\ell}{2}\right], M\left[i + \frac{\ell}{2}, \frac{\ell}{2}\right]\}} a_k & \text{if } \ell > 1 \end{cases}$$

Answering a query:

Let
$$\ell = 2^{\lfloor \log(j-i+1) \rfloor}$$
 RMQ $(i,j) = \arg\min_{k \in \{M[i,\ell],M[j-\ell+1,\ell]\}} a_k$
$$1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10$$

$$\boxed{8 \quad 2 \quad 5 \quad 7 \quad 3 \quad 6 \quad 9 \quad 2 \quad 4 \quad 1}$$

$$\boxed{M[i,\ell] \quad M[j-\ell+1,\ell]}$$

"Sparse Table" Solution to RMQ

For $i=1,\ldots,n$ and $\ell=2^0,2^1,\ldots,2^{\lfloor \log n \rfloor}$, define:

$$M[i, \ell] = \arg\min_{i \le k < i + \ell} a_k$$

Preprocessing:

$$M[i,\ell] = \begin{cases} i & \text{if } \ell = 1 \\ \arg\min_{k \in \{M\left[i, \frac{\ell}{2}\right], M\left[i + \frac{\ell}{2}, \frac{\ell}{2}\right]\}} a_k & \text{if } \ell > 1 \end{cases}$$

Answering a query:

Let
$$\ell = 2^{\lfloor \log(j-i+1) \rfloor}$$

$$\mathsf{RMQ}(i,j) = \arg \min_{k \in \{M[i,\ell],M[j-\ell+1,\ell]\}} a_k$$

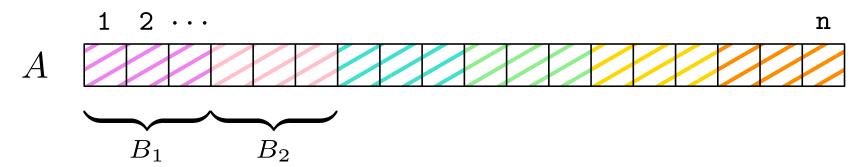
- Preprocessing time: $O(n \log n)$
- Size: $O(n \log n)$
- Query time: O(1)

Size	Preprocessing Time	Query Time	Notes
O(n)	<u>—</u>	O(n)	
$O(n^2)$	$O(n^3)$	O(1)	
$O(n^2)$	$O(n^2)$	O(1)	

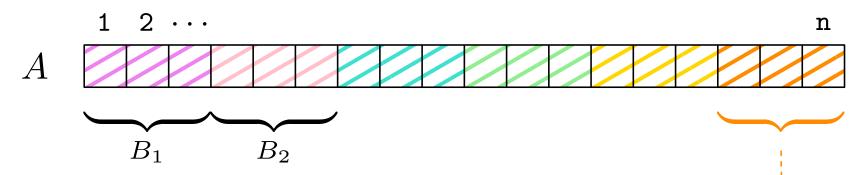
Size	Preprocessing Time	Query Time	Notes
O(n)	_	O(n)	
$O(n^2)$	$O(n^3)$	O(1)	
$O(n^2)$	$O(n^2)$	O(1)	
$O(n \log n)$	$O(n \log n)$	O(1)	Sparse Table

Size	Preprocessing Time	Query Time	Notes
O(n)	_	O(n)	
$O(n^2)$	$O(n^3)$	O(1)	
$O(n^2)$	$O(n^2)$	O(1)	
$O(n \log n)$	$O(n \log n)$	O(1)	Sparse Table

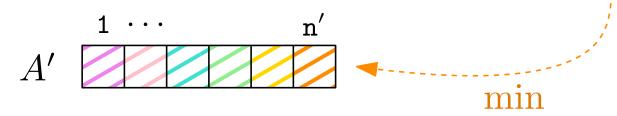
We want to get rid of the $\log n$ factor!



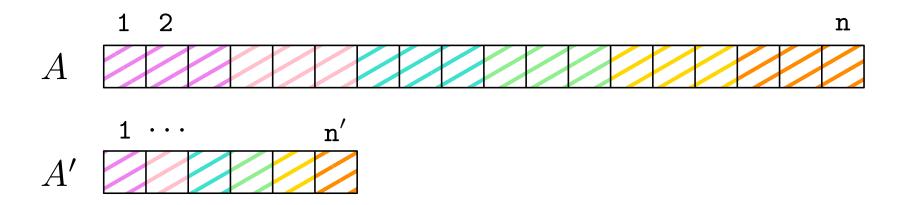
• Logically split A into $\Theta(\frac{n}{\log n})$ "blocks" of $d = \Theta(\log n)$ elements each.



ullet Store the minimum of each block in a new array A'

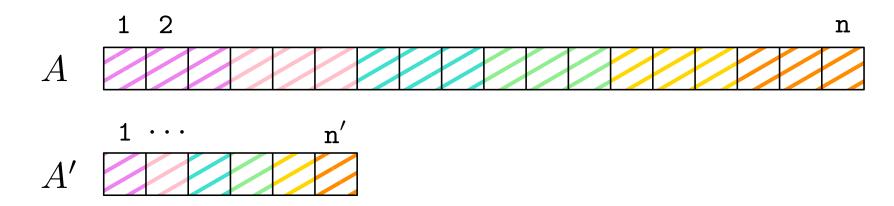


Time needed to build A': O(n)



Preprocessing:

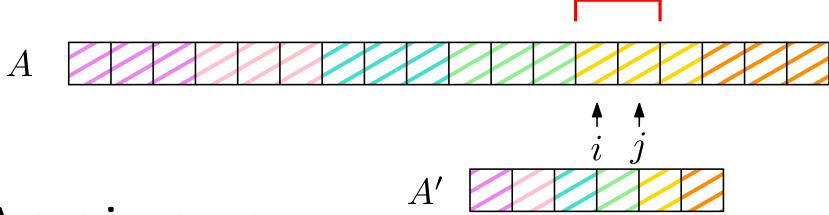
ullet Build the "Sparse Table" oracle ${\mathcal O}$ on A'



Preprocessing:

ullet Build the "Sparse Table" oracle ${\mathcal O}$ on A'

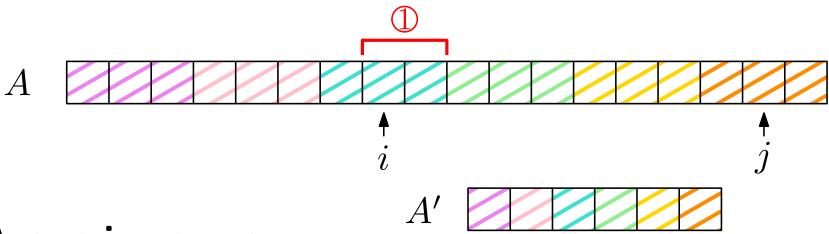
Size / time: $O(n' \cdot \log n') = O(\frac{n}{\log n} \cdot \log \frac{n}{\log n}) = O(n)$



