Lowest Common Ancestor Queries

| owest Common Ancestors

T

Definition: The lowest common ancestor LCAp(u,v) of w and
v in a rooted tree T’ is the vertex of maximum depth that is an
ancestor of both u and v.

| owest Common Ancestors

T

Definition: The lowest common ancestor LCAp(u,v) of w and
v in a rooted tree T’ is the vertex of maximum depth that is an
ancestor of both u and v.

| owest Common Ancestors

T

Definition: The lowest common ancestor LCAp(u,v) of w and
v in a rooted tree T’ is the vertex of maximum depth that is an
ancestor of both u and v.

| owest Common Ancestors

T

Definition: The lowest common ancestor LCAp(u,v) of w and
v in a rooted tree T’ is the vertex of maximum depth that is an
ancestor of both u and v.

| owest Common Ancestors

T

Definition: The lowest common ancestor LCAp(u,v) of w and
v in a rooted tree T’ is the vertex of maximum depth that is an
ancestor of both u and v.

| owest Common Ancestors

T

Definition: The lowest common ancestor LCAp(u,v) of w and
v in a rooted tree T’ is the vertex of maximum depth that is an
ancestor of both u and v.

| owest Common Ancestors

T

Definition: The lowest common ancestor LCAp(u,v) of w and
v in a rooted tree T’ is the vertex of maximum depth that is an
ancestor of both u and v.

The Problem

Given T', design a data structure that is able to preprocess 1’ to
answer LCA queries:

e Query(u,v): report LCAp(u,v).

The Problem

Given T', design a data structure that is able to preprocess 1’ to
answer LCA queries:

e Query(u,v): report LCAp(u,v).
Trivial solutions: n = # of nodes

e Preprocessing time: none Size: O(n) Query time: O(n)

The Problem

Given T', design a data structure that is able to preprocess 1’ to
answer LCA queries:

e Query(u,v): report LCAp(u,v).
Trivial solutions: n = # of nodes

e Preprocessing time: none Size: O(n) Query time: O(n)

The Problem

Given T', design a data structure that is able to preprocess 1’ to
answer LCA queries:

e Query(u,v): report LCAp(u,v).
Trivial solutions: n = # of nodes

e Preprocessing time: none Size: O(n) Query time: O(n)

The Problem

Given T', design a data structure that is able to preprocess 1’ to
answer LCA queries:

e Query(u,v): report LCAp(u,v).
Trivial solutions: n = # of nodes

e Preprocessing time: none Size: O(n) Query time: O(n)

The Problem

Given T', design a data structure that is able to preprocess 1’ to
answer LCA queries:

e Query(u,v): report LCAp(u,v).
Trivial solutions: n = # of nodes

e Preprocessing time: none Size: O(n) Query time: O(n)

The Problem

Given T', design a data structure that is able to preprocess 1’ to
answer LCA queries:

e Query(u,v): report LCAp(u,v).
Trivial solutions: n = # of nodes

e Preprocessing time: none Size: O(n) Query time: O(n)

The Problem

Given T', design a data structure that is able to preprocess 1’ to
answer LCA queries:

e Query(u,v): report LCAp(u,v).
Trivial solutions: n = # of nodes

e Preprocessing time: none Size: O(n) Query time: O(n)

The Problem

Given T', design a data structure that is able to preprocess 1’ to
answer LCA queries:

e Query(u,v): report LCAp(u,v).
Trivial solutions: n = # of nodes

e Preprocessing time: none Size: O(n) Query time: O(n)

The Problem

Given T', design a data structure that is able to preprocess 1’ to
answer LCA queries:

e Query(u,v): report LCAp(u,v).
Trivial solutions: n = # of nodes

e Preprocessing time: none Size: O(n) Query time: O(n)

The Problem

Given T', design a data structure that is able to preprocess 1’ to
answer LCA queries:

e Query(u,v): report LCAp(u,v).
Trivial solutions: n = # of nodes

e Preprocessing time: none Size: O(n) Query time: O(n)

The Problem

Given T', design a data structure that is able to preprocess 1’ to
answer LCA queries:

e Query(u,v): report LCAp(u,v).

