
Lowest Common Ancestor Queries

Definition: The lowest common ancestor LCAT (u, v) of u and
v in a rooted tree T is the vertex of maximum depth that is an
ancestor of both u and v.

Lowest Common Ancestors

T

Definition: The lowest common ancestor LCAT (u, v) of u and
v in a rooted tree T is the vertex of maximum depth that is an
ancestor of both u and v.

Lowest Common Ancestors

u

v

T

Definition: The lowest common ancestor LCAT (u, v) of u and
v in a rooted tree T is the vertex of maximum depth that is an
ancestor of both u and v.

Lowest Common Ancestors

u

v

T

Definition: The lowest common ancestor LCAT (u, v) of u and
v in a rooted tree T is the vertex of maximum depth that is an
ancestor of both u and v.

Lowest Common Ancestors

u

v

T

Definition: The lowest common ancestor LCAT (u, v) of u and
v in a rooted tree T is the vertex of maximum depth that is an
ancestor of both u and v.

Lowest Common Ancestors

u

v

T

Definition: The lowest common ancestor LCAT (u, v) of u and
v in a rooted tree T is the vertex of maximum depth that is an
ancestor of both u and v.

Lowest Common Ancestors

u

v
T

Definition: The lowest common ancestor LCAT (u, v) of u and
v in a rooted tree T is the vertex of maximum depth that is an
ancestor of both u and v.

Lowest Common Ancestors

u

v
T

The Problem

Given T , design a data structure that is able to preprocess T to
answer LCA queries:

• Query(u, v): report LCAT (u, v).

The Problem

Given T , design a data structure that is able to preprocess T to
answer LCA queries:

• Query(u, v): report LCAT (u, v).

Trivial solutions:

• Preprocessing time: none Size: O(n) Query time: O(n)

n = # of nodes

The Problem

Given T , design a data structure that is able to preprocess T to
answer LCA queries:

• Query(u, v): report LCAT (u, v).

Trivial solutions:

• Preprocessing time: none Size: O(n) Query time: O(n)

v

u

n = # of nodes

The Problem

Given T , design a data structure that is able to preprocess T to
answer LCA queries:

• Query(u, v): report LCAT (u, v).

Trivial solutions:

• Preprocessing time: none Size: O(n) Query time: O(n)

v

u

n = # of nodes

The Problem

Given T , design a data structure that is able to preprocess T to
answer LCA queries:

• Query(u, v): report LCAT (u, v).

Trivial solutions:

• Preprocessing time: none Size: O(n) Query time: O(n)

v

u

n = # of nodes

The Problem

Given T , design a data structure that is able to preprocess T to
answer LCA queries:

• Query(u, v): report LCAT (u, v).

Trivial solutions:

• Preprocessing time: none Size: O(n) Query time: O(n)

v

u

n = # of nodes

The Problem

Given T , design a data structure that is able to preprocess T to
answer LCA queries:

• Query(u, v): report LCAT (u, v).

Trivial solutions:

• Preprocessing time: none Size: O(n) Query time: O(n)

v

u

n = # of nodes

The Problem

Given T , design a data structure that is able to preprocess T to
answer LCA queries:

• Query(u, v): report LCAT (u, v).

Trivial solutions:

• Preprocessing time: none Size: O(n) Query time: O(n)

v

u

n = # of nodes

The Problem

Given T , design a data structure that is able to preprocess T to
answer LCA queries:

• Query(u, v): report LCAT (u, v).

Trivial solutions:

• Preprocessing time: none Size: O(n) Query time: O(n)

v

u

n = # of nodes

The Problem

Given T , design a data structure that is able to preprocess T to
answer LCA queries:

• Query(u, v): report LCAT (u, v).

Trivial solutions:

• Preprocessing time: none Size: O(n) Query time: O(n)

v

u

n = # of nodes

The Problem

Given T , design a data structure that is able to preprocess T to
answer LCA queries:

• Query(u, v): report LCAT (u, v).

Trivial solutions:

• Preprocessing time: none Size: O(n) Query time: O(n)

v

u

n = # of nodes

The Problem

Given T , design a data structure that is able to preprocess T to
answer LCA queries:

• Query(u, v): report LCAT (u, v).