Answering a query:

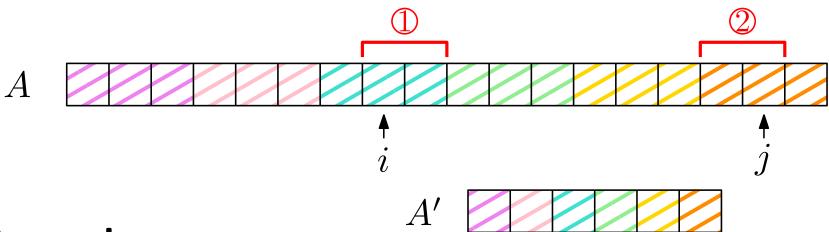
To answer RMQ(i, j):

• If $i, j \in B_k$ return the position of the minimum in A[i:j]



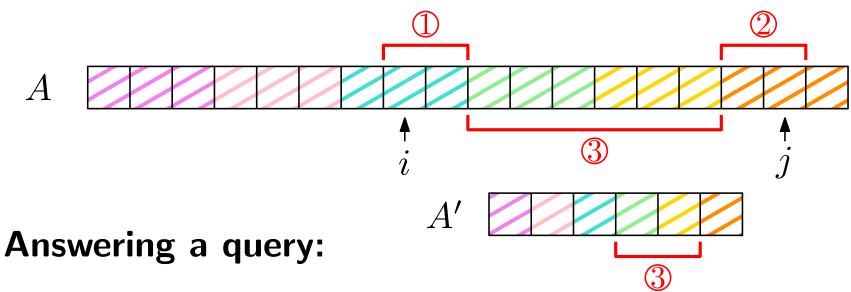
Answering a query:

- If $i, j \in B_k$ return the position of the minimum in A[i:j]
- If $i \in B_h$ and $j \in B_k$, with k > h, answer with the position of the smallest element among:
- 1) The minimum in A[i:hd]

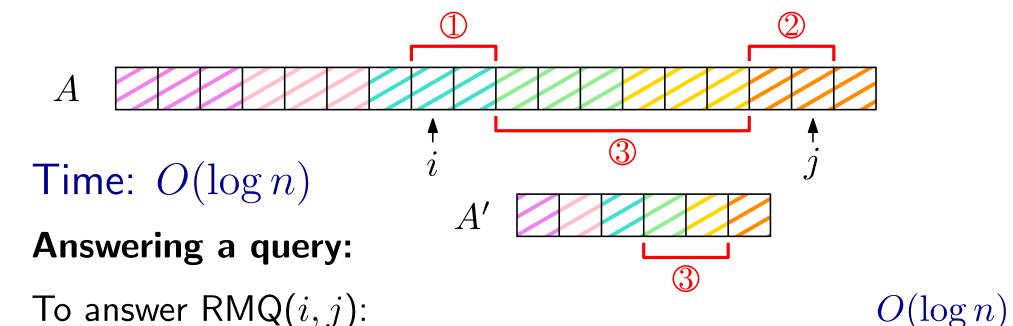


Answering a query:

- If $i, j \in B_k$ return the position of the minimum in A[i:j]
- If $i \in B_h$ and $j \in B_k$, with k > h, answer with the position of the smallest element among:
- 1) The minimum in A[i:hd]
- 2) The minimum in A[(k-1)d+1:j]

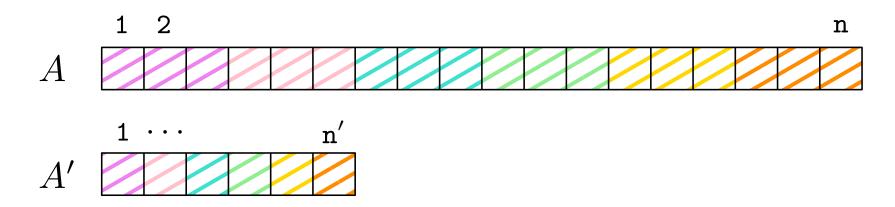


- If $i, j \in B_k$ return the position of the minimum in A[i:j]
- If $i \in B_h$ and $j \in B_k$, with k > h, answer with the position of the smallest element among:
- 1) The minimum in A[i:hd]
- 2) The minimum in A[(k-1)d+1:j]
- 3) A query to $\mathcal O$ to get min A[hd+1:(k-1)d]



- If $i, j \in B_k$ return the position of the minimum in A[i:j]
- If $i \in B_h$ and $j \in B_k$, with k > h, answer with the position of the smallest element among:
- 1) The minimum in A[i:hd] $O(\log n)$
- 2) The minimum in A[(k-1)d+1:j] $O(\log n)$
- 3) A query to \mathcal{O} to get min A[hd+1:(k-1)d] O(1)

A more compact RMQ oracle (alternative)

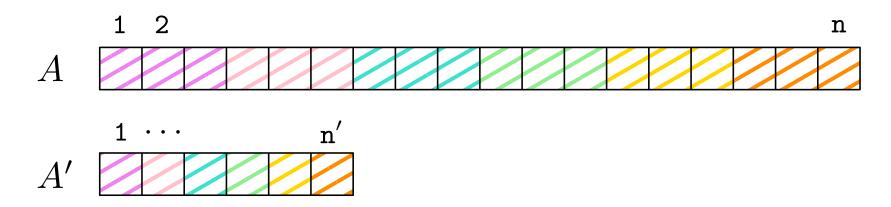


Preprocessing:

ullet Build the "Sparse Table" oracle ${\mathcal O}$ on A'

Size / time: $O(n' \cdot \log n') = O(\frac{n}{\log n} \cdot \log \frac{n}{\log n}) = O(n)$

A more compact RMQ oracle (alternative)



Preprocessing:

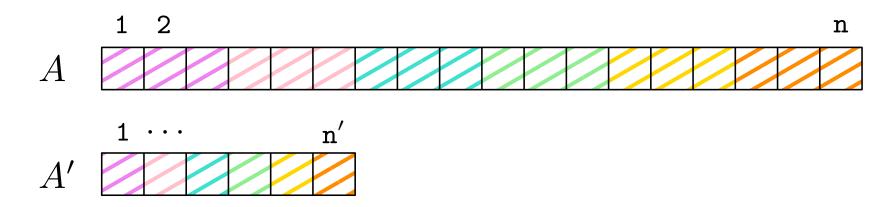
ullet Build the "Sparse Table" oracle ${\mathcal O}$ on A'

Size / time: $O(n' \cdot \log n') = O(\frac{n}{\log n} \cdot \log \frac{n}{\log n}) = O(n)$