Trivial solutions:
n = # of nodes

e Preprocessing time: none Size: O(n) Query time: O(n)

e Preprocessing time: O(n’) Size: O(n*) Query time: O(1)

The Problem

Given T', design a data structure that is able to preprocess 1’ to
answer LCA queries:

e Query(u,v): report LCAp(u,v).

Trivial solutions:
n = # of nodes

e Preprocessing time: none Size: O(n) Query time: O(n)
e Preprocessing time: O(n’) Size: O(n*) Query time: O(1)

(precompute the answer to all possible queries)

The Problem

Given T', design a data structure that is able to preprocess 1’ to
answer LCA queries:

e Query(u,v): report LCAp(u,v).

Trivial solutions:
n = # of nodes

e Preprocessing time: none Size: O(n) Query time: O(n)

e Preprocessing time: O(n’) Size: O(n*) Query time: O(1)

e Preprocessing time: O(n?) Size: O(n*) Query time: O(1)

LCAr(u,v) =u if u is an ancestor of v
LCA7(u,v) = LCAp(parent(u),v) otherwise

LCA7 (u,v) = {

A Related Problem

Given an array A = {(aq,...,ay), design a data structure that is
able to preprocess A to answer range minimum queries:

¢ RMQ(%,7): report an element in argkmin Q.
—%,...,]

DO | 0
N e}
e

@)l o)

J|
QO on

<. O W
S S INeR N

A Related Problem

Given an array A = {(aq,...,ay), design a data structure that is
able to preprocess A to answer range minimum queries:

¢ RMQ(%,7): report an element in argkmin Q.
—%,...,]
1 2 345 6 7 8 9 10
A [8T2]5]7]3]6]9]2]4]1 RMQ(3, 7)=5

<.l O W
SO N

A Related Problem

Given an array A = {(aq,...,ay), design a data structure that is
able to preprocess A to answer range minimum queries:

¢ RMQ(%,7): report an element in argkmin Q.
—%,...,]

RMQ(3, 7)=5

N e}
e

DO | ©

@)l o)

QY| on

3|

SO W
.| O N

Trivial solutions:

e Preprocessing time: none Size: O(n) Query time: O(n)

e Preprocessing time: O(n’) Size: O(n?) Query time: O(1)
e Preprocessing time: O(n?) Size: O(n*) Query time: O(1)

Reducing LCA Queries to RMQ

L
2@ ®
(30 (6 (9
OR©. 10 B

T

Reducing LCA Queries to RMQ
(D

T Euler tour of T
2J) \®
B \6) (9)

W) & 19) LD

S &

Reducing LCA Queries to RMQ

T 0 Euler tour of T
2J) \®
6) (9)
W\
1 2 3 --. 2n-1
11213 3 2161211 8 10[9 |11 1
0|12 2 1121110 1 31213 0

S &

Reducing LCA Queries to RMQ

Euler tour of T

10

- —_] =

p— DO N

DO |G| W

S &

Reducing LCA Queries to RMQ

Euler tour of T

1 2 3- 2n-1
1123 612[1]7]1[{8]9]10[9 |11 1
0[1]2 211101 1121323 0

S &

Reducing LCA Queries to RMQ

T c Euler tour of T
2J) \®

G\ @t

@B« ©) \0)

Z LCAr(u,v) 7
1 2 3 .- v \ 2n-1
11213 3193126217 819109 (11 1
0|12 2131211211011 112(312]3 0

Reducing LCA Queries to RMQ

Let u,v € T and i (resp. j) be the index of the first
occurrence of u (resp. v) in E

Claim: LCAp(u,v) = E[RMQ(4, j)]
Proof:
Let d,, be the depth of w = LCAp(u,v) in T

The Euler tour from ¢ to 7 must pass through w, hence
dy € Dli : j]

Except for w, no other vertex with depth at most d,, appears
in the Euler tour from ¢ to j

E[RMQ(i, j)] = LCA7(u, v)

Solutions to the RMQ problem

“Sparse Table” Solution to RMQ

Fori=1,...,nand £ =20 2% ... 2logn] define:

Ml|i, ¢l = arg min ay
4, 4] gi§k<i-|—£

3|
o o
@pl e
O~
DO | 00
=~ | ©
—_

1 2 3
812]9

I

“Sparse Table” Solution to RMQ

Fori=1,...,nand £ =20 2% ... 2logn] define:

Mi, /] = arg min ay

i<k<i+l
Preprocessing:
(if /=1
ke (Mo | Mi+ 5.5
E{ b3 Z+2 5 }
M2, 8]
| |
1 2 3 45 6 7 8 9 10
812(5[713({6]9]2]4|1

“Sparse Table” Solution to RMQ

Fori=1,...,nand £ =20 2% ... 2logn] define:

Mli,) = arg min ay

i<k<i+l
Preprocessing:
M]{i, ¢] = < argmin ¢ ¢ 7] @ FE>1
k M|:.7_j|7M|:. _7_}
E{ ? > 1+ 57 5 }
Answering a query:

_ ollog(j—i+1 L, J) = !
Let ¢ — 2llog(s)] RMQ(z, 5) o 7 AR
1 2 3 45 6 7 8 9 10
8129713619241
]\4|[7L,£] | | '

M[j — €+ 1,4]

“Sparse Table” Solution to RMQ

Fori=1,...,nand £ =20 2% ... 2logn] define:

Mi, /] = arg min ay

i<k<itl
Preprocessing:
(if (=1
Dol
Answering a query:
| et ¢ — 9llog(—i+1)] RMQ(i, j) = arg min ay,

ke{M[i,l], M|j—£+1,€]}
e Preprocessing time: O(nlogn)
e Size: O(nlogn)
e Query time: O(1)

RMQ Solutions so far

Preprocessing
Time

O(n?)
O(n?)

Query Time

Notes

Preprocessing
Time

RMQ Solutions so far

Query Time

O

n

1

O

O

(n)
(1)
(1)
(1)

O

1

Notes

Sparse Table

O(nlogn)

Preprocessing
Time

O(n?)
O(n?)
O(nlogn)

RMQ Solutions so far

Query Time

O

n

1

S O

O

(n)
(1)
(1)
(1)

Notes

Sparse Table

We want to get rid of the logn factor!

A more compact RMQ oracle

o Logically split A into ©(g;;;) "blocks” of d = O(logn)
elements each.
1 2 ... n

A

A more compact RMQ oracle

o Logically split A into ©(g;;;) "blocks” of d = O(logn)
elements each.

1 2 ... n
A
N—_——N——
Bq Bs

e Store the minimum of each block in a new array A’

1 .. n’

A/

Time needed to build A”: O(n)

A more compact RMQ oracle

1 2 n

A/

Preprocessing:

e Build the “Sparse Table” oracle O on A’

A more compact RMQ oracle

1 2 n

A/

Preprocessing:

e Build the “Sparse Table” oracle O on A’

Size / time: O(n'-logn') = O(g57 - log 517) = O(n)

A more compact RMQ oracle
1

<.
oL

A/

Answering a query:
To answer RMQ(4, 7):

e If i,7 € By return the position of the minimum in Afi : j]

A more compact RMQ oracle

@
1
A
+. +.
? J
A/

Answering a query:
To answer RMQ(4, 7):
e If i,7 € By return the position of the minimum in Afi : j]

o If 1 € By, and § € By, with k > h, answer with the position
of the smallest element among:

1) The minimum in Ali : hd]

A more compact RMQ oracle

@ Q@
1 1
A
+. +.
? J
A/

Answering a query:
To answer RMQ(4, 7):
e If i,7 € By return the position of the minimum in Afi : j]

o If 1 € By, and § € By, with k > h, answer with the position
of the smallest element among:

1) The minimum in Ali : hd]
2) The minimum in A[(k —1)d+ 1 : j]

A more compact RMQ oracle

D @)
— —
A
b S
) ® J
A/
Answering a query: T

To answer RMQ(4, 7):

e If i,7 € By return the position of the minimum in Afi : j]

o If 1 € By, and § € By, with k > h, answer with the position
of the smallest element among:

1) The minimum in Ali : hd]
2) The minimum in A[(k —1)d+ 1 : j]
3) A query to O to get min Alhd+1: (k — 1)d]

A more compact RMQ oracle

@ @
1 1
A
y o o
. : 6y ‘
Time: O(logn) ! /
A/
Answering a query: T
To answer RMQ(4, 7): O(logn)

e If i,7 € By return the position of the minimum in Afi : j]

o If 1 € By, and § € By, with k > h, answer with the position
of the smallest element among:

1) The minimum in Ali : hd] O(logn)
2) The minimum in A[(k —1)d+ 1 : j] O(logn)
3) A query to O to get min Alhd + 1 : (k — 1)d] O(1)

A more compact RMQ oracle (alternative)

1 2 n

A

A/

Preprocessing:
e Build the “Sparse Table” oracle O on A’
Size / time: O(n' -logn’) = O(=2— - log —2=) = O(n)

logn logn

A more compact RMQ oracle (alternative)

1 2 n

A

A/

Preprocessing:
e Build the “Sparse Table” oracle O on A’
Size / time: O(n’ -logn’) = O(+=2—= -log =) = O(n)

logn logn

e Build the “Sparse Table" oracle O; each B;
Size / time: O(+2— - (logn)(loglogn)) = O(nloglogn)

logn

A more compact RMQ oracle (alternative)

1 2 n

A

A/

Preprocessing:
e Build the “Sparse Table” oracle O on A’
Size / time: O(n’ -logn’) = O(+2—= -log =) = O(n)

logn logn

e Build the “Sparse Table" oracle O; each B;
Size / time: O(+2- - (logn)(loglogn)) = O(nloglogn)

logn

Total size / time: O(nloglogn)

A more compact RMQ oracle

@ @
1 1
A
b S
i @ J
A/
Answering a query: L

To answer RMQ(4, j): 9 Time: O(1)

e If 2 and 5 are in the same block Bj: query Oy

o If 1 € By, and § € By, with k > h, answer with the position
of the smallest element among those returned by:

1) A query to Oy, to get the minimum in Az : hd|

2) A query to O to get the minimum in A[(k —1)d+1: j]
3) A query to O to get the minimum Alhd +1: (k — 1)d|

Preprocessing
Time

RMQ Solutions so far

Query Time

O

n

1

O

O

(n)
(1)
(1)
(1)

O

1

Notes

Sparse Table

Preprocessing
Time

RMQ Solutions so far

Query Time

O

(n
O(1
(1

O

)
)
)
O(1)
O(logn)

Notes

Sparse Table

Preprocessing
Time

RMQ Solutions so far

Query Time

O

(n
O(1
(1

O

)
)
)
O(1)

O(logn)
O(1)

Notes

Sparse Table

RMQ Solutions so far

Preprocessing
Time

Almost...

Query Time

O

(n
O(1
(1

O

)
)
)
O(1)

O(logn)
O(1)

Notes

Sparse Table

A Special Case

e Assume that a;.1 —a; € {+1,—1}.

A (0123|123 [2]1]2[1]0

e Assume that a;.1 —a; € {+1,—1}.

e This is the case of the instances obtained from LCA |

S &

A

A Special Case

0

1

2

3

2

3

2

1

2

1

(D
1
) @O &
(3[&)
ORS 19)
1 2 3 --: 2m-1
112]3]4]3]5]3]2][6]2[1]7]1]8]910[9]t9]8]1
0]1]2[3]2][3[2]1]2]1]0]1]0][1]2][3]2]3 0

A Special Case

Logically split A into @(%) “blocks” of d = clogn elements.
1 2 .- n
A
W

A Special Case

Logically split A into O “blocks” of d = clogn elements.

Togn)

Definition: Two blocks have the same type if they have the
same sequence of 1 differences between consecutive elements.

B; 1314131456 |5{6 B; 7181 71819110[910
#1-1+1+1+1 -1 +1 +1-1+1+1+1 -1 +1

A Special Case

Logically split A into @(@) “blocks” of d = clogn elements.

Definition: Two blocks have the same type if they have the
same sequence of 1 differences between consecutive elements.

B; 1314131456 |5{6 B; 7181 71819110[910
#1-1+1+1+1 -1 +1 +1-1+1+1+1 -1 +1

Observation: The answer to the same RMQ query on two
blocks of the same type is the same.

A Special Case

Logically split A into @(@) “blocks” of d = clogn elements.

Definition: Two blocks have the same type if they have the
same sequence of 1 differences between consecutive elements.

B; 1314131456 |5{6 B; 7181 71819110[910
#1-1+1+1+1 -1 +1 +1-1+1+1+1 -1 +1

Observation: The answer to the same RMQ query on two
blocks of the same type is the same.