Trivial solutions:

• Preprocessing time: none Size: O(n) Query time: O(n)

• Preprocessing time: O(n3) Size: O(n2) Query time: O(1)

n = # of nodes

The Problem

Given T , design a data structure that is able to preprocess T to
answer LCA queries:

• Query(u, v): report LCAT (u, v).

Trivial solutions:

• Preprocessing time: none Size: O(n) Query time: O(n)

• Preprocessing time: O(n3) Size: O(n2) Query time: O(1)

(precompute the answer to all possible queries)

n = # of nodes

The Problem

Given T , design a data structure that is able to preprocess T to
answer LCA queries:

• Query(u, v): report LCAT (u, v).

Trivial solutions:

• Preprocessing time: none Size: O(n) Query time: O(n)

• Preprocessing time: O(n3) Size: O(n2) Query time: O(1)

• Preprocessing time: O(n2) Size: O(n2) Query time: O(1)

LCAT (u, v) =

(
LCAT (u, v) = u if u is an ancestor of v

LCAT (u, v) = LCAT (parent(u), v) otherwise

n = # of nodes

A Related Problem

Given an array A = ⟨a1, . . . , an⟩, design a data structure that is
able to preprocess A to answer range minimum queries:

• RMQ(i, j): report an element in arg min
k=i,...,j

ak.

8 2 5 2 1

i j

37 6 9 4
1 2 3 4 5 6 7 8 9 10

A

A Related Problem

Given an array A = ⟨a1, . . . , an⟩, design a data structure that is
able to preprocess A to answer range minimum queries:

• RMQ(i, j): report an element in arg min
k=i,...,j

ak.

8 2 5 2 1

i j

37 6 9 4
1 2 3 4 5 6 7 8 9 10

RMQ(3, 7)=5A

A Related Problem

Given an array A = ⟨a1, . . . , an⟩, design a data structure that is
able to preprocess A to answer range minimum queries:

• RMQ(i, j): report an element in arg min
k=i,...,j

ak.

8 2 5 2 1

i j

37 6 9 4
1 2 3 4 5 6 7 8 9 10

RMQ(3, 7)=5

Trivial solutions:

• Preprocessing time: none Size: O(n) Query time: O(n)

• Preprocessing time: O(n3) Size: O(n2) Query time: O(1)

• Preprocessing time: O(n2) Size: O(n2) Query time: O(1)

A

Reducing LCA Queries to RMQ

2

3

4

6

7 8

10 115

9

1

T
0

1

2

3

Reducing LCA Queries to RMQ

2

3

4

6

7 8

10 115

9

1
Euler tour of TT

0

1

2

3

Reducing LCA Queries to RMQ

1 2 3 234 5 3 6
1 2 3 ...

2

3

4

6

2

7

7 1 8 9

8

10 9 11

10 11

9 8 1
2n-1

0 1 2 123 2 2 1 1 0 1 2 3 2 3 2 1 0

E

D

5

9

1

1

3 0

Euler tour of TT
0

1

2

3

Reducing LCA Queries to RMQ

1 2 3 234 5 3 6
1 2 3 ...

2

3

4

6

2

7

7 1 8 9

8

10 9 11

10 11

9 8 1
2n-1

0 1 2 123 2 2 1 1 0 1 2 3 2 3 2 1 0

E

D

5

9

1

1

3 0

i j

Euler tour of TT

u

v

0

1

2

3

Reducing LCA Queries to RMQ

1 2 3 234 5 3 6
1 2 3 ...

2

3

4

6

2

7

7 1 8 9

8

10 9 11

10 11

9 8 1
2n-1

0 1 2 123 2 2 1 1 0 1 2 3 2 3 2 1 0

E

D

5

9

1

1

3 0
| {z }

RMQ(i, j)

i j

Euler tour of TT

u

v

0

1

2

3

Reducing LCA Queries to RMQ

1 2 3 234 5 3 6
1 2 3 ...