• Build the "Sparse Table" oracle \mathcal{O}_i each B_i

Size / time: $O(\frac{n}{\log n} \cdot (\log n)(\log \log n)) = O(n \log \log n)$

A more compact RMQ oracle (alternative)



Preprocessing:

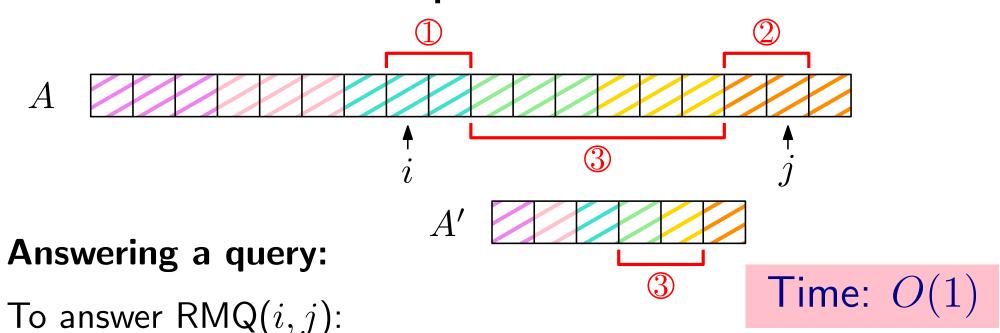
ullet Build the "Sparse Table" oracle ${\mathcal O}$ on A'

Size / time:
$$O(n' \cdot \log n') = O(\frac{n}{\log n} \cdot \log \frac{n}{\log n}) = O(n)$$

ullet Build the "Sparse Table" oracle \mathcal{O}_i each B_i

Size / time:
$$O(\frac{n}{\log n} \cdot (\log n)(\log \log n)) = O(n \log \log n)$$

Total size / time: $O(n \log \log n)$



- If i and j are in the same block B_k : query \mathcal{O}_k
- If $i \in B_h$ and $j \in B_k$, with k > h, answer with the position of the smallest element among those returned by:
- 1) A query to \mathcal{O}_h to get the minimum in A[i:hd]
- 2) A query to \mathcal{O}_k to get the minimum in A[(k-1)d+1:j]
- 3) A query to \mathcal{O} to get the minimum A[hd+1:(k-1)d]

Size	Preprocessing Time	Query Time	Notes
O(n)	_	O(n)	
$O(n^2)$	$O(n^3)$	O(1)	
$O(n^2)$	$O(n^2)$	O(1)	
$O(n \log n)$	$O(n \log n)$	O(1)	Sparse Table

Size	Preprocessing Time	Query Time	Notes
O(n)	_	O(n)	
$O(n^2)$	$O(n^3)$	O(1)	
$O(n^2)$	$O(n^2)$	O(1)	
$O(n \log n)$	$O(n \log n)$	O(1)	Sparse Table
O(n)	O(n)	$O(\log n)$	
			•

Size	Preprocessing Time	Query Time	Notes
O(n)	_	O(n)	
$O(n^2)$	$O(n^3)$	O(1)	
$O(n^2)$	$O(n^2)$	O(1)	
$O(n \log n)$	$O(n \log n)$	O(1)	Sparse Table
O(n)	O(n)	$O(\log n)$	
$O(n \log \log n)$	$O(n \log \log n)$	O(1)	

Size	Preprocessing Time	Query Time	Notes
O(n)	_	O(n)	
$O(n^2)$	$O(n^3)$	O(1)	
$O(n^2)$	$O(n^2)$	O(1)	
$O(n \log n)$	$O(n \log n)$	O(1)	Sparse Table
O(n)	O(n)	$O(\log n)$	
$O(n \log \log n)$	$O(n \log \log n)$	O(1)	

Almost...

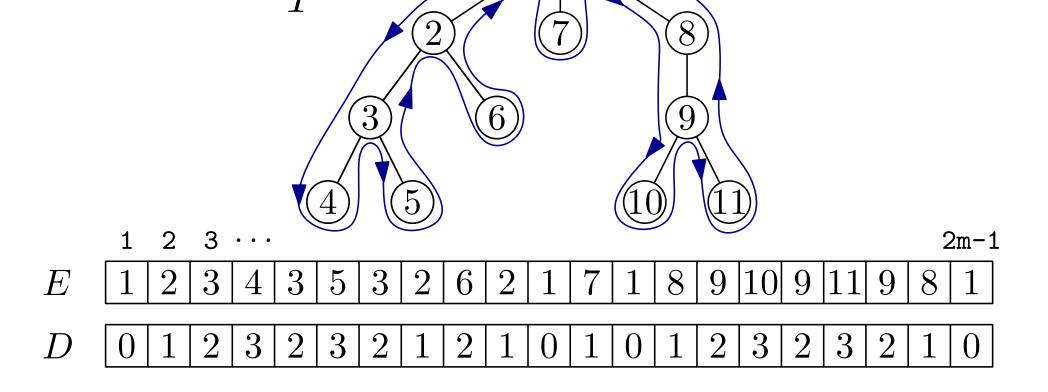
• Assume that $a_{i+1} - a_i \in \{+1, -1\}$.

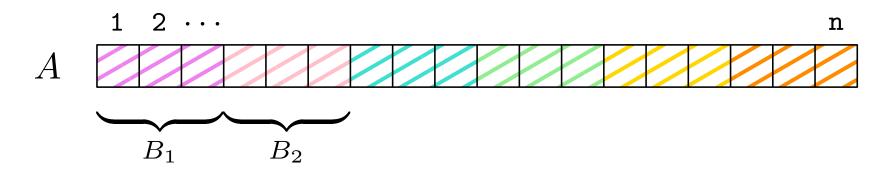
 $A \quad \boxed{0 \ 1 \ 2 \ 3 \ 2 \ 3 \ 2 \ 1 \ 2 \ 1 \ 0}$

• Assume that $a_{i+1} - a_i \in \{+1, -1\}$.

 $A \quad \boxed{0 \mid 1 \mid 2 \mid 3 \mid 2 \mid 3 \mid 2 \mid 1 \mid 2 \mid 1 \mid 0}$

This is the case of the instances obtained from LCA!





Logically split A into $\Theta(\frac{n}{\log n})$ "blocks" of $d = c \log n$ elements.

Definition: Two blocks have the same type if they have the same sequence of ± 1 differences between consecutive elements.

Logically split A into $\Theta(\frac{n}{\log n})$ "blocks" of $d = c \log n$ elements.

Definition: Two blocks have the same type if they have the same sequence of ± 1 differences between consecutive elements.

$$B_i$$
 3 4 3 4 5 6 5 6 B_j 7 8 7 8 9 10 9 10 $+1$ -1 +1 +1 +1 -1 +1 $+1$ +1 -1 +1 +1 -1 +1

Observation: The answer to the same RMQ query on two blocks of the same type is the same.