How many block types are there?

e Encode a block by its sequence of differences.

e At most 2¢1°8™ = n¢ block types.

A Special Case

Logically split A into ©(=-) “blocks” of d = clogn elements.

logn

A A’

e Compute A’ and build the “Sparse Table” oracle © on A’.
e Size/time: O(n)

A Special Case

Logically split A into ©(=-) “blocks” of d = clogn elements.

logn

A A’

e Compute A’ and build the “Sparse Table” oracle © on A’.
e Size/time: O(n)
e For each type t of the at most n¢ block types:

e Build the RMQ oracle O; with quadratic preprocessing
time/size and constant query time.
e Size/time: O(nlog” n)

A Special Case

Logically split A into ©(=-) “blocks” of d = clogn elements.

logn

A

e Compute A’ and build the “Sparse Tab
e Size/time: O(n)

e For each type t of the at most n¢ block

A/

e’ oracle ©® on A’.

types:

e Build the RMQ oracle O; with quadratic preprocessing

time/size and constant query time.
e Size/time: O(nlog” n)

e For each block B;, store the index ¢; of
o Size/time: O(5, - logn®) = O(n).

Its type.

A Special Case

Logically split A into ©(+2
A

logn

e Compute A’ and build the “Sparse Tab
e Size/time: O(n)
e For each type t of the at most n¢ block

) “blocks” of d = clogn elements.

A/

e’ oracle ©® on A’.

types:

e Build the RMQ oracle O; with quadratic preprocessing

time/size and constant query time.
e Size/time: O(nlog” n)

e For each block B;, store the index ¢; of
o Size/time: O(5, - logn®) = O(n).

Its type.

Total size/time: O(n + n¢log” n) For (constant) ¢ < 1: O(n)

A Special Case

<.
~.»

Answering a query: A’
To answer RMQ(4, 7):

e If 2 and j are in the same block By: query O,

A Special Case
0

—
A
+ +.
(J
Answering a query: A’

To answer RMQ(4, 7):
e If 2 and j are in the same block By: query O,

o If i € By, and j € Bj, with £ > h, answer with the position
of the smallest element among those returned by:

1) A query to O;, to get the minimum in Ali : hd]

A Special Case
0

@
— —
A
: +.
(J
Answering a query: A’

To answer RMQ(4, 7):

e If 2 and j are in the same block By: query O,

o If i € By, and j € Bj, with £ > h, answer with the position
of the smallest element among those returned by:

1) A query to O, to get the minimum in A
2) A query to O, to get the minimum in A

1 : hd]

(k—1)d+1: j]

A Special Case
0

@
— —

A

b o

i P J

. . A/

Answering a query:
To answer RMQ(4, 7): ©

e If 2 and j are in the same block By: query O,

o If i € By, and j € Bj, with £ > h, answer with the position
of the smallest element among those returned by:

1) Ac
2) A g

3) Ag

uery to O, to get the minimum in A

uery to O, to get the minimum in A

1 : hd]
(k—1)d+1: j]

uery to O to get the minimum A|hd -

-1 (k—1)d]

A Special Case
0

@
1 1

A

b o

i P J

. . A/

Answering a query:
To answer RMQ(4, 7): © Time: O(1)

e If 2 and j are in the same block By: query O,

o If i € By, and j € Bj, with £ > h, answer with the position
of the smallest element among those returned by:

1) Ac
2) A g

3) Ag

uery to O, to get the minimum in A

uery to O, to get the minimum in A

1 : hd]
(k—1)d+1: j]

uery to O to get the minimum A|hd -

-1 (k—1)d]

Preprocessing
Time

RMQ Solutions so far

Query Time

O

(n
O(1
(1

O

)
)
)
O(1)

O(logn)
O(1)

Notes

Sparse Table

Preprocessing
Time

RMQ Solutions so far

Query Time

O

(n
O(1
(1

O

)
)
)
O(1)
O(logn)
O(1)
O(1)

Notes

Sparse Table

+1 RMQ

O(nlogn)
O(n)
O(nloglogn)
O(n)

What about the genera

Preprocessing
Time

O(n?)
O(n?)
O(nlogn)
O(n)
O(nloglogn)
O(n)

RMQ Solutions so far

Query Time

O

n

(
O(1
(

O

1

)
)
)
O(1)
O(logn)
O(1)
O(1)

case”’

Notes

Sparse Table

+1 RMQ

The General Case

| east Common
Ancestor Oracle

Linear-time reduction
(using Euler tours)

+1 RMQ Oracle

Preprocessing / size O(n).
Query time O(1).