2

3

4

6

2

7

7 1 8 9

8

10 9 11

10 11

9 8 1
2n-1

0 1 2 123 2 2 1 1 0 1 2 3 2 3 2 1 0

E

D

5

9

1

1

3 0
| {z }

RMQ(i, j)

i j

Euler tour of TT

LCAT (u, v)

u

v

0

1

2

3

Claim: LCAT (u, v) = E[RMQ(i, j)]

Let u, v ∈ T and i (resp. j) be the index of the first
occurrence of u (resp. v) in E

Proof:

The Euler tour from i to j must pass through w, hence
dw ∈ D[i : j]

Let dw be the depth of w = LCAT (u, v) in T

Except for w, no other vertex with depth at most dw appears
in the Euler tour from i to j

E[RMQ(i, j)] = LCAT (u, v)

u v

dw

Reducing LCA Queries to RMQ

w

Solutions to the RMQ problem

“Sparse Table” Solution to RMQ
For i = 1, . . . , n and ℓ = 20, 21, . . . , 2⌊log n⌋, define:

M [i, ℓ] = arg min
i≤k<i+ℓ

ak

8 2 5 2 137 6 9 4
1 2 3 4 5 6 7 8 9 10

“Sparse Table” Solution to RMQ
For i = 1, . . . , n and ℓ = 20, 21, . . . , 2⌊log n⌋, define:

M [i, ℓ] =





i if ℓ = 1

argmin
k ∈

�
M

h
i,
ℓ

2

i
,M

h
i+

ℓ

2
,
ℓ

2

i� ak if ℓ > 1

M [i, ℓ] = arg min
i≤k<i+ℓ

ak

Preprocessing:

M [2, 8]

M [2, 4] M [6, 4]

8 2 5 2 137 6 9 4
1 2 3 4 5 6 7 8 9 10

“Sparse Table” Solution to RMQ
For i = 1, . . . , n and ℓ = 20, 21, . . . , 2⌊log n⌋, define:

M [i, ℓ] =





i if ℓ = 1

argmin
k ∈

�
M

h
i,
ℓ

2

i
,M

h
i+

ℓ

2
,
ℓ

2

i� ak if ℓ > 1

M [i, ℓ] = arg min
i≤k<i+ℓ

ak

Preprocessing:

Answering a query:

8 2 5 2 137 6 9 4
1 2 3 4 5 6 7 8 9 10

RMQ(i, j) = arg min
k∈{M [i,ℓ],M [j−ℓ+1,ℓ]}

akLet ℓ = 2⌊log(j−i+1)⌋

M [i, ℓ]
M [j − ℓ + 1, ℓ]

“Sparse Table” Solution to RMQ
For i = 1, . . . , n and ℓ = 20, 21, . . . , 2⌊log n⌋, define:

M [i, ℓ] =





i if ℓ = 1

argmin
k ∈

�
M

h
i,
ℓ

2

i
,M

h
i+

ℓ

2
,
ℓ

2

i� ak if ℓ > 1

• Preprocessing time: O(n log n)

• Size: O(n log n)

M [i, ℓ] = arg min
i≤k<i+ℓ

ak

Preprocessing:

Answering a query:

RMQ(i, j) = arg min
k∈{M [i,ℓ],M [j−ℓ+1,ℓ]}

akLet ℓ = 2⌊log(j−i+1)⌋

• Query time: O(1)

RMQ Solutions so far

Size Preprocessing
Time

Query Time

O(n) O(n)–

O(n2) O(1)O(n3)

O(n2) O(1)O(n2)

Notes

RMQ Solutions so far

Size Preprocessing
Time

Query Time

O(n log n) O(n log n) O(1)

O(n) O(n)–

O(n2) O(1)O(n3)

O(n2) O(1)O(n2)

Notes

Sparse Table

RMQ Solutions so far

Size Preprocessing
Time

Query Time

O(n log n) O(n log n) O(1)

O(n) O(n)–

O(n2) O(1)O(n3)

O(n2) O(1)O(n2)

Notes

Sparse Table

We want to get rid of the log n factor!

• Logically split A into Θ(n
log n) “blocks” of d = Θ(log n)

elements each.

A more compact RMQ oracle

1 2 ... n

| {z }
B1

A
| {z }

B2

• Logically split A into Θ(n
log n) “blocks” of d = Θ(log n)

elements each.

A more compact RMQ oracle

1 2 ... n

| {z }
B1

• Store the minimum of each block in a new array A′

A

A′

| {z }

min

| {z }
B2

1 n′

Time needed to build A′: O(n)

...