Logically split A into $\Theta(\frac{n}{\log n})$ "blocks" of $d = c \log n$ elements.

Definition: Two blocks have the same type if they have the same sequence of ± 1 differences between consecutive elements.

$$B_i$$
 3 4 3 4 5 6 5 6 B_j 7 8 7 8 9 10 9 10 $+1$ -1 +1 +1 +1 -1 +1 $+1$ +1 -1 +1 +1 -1 +1

Observation: The answer to the same RMQ query on two blocks of the same type is the same.

How many block types are there?

- Encode a block by its sequence of differences.
- At most $2^{c \log n} = n^c$ block types.

- ullet Compute A' and build the "Sparse Table" oracle ${\mathcal O}$ on A'.
 - Size/time: O(n)

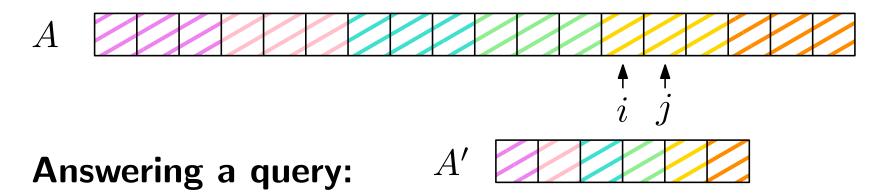
- ullet Compute A' and build the "Sparse Table" oracle ${\mathcal O}$ on A'.
 - Size/time: O(n)
- ullet For each type t of the at most n^c block types:
 - Build the RMQ oracle \mathcal{O}_t with quadratic preprocessing time/size and constant query time.
 - Size/time: $O(n^c \log^2 n)$

- ullet Compute A' and build the "Sparse Table" oracle ${\mathcal O}$ on A'.
 - Size/time: O(n)
- ullet For each type t of the at most n^c block types:
 - Build the RMQ oracle \mathcal{O}_t with quadratic preprocessing time/size and constant query time.
 - Size/time: $O(n^c \log^2 n)$
- For each block B_i , store the index t_i of its type.
 - Size/time: $O(\frac{n}{\log n} \cdot \log n^c) = O(n)$.

Logically split A into $\Theta(\frac{n}{\log n})$ "blocks" of $d = c \log n$ elements.

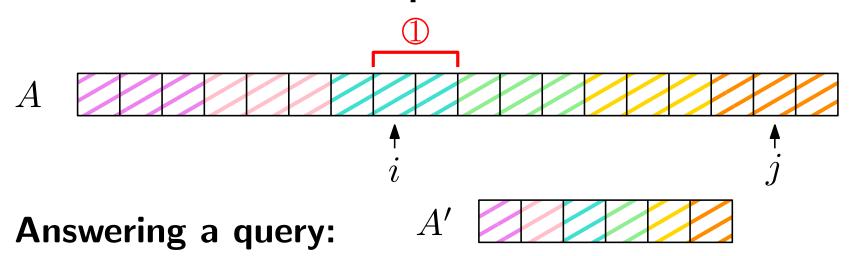
- ullet Compute A' and build the "Sparse Table" oracle ${\mathcal O}$ on A'.
 - Size/time: O(n)
- ullet For each type t of the at most n^c block types:
 - Build the RMQ oracle \mathcal{O}_t with quadratic preprocessing time/size and constant query time.
 - Size/time: $O(n^c \log^2 n)$
- For each block B_i , store the index t_i of its type.
 - Size/time: $O(\frac{n}{\log n} \cdot \log n^c) = O(n)$.

Total size/time: $O(n + n^c \log^2 n)$ For (constant) c < 1: O(n)

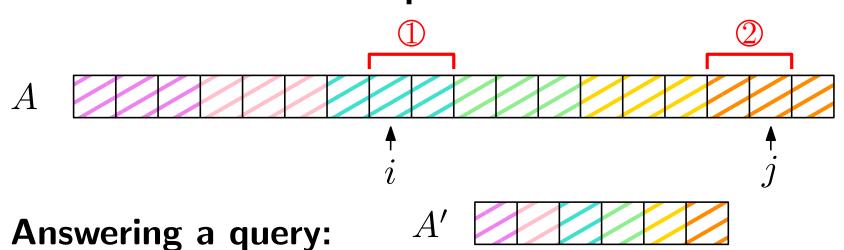


To answer RMQ(i, j):

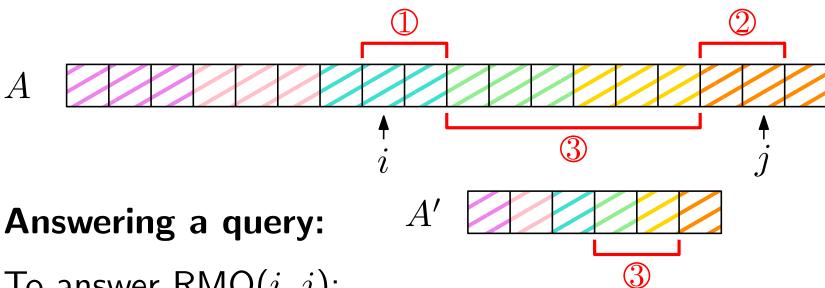
ullet If i and j are in the same block B_k : query \mathcal{O}_{t_k}



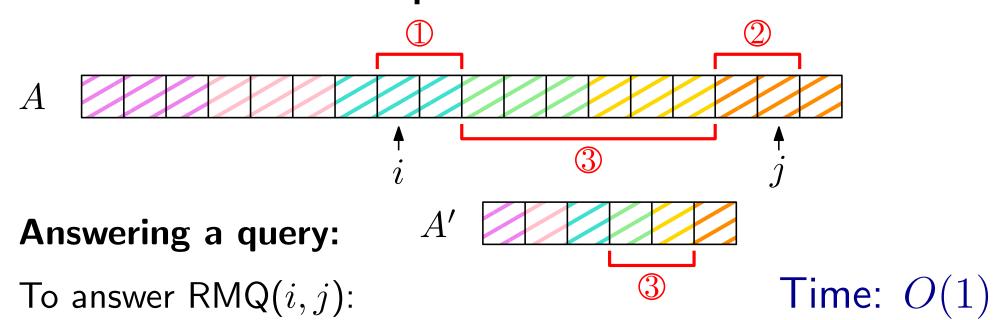
- ullet If i and j are in the same block B_k : query \mathcal{O}_{t_k}
- If $i \in B_h$ and $j \in B_k$, with k > h, answer with the position of the smallest element among those returned by:
- 1) A query to \mathcal{O}_{t_h} to get the minimum in A[i:hd]