The General Case

Oracle

General RMQ

y

Linear-time reduction
(using Cartesian trees)

Least Com
Ancestor O

mon
racle

y

Linear-time reduction
(using Euler tours)

+1 RMQ Oracle

Preprocessing /
Query time

size O(n).
O(1).

Cartesian Trees

1 2 3 4 5 6 7 8 9 10

81215712193 |4|6

Cartesian Trees

1 2 3 45 6 7 8 9 10
A |8[2]5]|7[2]1]9|3]4]6

sl2]5][7]2] (6) [9]3]4]6

e [he root r of the Cartesian tree is the index ¢ of a
minimum element a; of A

Cartesian Trees

1 2 3 45 6 7 8 9 10
A |8[2]5]|7[2]1]9|3]4]6

e [he root r of the Cartesian tree is the index ¢ of a
minimum element a; of A

e The left and right subtrees r are the Cartesian trees of
All :i—1] and Ali + 1 : n] (if not empty).

Cartesian Trees

1 2 3 45 6 7 8 9 10
A |8[2]5]|7[2]1]9|3]4]6

Cartesian Trees

1 2 3 45 6 7 8 9 10
A |8[2]5]|7[2]1]9|3]4]6

Cartesian Trees

1 2 3 45 6 7 8 9 10
A |8[2]5]|7[2]1]9|3]4]6

Cartesian Trees

1 2 3 4 5 6 7 8 9 10

A [8]215]|7]12]1]9]3]4]6

Cartesian Trees

1 2 3 4 5 6 7 8 9 10

A [8]215]|7]12]1]9]3]4]6

Observation: A symmetric visit of T4 visits the nodes in increasing order

Constructing a Cartesian Tree

9 10
416

1 2 3 45 6 7 8
A |812|5]7]2]1]9]3

(2)
ORNE)

Constructing a Cartesian Tree

9 10
416

1 2 3 45 6 7 8
A |812|5]7]2]1]9]3

(2)
ORNE)
&

The vertex corresponding to a;,1 must belong to the
rightmost path of the Cartesian tree of A[l : 1].

Constructing a Cartesian Tree

9 10
416

1 2 3 45 6 7 8
A |812|5]7]2]1]9]3

The vertex corresponding to a;,1 must belong to the
rightmost path of the Cartesian tree of A[l : 1].

Constructing a Cartesian Tree

9 10
416

1 2 3 45 6 7 8
A |812|5]7]2]1]9]3

The vertex corresponding to a;,1 must belong to the
rightmost path of the Cartesian tree of A[l : 1].

Constructing a Cartesian Tree

9 10
416

1 2 3 45 6 7 8
A |812|5]7]2]1]9]3

The vertex corresponding to a;,1 must belong to the
rightmost path of the Cartesian tree of A[l : 1].

Constructing a Cartesian Tree

9 10
416

1 2 3 45 6 7 8
A |8]2|5]7]2]1]9]3

The vertex corresponding to a;,1 must belong to the
rightmost path of the Cartesian tree of A[l : 1].

Constructing a Cartesian Tree

9 10
416

1 2 3 45 6 7 8
A |812|5]7]2]1]9]3

The vertex corresponding to a;,1 must belong to the
rightmost path of the Cartesian tree of A[l : 1].

Constructing a Cartesian Tree

9 10
416

1 2 3 45 6 7 8
A |812|5]7]2]1]9]3

The vertex corresponding to a;,1 must belong to the
rightmost path of the Cartesian tree of A[l : 1].

Constructing a Cartesian Tree

9 10
416

1 2 3 45 6 7 8
A [812|5]7]2]1]9]3

The vertex corresponding to a;,1 must belong to the
rightmost path of the Cartesian tree of A[l : 1].

Constructing a Cartesian Tree

9 10
416

1 2 3 45 6 7 8
A [812|5]7]2]1]9]3

The vertex corresponding to a;,1 must belong to the
rightmost path of the Cartesian tree of A[l : 1].