A more compact RMQ oracle
1 2 n

A

A′

• Build the “Sparse Table” oracle O on A′

Preprocessing:

1 ... n′

A more compact RMQ oracle
1 2 n

A

A′

• Build the “Sparse Table” oracle O on A′

O(n′ · log n′) = O(n
log n · log n

log n) = O(n)Size / time:

Preprocessing:

1 ... n′

A more compact RMQ oracle

A

A′
Answering a query:

To answer RMQ(i, j):

• If i, j ∈ Bk return the position of the minimum in A[i : j]

ji

A more compact RMQ oracle

A

A′
Answering a query:

To answer RMQ(i, j):

• If i, j ∈ Bk return the position of the minimum in A[i : j]

• If i ∈ Bh and j ∈ Bk, with k > h, answer with the position
of the smallest element among:

1) The minimum in A[i : hd]

i j

1

A more compact RMQ oracle

A

A′
Answering a query:

To answer RMQ(i, j):

• If i, j ∈ Bk return the position of the minimum in A[i : j]

• If i ∈ Bh and j ∈ Bk, with k > h, answer with the position
of the smallest element among:

1) The minimum in A[i : hd]

2) The minimum in A[(k − 1)d+ 1 : j]

i j

1 2

A more compact RMQ oracle

A

A′
Answering a query:

To answer RMQ(i, j):

• If i, j ∈ Bk return the position of the minimum in A[i : j]

• If i ∈ Bh and j ∈ Bk, with k > h, answer with the position
of the smallest element among:

1) The minimum in A[i : hd]

2) The minimum in A[(k − 1)d+ 1 : j]

3) A query to O to get min A[hd+ 1 : (k − 1)d]

i j

1 2

3

3

A more compact RMQ oracle

A

A′
Answering a query:

To answer RMQ(i, j):

• If i, j ∈ Bk return the position of the minimum in A[i : j]

• If i ∈ Bh and j ∈ Bk, with k > h, answer with the position
of the smallest element among:

1) The minimum in A[i : hd]

2) The minimum in A[(k − 1)d+ 1 : j]

3) A query to O to get min A[hd+ 1 : (k − 1)d]

i j

1 2

3

3

Time: O(log n)

O(log n)

O(log n)

O(log n)

O(1)

A more compact RMQ oracle (alternative)

1 2 n

A

A′

• Build the “Sparse Table” oracle O on A′

O(n′ · log n′) = O(n
log n · log n

log n) = O(n)Size / time:

Preprocessing:

1 ... n′

A more compact RMQ oracle (alternative)

1 2 n

A

A′

• Build the “Sparse Table” oracle O on A′

O(n′ · log n′) = O(n
log n · log n

log n) = O(n)

• Build the “Sparse Table” oracle Oi each Bi

O(n
log n · (log n)(log log n)) = O(n log log n)

Size / time:

Size / time:

Preprocessing:

1 ... n′

A more compact RMQ oracle (alternative)

1 2 n

A

A′

• Build the “Sparse Table” oracle O on A′

O(n′ · log n′) = O(n
log n · log n

log n) = O(n)

• Build the “Sparse Table” oracle Oi each Bi

O(n
log n · (log n)(log log n)) = O(n log log n)

Total size / time: O(n log log n)

Size / time:

Size / time:

Preprocessing:

1 ... n′

A more compact RMQ oracle

A

A′
Answering a query:

To answer RMQ(i, j):

• If i and j are in the same block Bk: query Ok

• If i ∈ Bh and j ∈ Bk, with k > h, answer with the position
of the smallest element among those returned by:

1) A query to Oh to get the minimum in A[i : hd]

2) A query to Ok to get the minimum in A[(k − 1)d+ 1 : j]

3) A query to O to get the minimum A[hd+ 1 : (k − 1)d]

i j

1 2

3

3 Time: O(1)

RMQ Solutions so far

Size Preprocessing
Time

Query Time

O(n log n) O(n log n) O(1)

O(n) O(n)–

O(n2) O(1)O(n3)

O(n2) O(1)O(n2)

Notes

Sparse Table

RMQ Solutions so far

Size Preprocessing
Time

Query Time

O(n log n) O(n log n) O(1)

O(n) O(n)–

O(n2) O(1)O(n3)

O(n2) O(1)O(n2)

Notes

Sparse Table

O(n) O(log n)O(n)

RMQ Solutions so far

Size Preprocessing
Time

Query Time

O(n log n) O(n log n) O(1)

O(n) O(n)–

O(n2) O(1)O(n3)

O(n2) O(1)O(n2)

Notes

Sparse Table

O(n) O(log n)O(n)

O(n log log n) O(1)O(n log log n)

RMQ Solutions so far

Size Preprocessing
Time

Query Time

O(n log n) O(n log n) O(1)

O(n) O(n)–

O(n2) O(1)O(n3)

O(n2) O(1)O(n2)

Notes

Sparse Table

O(n) O(log n)O(n)

O(n log log n) O(1)O(n log log n)

Almost...