- ullet If i and j are in the same block B_k : query \mathcal{O}_{t_k}
- If $i \in B_h$ and $j \in B_k$, with k > h, answer with the position of the smallest element among those returned by:
- 1) A query to \mathcal{O}_{t_h} to get the minimum in A[i:hd]
- 2) A query to \mathcal{O}_{t_k} to get the minimum in A[(k-1)d+1:j]



- If i and j are in the same block B_k : query \mathcal{O}_{t_k}
- If $i \in B_h$ and $j \in B_k$, with k > h, answer with the position of the smallest element among those returned by:
- 1) A query to \mathcal{O}_{t_h} to get the minimum in A[i:hd]
- 2) A query to \mathcal{O}_{t_k} to get the minimum in A[(k-1)d+1:j]
- 3) A query to \mathcal{O} to get the minimum A[hd+1:(k-1)d]



- ullet If i and j are in the same block B_k : query \mathcal{O}_{t_k}
- If $i \in B_h$ and $j \in B_k$, with k > h, answer with the position of the smallest element among those returned by:
- 1) A query to \mathcal{O}_{t_h} to get the minimum in A[i:hd]
- 2) A query to \mathcal{O}_{t_k} to get the minimum in A[(k-1)d+1:j]
- 3) A query to \mathcal{O} to get the minimum A[hd+1:(k-1)d]

RMQ Solutions so far

Size	Preprocessing Time	Query Time	Notes
O(n)		O(n)	
$O(n^2)$	$O(n^3)$	O(1)	
$O(n^2)$	$O(n^2)$	O(1)	
$O(n \log n)$	$O(n \log n)$	O(1)	Sparse Table
O(n)	O(n)	$O(\log n)$	
$O(n \log \log n)$	$O(n \log \log n)$	O(1)	

RMQ Solutions so far

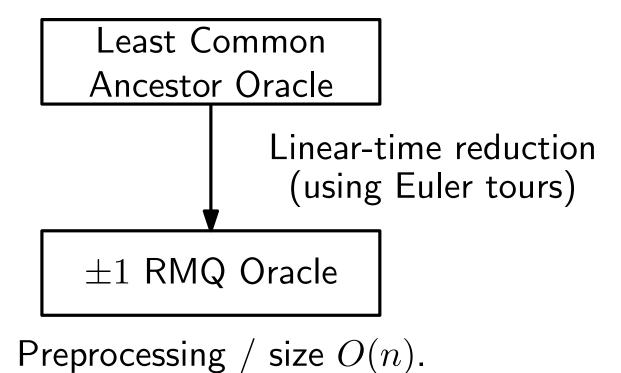
Size	Preprocessing Time	Query Time	Notes
O(n)	_	O(n)	
$O(n^2)$	$O(n^3)$	O(1)	
$O(n^2)$	$O(n^2)$	O(1)	
$O(n \log n)$	$O(n \log n)$	O(1)	Sparse Table
O(n)	O(n)	$O(\log n)$	
$O(n \log \log n)$	$O(n \log \log n)$	O(1)	
O(n)	O(n)	O(1)	± 1 RMQ

RMQ Solutions so far

Size	Preprocessing Time	Query Time	Notes
O(n)	_	O(n)	
$O(n^2)$	$O(n^3)$	O(1)	
$O(n^2)$	$O(n^2)$	O(1)	
$O(n \log n)$	$O(n \log n)$	O(1)	Sparse Table
O(n)	O(n)	$O(\log n)$	
$O(n \log \log n)$	$O(n \log \log n)$	O(1)	
O(n)	O(n)	O(1)	± 1 RMQ

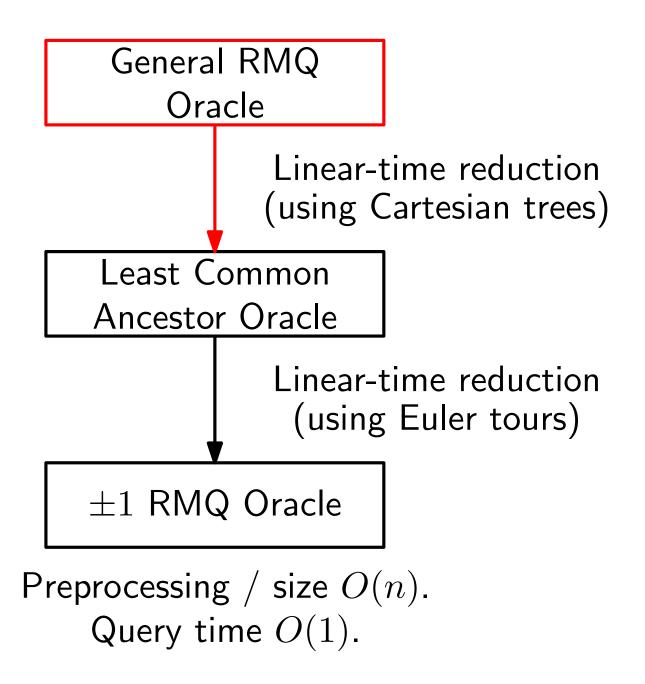
What about the general case?

The General Case



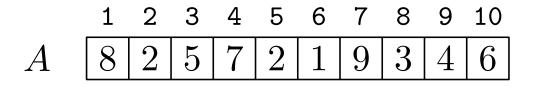
Query time O(1).

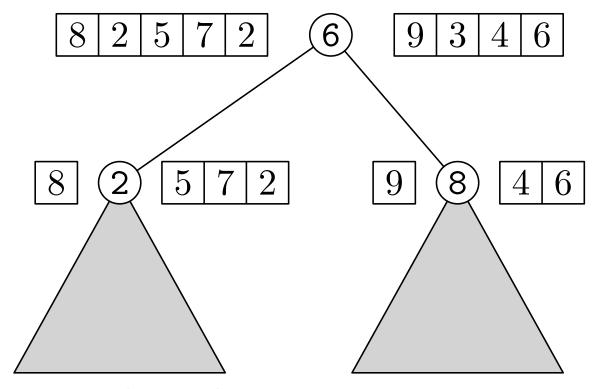
The General Case



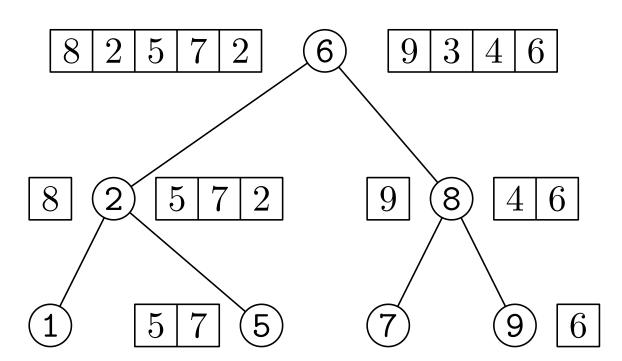
8 2 5 7 2 6 9 3 4 6

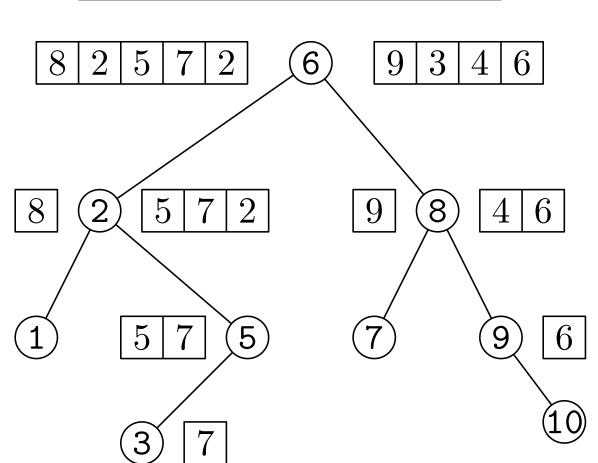
ullet The root r of the Cartesian tree is the index i of a minimum element a_i of A

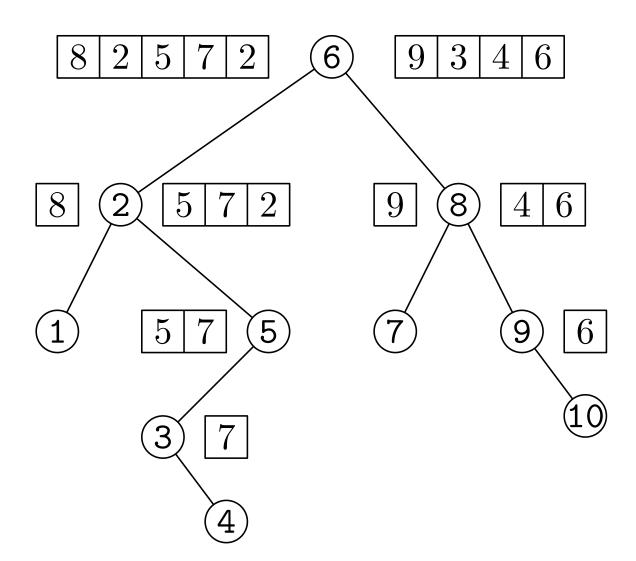


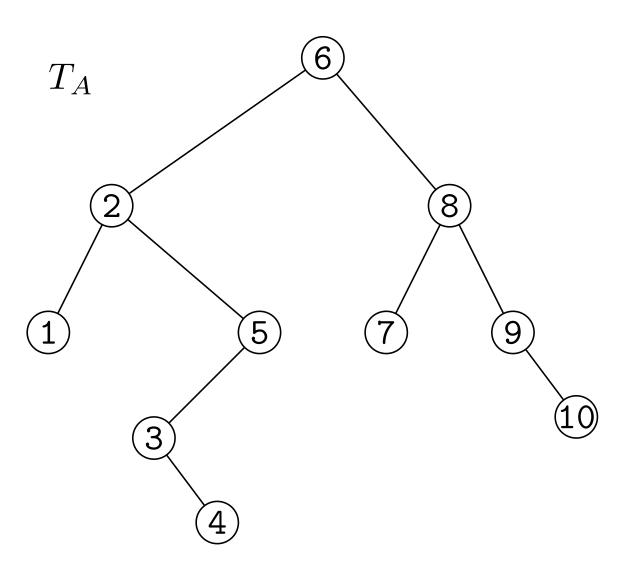


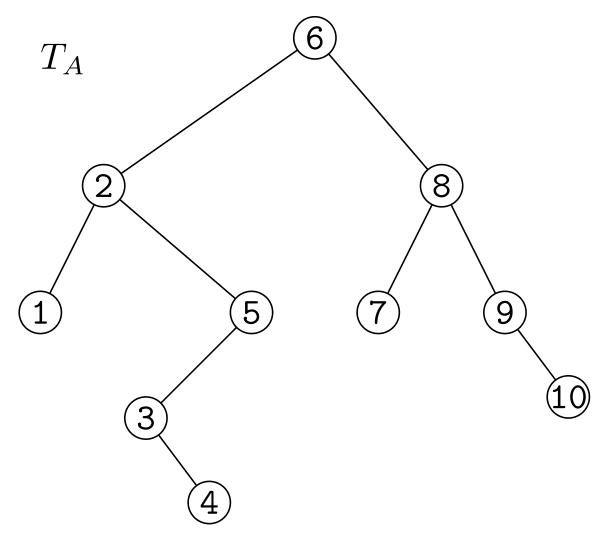
- The root r of the Cartesian tree is the index i of a minimum element a_i of A
- The left and right subtrees r are the Cartesian trees of A[1:i-1] and A[i+1:n] (if not empty).



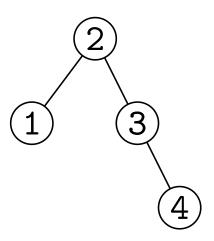


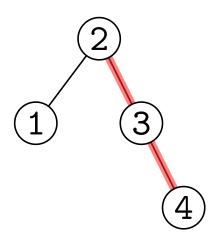


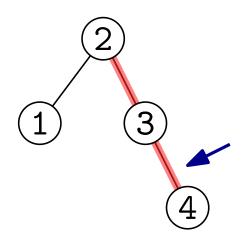


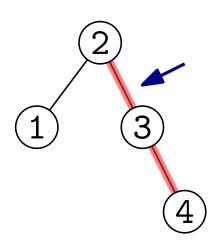


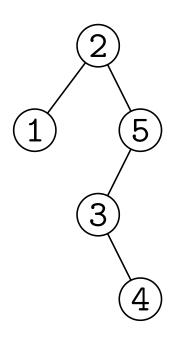
Observation: A symmetric visit of T_A visits the nodes in increasing order