A Special Case
• Assume that ai+1 − ai ∈ {+1,−1}.

0 1 2 123 2 2 1A 3 0

A Special Case
• Assume that ai+1 − ai ∈ {+1,−1}.

• This is the case of the instances obtained from LCA !

1 2 3 234 5 3 6
1 2 3 ...

2

3

4

6

2

7

7 1 8 9

8

10 9 11

10 11

9 8 1
2m-1

0 1 2 123 2 2 1 1 0 1 2 3 2 3 2 1 0

E

D

5

9

1

1

3 0

T

0 1 2 123 2 2 1A 3 0

Logically split A into Θ(n
log n) “blocks” of d = c log n elements.

A Special Case

1 2 ... n

| {z }
B1

A
| {z }

B2

Logically split A into Θ(n
log n) “blocks” of d = c log n elements.

Definition: Two blocks have the same type if they have the
same sequence of ±1 differences between consecutive elements.

A Special Case

3 4 3 4 5 6 5 7 8 7 8 9 106 9 10
+1 -1 +1 +1 +1 -1 +1 +1 -1 +1 +1 +1 -1 +1

Bi Bj

Logically split A into Θ(n
log n) “blocks” of d = c log n elements.

Definition: Two blocks have the same type if they have the
same sequence of ±1 differences between consecutive elements.

A Special Case

3 4 3 4 5 6 5 7 8 7 8 9 106 9 10
+1 -1 +1 +1 +1 -1 +1 +1 -1 +1 +1 +1 -1 +1

Bi Bj

Observation: The answer to the same RMQ query on two
blocks of the same type is the same.

Logically split A into Θ(n
log n) “blocks” of d = c log n elements.

Definition: Two blocks have the same type if they have the
same sequence of ±1 differences between consecutive elements.

How many block types are there?

A Special Case

3 4 3 4 5 6 5 7 8 7 8 9 106 9 10
+1 -1 +1 +1 +1 -1 +1 +1 -1 +1 +1 +1 -1 +1

Bi Bj

Observation: The answer to the same RMQ query on two
blocks of the same type is the same.

• Encode a block by its sequence of differences.

• At most 2c logn = nc block types.

Logically split A into Θ(n
log n) “blocks” of d = c log n elements.

A′

• Compute A′ and build the “Sparse Table” oracle O on A′.

• Size/time: O(n)

A

A Special Case

Logically split A into Θ(n
log n) “blocks” of d = c log n elements.

• Build the RMQ oracle Ot with quadratic preprocessing
time/size and constant query time.

• For each type t of the at most nc block types:

• Size/time: O(nc log2 n)

A′

• Compute A′ and build the “Sparse Table” oracle O on A′.

• Size/time: O(n)

A

A Special Case

Logically split A into Θ(n
log n) “blocks” of d = c log n elements.

• Build the RMQ oracle Ot with quadratic preprocessing
time/size and constant query time.

• For each type t of the at most nc block types:

• Size/time: O(nc log2 n)

• For each block Bi, store the index ti of its type.

• Size/time: O(n
log n · log nc) = O(n).

A′

• Compute A′ and build the “Sparse Table” oracle O on A′.

• Size/time: O(n)

A

A Special Case

Logically split A into Θ(n
log n) “blocks” of d = c log n elements.

• Build the RMQ oracle Ot with quadratic preprocessing
time/size and constant query time.

• For each type t of the at most nc block types:

• Size/time: O(nc log2 n)

• For each block Bi, store the index ti of its type.

• Size/time: O(n
log n · log nc) = O(n).

Total size/time: O(n+ nc log2 n)

A′

• Compute A′ and build the “Sparse Table” oracle O on A′.

For (constant) c < 1: O(n)

• Size/time: O(n)

A

A Special Case

A Special Case

Answering a query:

To answer RMQ(i, j):

• If i and j are in the same block Bk: query Otk

A

A′
i j

A Special Case

Answering a query:

To answer RMQ(i, j):

• If i and j are in the same block Bk: query Otk

• If i ∈ Bh and j ∈ Bk, with k > h, answer with the position
of the smallest element among those returned by:

1) A query to Oth to get the minimum in A[i : hd]

A

i j

1

A′

A Special Case

Answering a query:

To answer RMQ(i, j):

• If i and j are in the same block Bk: query Otk

• If i ∈ Bh and j ∈ Bk, with k > h, answer with the position
of the smallest element among those returned by:

1) A query to Oth to get the minimum in A[i : hd]

2) A query to Otk to get the minimum in A[(k − 1)d+ 1 : j]

A

i j

1 2

A′

A Special Case

Answering a query:

To answer RMQ(i, j):

• If i and j are in the same block Bk: query Otk

• If i ∈ Bh and j ∈ Bk, with k > h, answer with the position
of the smallest element among those returned by:

1) A query to Oth to get the minimum in A[i : hd]

2) A query to Otk to get the minimum in A[(k − 1)d+ 1 : j]

3) A query to O to get the minimum A[hd+ 1 : (k − 1)d]

A

i j3

1 2

A′

3

A Special Case

Answering a query:

To answer RMQ(i, j):

• If i and j are in the same block Bk: query Otk

• If i ∈ Bh and j ∈ Bk, with k > h, answer with the position
of the smallest element among those returned by:

1) A query to Oth to get the minimum in A[i : hd]

2) A query to Otk to get the minimum in A[(k − 1)d+ 1 : j]

3) A query to O to get the minimum A[hd+ 1 : (k − 1)d]

A

i j3

1 2

A′

3 Time: O(1)

RMQ Solutions so far

Size Preprocessing
Time

Query Time

O(n log n) O(n log n) O(1)

O(n) O(n)–

O(n2) O(1)O(n3)

O(n2) O(1)O(n2)

O(n log log n) O(1)O(n log log n)

Notes

Sparse Table

O(n) O(log n)O(n)

RMQ Solutions so far

Size Preprocessing
Time

Query Time

O(n log n) O(n log n) O(1)

O(n) O(n)–

O(n2) O(1)O(n3)

O(n2) O(1)O(n2)

O(n log log n) O(1)O(n log log n)

Notes

Sparse Table

±1 RMQ

O(n) O(log n)O(n)

O(n) O(1)O(n)

RMQ Solutions so far

Size Preprocessing
Time

Query Time

O(n log n) O(n log n) O(1)

O(n) O(n)–

O(n2) O(1)O(n3)

O(n2) O(1)O(n2)

O(n log log n) O(1)O(n log log n)

Notes

Sparse Table

±1 RMQ

O(n) O(log n)O(n)

O(n) O(1)O(n)

What about the general case?

The General Case

Least Common
Ancestor Oracle

±1 RMQ Oracle

Preprocessing / size O(n).
Query time O(1).

Linear-time reduction
(using Euler tours)

The General Case

General RMQ
Oracle

Least Common
Ancestor Oracle

±1 RMQ Oracle

Preprocessing / size O(n).
Query time O(1).

Linear-time reduction

Linear-time reduction

(using Euler tours)

(using Cartesian trees)

Cartesian Trees

8 2 5 327 9 4
1 2 3 4 5 6 7 8 9 10

61A

Cartesian Trees

8 2 5 327 9 4
1 2 3 4 5 6 7 8 9 10

61

8 2 5 27 39 4 6

• The root r of the Cartesian tree is the index i of a
minimum element ai of A

6

A

Cartesian Trees

8 2 5 327 9 4
1 2 3 4 5 6 7 8 9 10

61

8 2 5 27 39 4 6

8 5 27 9 4 6

• The root r of the Cartesian tree is the index i of a
minimum element ai of A

• The left and right subtrees r are the Cartesian trees of
A[1 : i− 1] and A[i+ 1 : n] (if not empty).