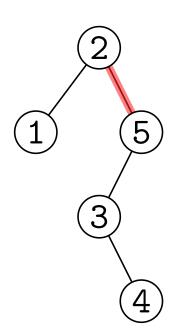


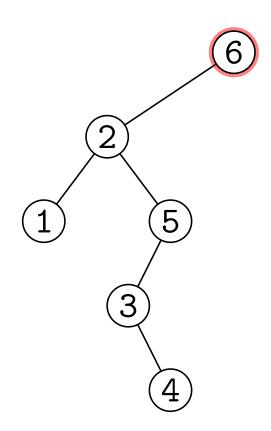


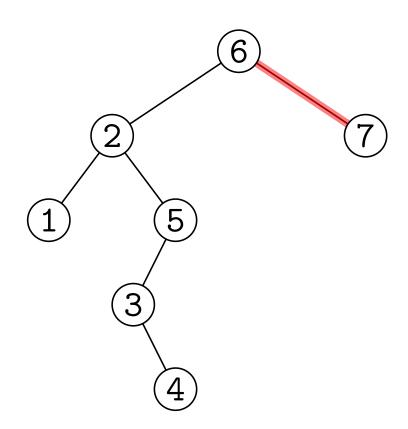


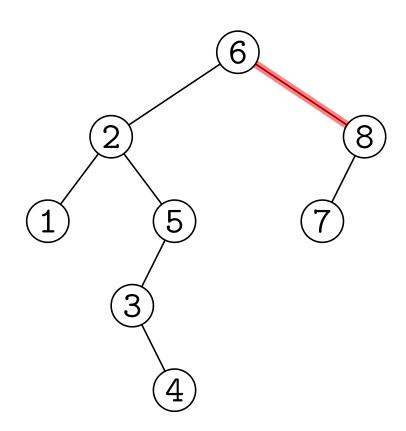


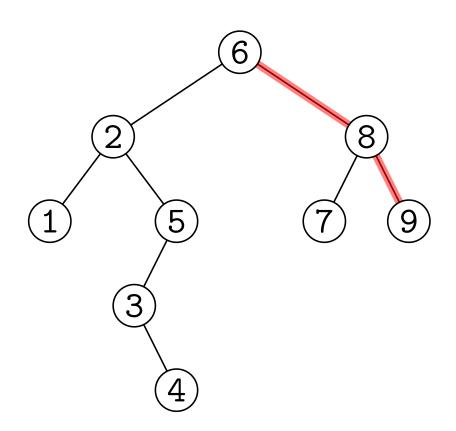


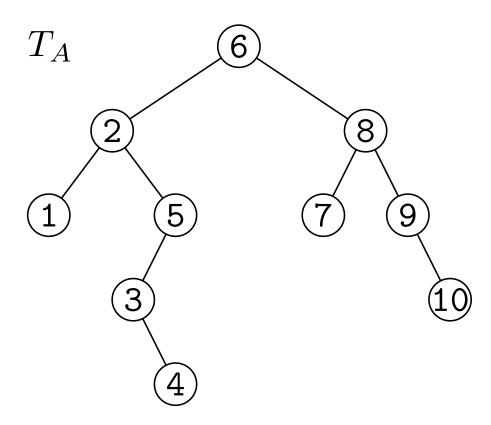


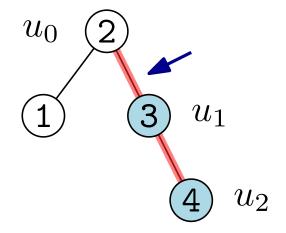




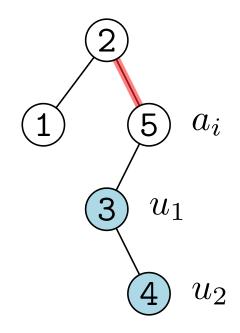




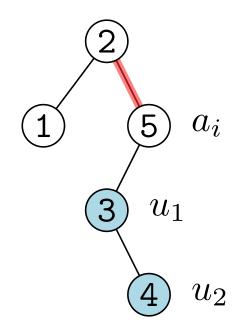




• When a new vertex a_i is inserted, it is compared with $1 + \eta_i$ vertices $u_0, u_1, \ldots, u_{\eta_i}$ on the rightmost path of T.

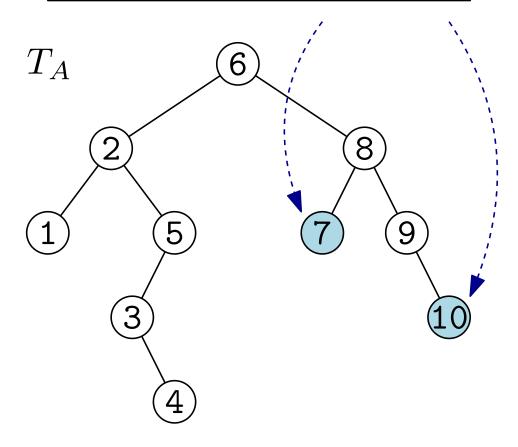


- When a new vertex a_i is inserted, it is compared with $1 + \eta_i$ vertices $u_0, u_1, \ldots, u_{\eta_i}$ on the rightmost path of T.
- After a_i is inserted, all vertices u_1, \ldots, u_{η_i} will leave the rightmost path of T (and will never join the path again).

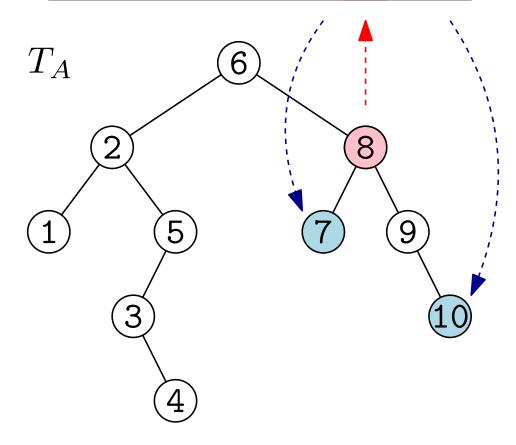


- When a new vertex a_i is inserted, it is compared with $1 + \eta_i$ vertices $u_0, u_1, \ldots, u_{\eta_i}$ on the rightmost path of T.
- After a_i is inserted, all vertices u_1, \ldots, u_{η_i} will leave the rightmost path of T (and will never join the path again).
- Total number of comparisons:

$$\sum_{i=1}^{n} (1 + \eta_i) = n + \sum_{i=1}^{n} \eta_i = n + O(n) = O(n).$$



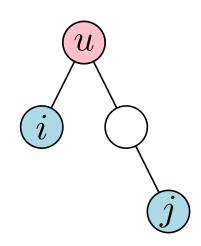
- \bullet Let T be the Cartesian tree of A.
- $A[\mathsf{RMQ}(i,j)] = A[\mathsf{LCA}_T(i,j)]$



- \bullet Let T be the Cartesian tree of A.
- $A[\mathsf{RMQ}(i,j)] = A[\mathsf{LCA}_T(i,j)]$

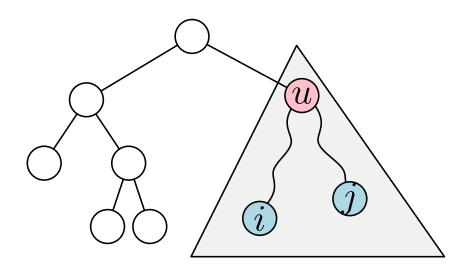
Proof of $A[\mathsf{LCA}_T(i,j)] \geq A[\mathsf{RMQ}(i,j)]$

- Let $u = LCA_T(i, j)$, V_ℓ and V_r be the set vertices in the left and right subtree of u, respectively.
- $i \in V_{\ell} \cup \{u\}$ and $j \in V_r \cup \{u\}$
- $i \le u \le j$
- $A[u] \ge \min A[i:j] = A[\mathsf{RMQ}(i,j)]$



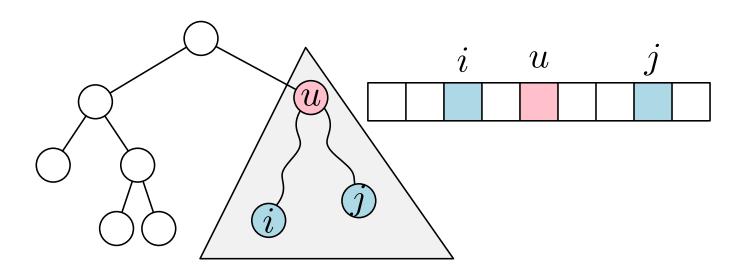
Proof of $A[\mathsf{LCA}_T(i,j)] \leq A[\mathsf{RMQ}(i,j)]$

• All vertices k in the subtree T' of T rooted in $\mathsf{LCA}_T(i,j)$ are such that $A[k] \geq A[\mathsf{LCA}_T(i,j)]$



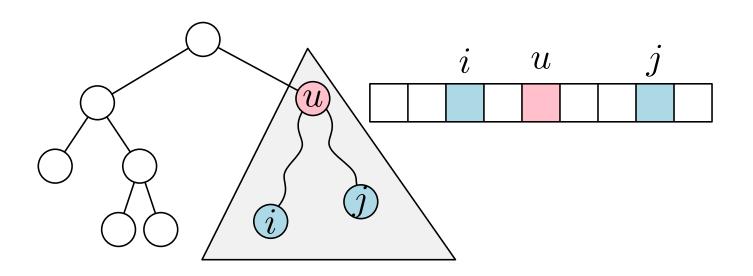
Proof of $A[\mathsf{LCA}_T(i,j)] \leq A[\mathsf{RMQ}(i,j)]$

- All vertices k in the subtree T' of T rooted in $LCA_T(i,j)$ are such that $A[k] \geq A[LCA_T(i,j)]$
- ullet All subtrees of T correspond to contiguous subarrays of A



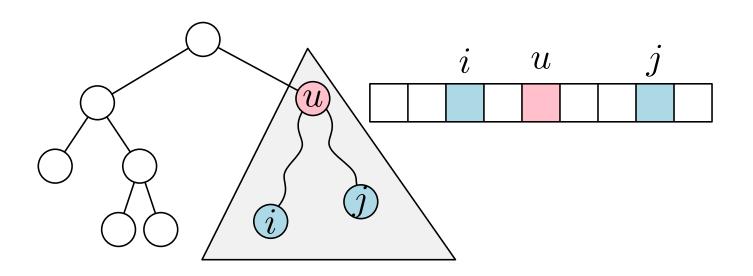
Proof of $A[\mathsf{LCA}_T(i,j)] \leq A[\mathsf{RMQ}(i,j)]$

- All vertices k in the subtree T' of T rooted in $LCA_T(i,j)$ are such that $A[k] \geq A[LCA_T(i,j)]$
- ullet All subtrees of T correspond to contiguous subarrays of A
- Since $i, j \in T'$, all $k \in \{i, \ldots, j\}$ also belong to T'

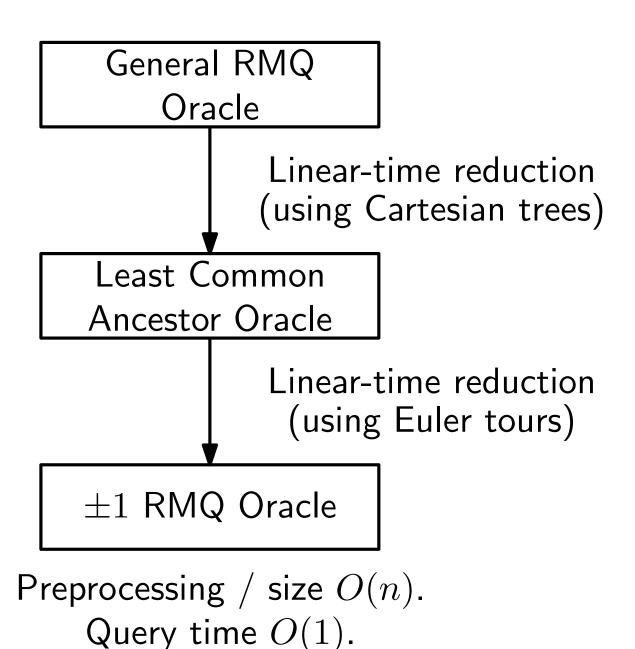


Proof of $A[\mathsf{LCA}_T(i,j)] \leq A[\mathsf{RMQ}(i,j)]$

- All vertices k in the subtree T' of T rooted in $LCA_T(i,j)$ are such that $A[k] \geq A[LCA_T(i,j)]$
- ullet All subtrees of T correspond to contiguous subarrays of A
- Since $i, j \in T'$, all $k \in \{i, \ldots, j\}$ also belong to T'
- $\mathsf{RMQ}(i,j) \in \{i,\ldots,j\} \Longrightarrow A[\mathsf{RMQ}(i,j)] \ge A[\mathsf{LCA}_T(i,j)]$



The General Case



RMQ Solutions: Recap

Size	Preprocessing Time	Query Time	Notes
O(n)	O(n)	O(n)	
$O(n^2)$	$O(n^3)$	O(1)	
$O(n^2)$	$O(n^2)$	O(1)	
$O(n \log n)$	$O(n \log n)$	O(1)	Sparse Table
O(n)	O(n)	$O(\log n)$	
$O(n \log \log n)$	$O(n \log \log n)$	O(1)	
O(n)	O(n)	O(1)	± 1 RMQ

RMQ Solutions: Recap

Size	Preprocessing Time	Query Time	Notes
O(n)	O(n)	O(n)	
$O(n^2)$	$O(n^3)$	O(1)	
$O(n^2)$	$O(n^2)$	O(1)	
$O(n \log n)$	$O(n \log n)$	O(1)	Sparse Table
O(n)	O(n)	$O(\log n)$	
$O(n \log \log n)$	$O(n \log \log n)$	O(1)	
O(n)	O(n)	O(1)	± 1 RMQ
O(n)	O(n)	O(1)	General case