6

2 8

A

Cartesian Trees

8 2 5 327 9 4
1 2 3 4 5 6 7 8 9 10

61

8 2 5 27 39 4 6

8 5 27 9 4 6

95 7 6

6

2 8

51 7

A

Cartesian Trees

8 2 5 327 9 4
1 2 3 4 5 6 7 8 9 10

61

8 2 5 27 39 4 6

8 5 27 9 4 6

95 7

7

6

10

6

2 8

51 7

3

A

Cartesian Trees

8 2 5 327 9 4
1 2 3 4 5 6 7 8 9 10

61

8 2 5 27 39 4 6

8 5 27 9 4 6

95 7

7

6

4

10

6

2 8

51 7

3

A

Cartesian Trees

8 2 5 327 9 4
1 2 3 4 5 6 7 8 9 10

61

9

4

10

6

2 8

51 7

3

TA

A

Cartesian Trees

8 2 5 327 9 4
1 2 3 4 5 6 7 8 9 10

61

9

4

10

6

2 8

51 7

3

TA

A

Observation: A symmetric visit of TA visits the nodes in increasing order

Constructing a Cartesian Tree

8 2 5 327 9
1 2 3 4 5 6 7 8 9 10

1

1

4

33

2

4 6A

Constructing a Cartesian Tree

8 2 5 327 9
1 2 3 4 5 6 7 8 9 10

1

1

4

33

2

The vertex corresponding to ai+1 must belong to the
rightmost path of the Cartesian tree of A[1 : i].

4 6A

Constructing a Cartesian Tree

8 2 5 327 9
1 2 3 4 5 6 7 8 9 10

1

1

4

33

2

The vertex corresponding to ai+1 must belong to the
rightmost path of the Cartesian tree of A[1 : i].

4 6A

Constructing a Cartesian Tree

8 2 5 327 9
1 2 3 4 5 6 7 8 9 10

1

1

4

33

2

The vertex corresponding to ai+1 must belong to the
rightmost path of the Cartesian tree of A[1 : i].

4 6A

Constructing a Cartesian Tree

8 2 5 327 9
1 2 3 4 5 6 7 8 9 10

1

1

4

3

2

5

The vertex corresponding to ai+1 must belong to the
rightmost path of the Cartesian tree of A[1 : i].

4 6A

Constructing a Cartesian Tree

8 2 5 327 9
1 2 3 4 5 6 7 8 9 10

1

1

4

3

2

5

The vertex corresponding to ai+1 must belong to the
rightmost path of the Cartesian tree of A[1 : i].

4 6A

Constructing a Cartesian Tree

8 2 5 327 9
1 2 3 4 5 6 7 8 9 10

1

1

4

3

2

5

The vertex corresponding to ai+1 must belong to the
rightmost path of the Cartesian tree of A[1 : i].

4

6

6A

Constructing a Cartesian Tree

8 2 5 327 9
1 2 3 4 5 6 7 8 9 10

1

1

4

3

2

5

The vertex corresponding to ai+1 must belong to the
rightmost path of the Cartesian tree of A[1 : i].

7

4

6

6A

7

Constructing a Cartesian Tree

8 2 5 327 9
1 2 3 4 5 6 7 8 9 10

1

1

4

3

2

5

The vertex corresponding to ai+1 must belong to the
rightmost path of the Cartesian tree of A[1 : i].

4

6

8

6A

7

Constructing a Cartesian Tree

8 2 5 327 9
1 2 3 4 5 6 7 8 9 10

1

1

4

3

2

5

The vertex corresponding to ai+1 must belong to the
rightmost path of the Cartesian tree of A[1 : i].

4

6

8

9

6A

10

7

Constructing a Cartesian Tree

8 2 5 327 9
1 2 3 4 5 6 7 8 9 10

1

1

4

3

2

5

The vertex corresponding to ai+1 must belong to the
rightmost path of the Cartesian tree of A[1 : i].

4

6

8

9

6A

TA

Constructing a Cartesian Tree

• When a new vertex ai is inserted, it is compared with
1 + ηi vertices u0, u1, . . . , uηi on the rightmost path of T .

1

4

33

2u0

u1

u2

Constructing a Cartesian Tree

• When a new vertex ai is inserted, it is compared with
1 + ηi vertices u0, u1, . . . , uηi on the rightmost path of T .

• After ai is inserted, all vertices u1, . . . , uηi
will leave the

rightmost path of T (and will never join the path again).

1

4

3 u1

u2

ai

2

5

Constructing a Cartesian Tree

• When a new vertex ai is inserted, it is compared with
1 + ηi vertices u0, u1, . . . , uηi on the rightmost path of T .

• After ai is inserted, all vertices u1, . . . , uηi
will leave the

rightmost path of T (and will never join the path again).

• Total number of comparisons:Pn
i=1(1 + ηi) = n+

Pn
i=1 ηi = n+O(n) = O(n).

1

4

3 u1

u2

ai

2

5

Cartesian Trees and RMQs

• Let T be the Cartesian tree of A.

• A[RMQ(i, j)] = A[LCAT (i, j)]

10

71

4

3

5

6

9

TA

8 2 327 9 4
1 2 3 4 5 6 7 8 9 10

61A

2

5

8

Cartesian Trees and RMQs

• Let T be the Cartesian tree of A.

• A[RMQ(i, j)] = A[LCAT (i, j)]

10

71

4

3

5

6

9

TA

8 2 327 9 4
1 2 3 4 5 6 7 8 9 10

61A

2

5

8

Proof of A[LCAT (i, j)] ≥ A[RMQ(i, j)]

• A[u] ≥ minA[i : j] = A[RMQ(i, j)]

• Let u = LCAT (i, j), Vℓ and Vr be the set vertices in the
left and right subtree of u, respectively.

• i ∈ Vℓ ∪ {u} and j ∈ Vr ∪ {u}
• i ≤ u ≤ j

Cartesian Trees and RMQs

j

i

u

Cartesian Trees and RMQs
Proof of A[LCAT (i, j)] ≤ A[RMQ(i, j)]

• All vertices k in the subtree T ′ of T rooted in LCAT (i, j)
are such that A[k] ≥ A[LCAT (i, j)]

i

u

j

Cartesian Trees and RMQs
Proof of A[LCAT (i, j)] ≤ A[RMQ(i, j)]

• All vertices k in the subtree T ′ of T rooted in LCAT (i, j)
are such that A[k] ≥ A[LCAT (i, j)]

• All subtrees of T correspond to contiguous subarrays of A

i

u

j

ui j

Cartesian Trees and RMQs
Proof of A[LCAT (i, j)] ≤ A[RMQ(i, j)]

• All vertices k in the subtree T ′ of T rooted in LCAT (i, j)
are such that A[k] ≥ A[LCAT (i, j)]

• All subtrees of T correspond to contiguous subarrays of A

i

• Since i, j ∈ T ′, all k ∈ {i, . . . , j} also belong to T ′

u

j

ui j

Cartesian Trees and RMQs
Proof of A[LCAT (i, j)] ≤ A[RMQ(i, j)]

• All vertices k in the subtree T ′ of T rooted in LCAT (i, j)
are such that A[k] ≥ A[LCAT (i, j)]

• All subtrees of T correspond to contiguous subarrays of A

i

• Since i, j ∈ T ′, all k ∈ {i, . . . , j} also belong to T ′

• RMQ(i, j) ∈ {i, . . . , j}=⇒A[RMQ(i, j)] ≥ A[LCAT (i, j)]

u

j

ui j

The General Case

General RMQ
Oracle

Least Common
Ancestor Oracle

±1 RMQ Oracle

Preprocessing / size O(n).
Query time O(1).

Linear-time reduction

Linear-time reduction

(using Euler tours)

(using Cartesian trees)

RMQ Solutions: Recap

Size Preprocessing
Time

Query Time

O(n log n) O(n log n) O(1)

O(n) O(n)O(n)

O(n2) O(1)O(n3)

O(n2) O(1)O(n2)

O(n log log n) O(1)O(n log log n)

Notes

Sparse Table

±1 RMQ

O(n) O(log n)O(n)

O(n) O(1)O(n)

RMQ Solutions: Recap

Size Preprocessing
Time

Query Time

O(n log n) O(n log n) O(1)

O(n) O(n)O(n)

O(n2) O(1)O(n3)

O(n2) O(1)O(n2)

O(n log log n) O(1)O(n log log n)

Notes

Sparse Table

±1 RMQ

O(n) O(log n)O(n)

O(n) O(1)O(n)

General caseO(n) O(1)O(n)