Constructing a Cartesian Tree

9 10
416

1 2 3 45 6 7 8
A [812|5]7]2]1]9]3

The vertex corresponding to a;,1 must belong to the
rightmost path of the Cartesian tree of A[l : 1].

Constructing a Cartesian Tree
U 9

&~

L @ u
@ w2

e When a new vertex a; is inserted, it is compared with
1 + n; vertices ug, uq,...,uy,, on the rightmost path of 7T

Constructing a Cartesian Tree
(2)
(1) (5) a
@) w
() us

e When a new vertex a; is inserted, it is compared with
1 + n; vertices ug, uq,...,uy,, on the rightmost path of 7T

o After a; is inserted, all vertices uy,...,u,, will leave the
rightmost path of T' (and will never join the path again).

Constructing a Cartesian Tree
(2)

L ® @
8) w
@ v

e When a new vertex a; is inserted, it is compared with
1 + n; vertices ug, uq,...,uy,, on the rightmost path of 7T

o After a; is inserted, all vertices uy,...,u,, will leave the
rightmost path of T' (and will never join the path again).

e Total number of comparisons:

e (I +m)=n+3 m=n+0(n)=0(n).

Cartesian Trees and RMQs

1 2 3 45 6 7 8 9 10
A |8[2]5]|7]2]1]9|3[4|6

e Let 7" be the Cartesian tree of A.
e A[RMQ(¢,7)] = A[LCAT(4,])]

Cartesian Trees and RMQs

1 2 3 45 6 7 8 9 10
A |8[2]5]|7]2]1]9|3[4]6

e Let 7" be the Cartesian tree of A.
e A[RMQ(¢,7)] = A[LCAT(4,])]

Cartesian Trees and RMQs

Proof of A[LCA7(i,)] > A[RMQ(, §)]

o Let u =LCA7(2,7), Vi and V,. be the set vertices in the
left and right subtree of u, respectively.

e i € V,U{u} and j € V. U{u}
e 1 <u<y
e Alu] > min Ali : j] = AIRMQ(7, j)]
(W)
@

Cartesian Trees and RMQs

Proof of A[LCAr(7,75)] < AIRMQ(%, j)]

e All vertices k in the subtree T" of T rooted in LCA7 (7, 7)
are such that A[k] > A[LCA7(i,7)]

Cartesian Trees and RMQs

Proof of A[LCAr(7,75)] < AIRMQ(%, j)]

e All vertices k in the subtree T" of T rooted in LCA7 (7, 7)
are such that A[k] > A[LCA7(i,7)]

e All subtrees of T’ correspond to contiguous subarrays of A

Cartesian Trees and RMQs
Proof of A[LCAr(i,j)] < A[RMQ(4, j)]

e All vertices k in the subtree T" of T rooted in LCA7 (7, 7)
are such that A[k] > A[LCA7(i,7)]

e All subtrees of T’ correspond to contiguous subarrays of A

e Sincet,j €T’ all ke d{i,...,7} also belong to T”

Cartesian Trees and RMQs
Proof of A[LCAr(i,j)] < A[RMQ(4, j)]

e All vertices k in the subtree T" of T rooted in LCA7 (7, 7)
are such that A[k] > A[LCA7(i,7)]

e All subtrees of T’ correspond to contiguous subarrays of A
e Sincet,j €T’ all ke d{i,...,7} also belong to T”
e RMQ(i,) € {i,..., 7} = A[RMQ(¢, j)| = A[LCAr (i, j)]

The General Case

Oracle

General RMQ

y

Linear-time reduction
(using Cartesian trees)

Least Com
Ancestor O

mon
racle

y

Linear-time reduction
(using Euler tours)

+1 RMQ Oracle

Preprocessing /
Query time

size O(n).
O(1).

RMQ Solutions: Recap

Preprocessing
Time

O(n)
O(n?)
O(n?)
O(nlogn)
O(n)
O(nloglogn)
O(n)

Query Time

O

(n
O(1
(1

O

)
)
)
O(1)
O(logn)
O(1)
O(1)

Notes

Sparse Table

+1 RMQ

RMQ Solutions: Recap

Preprocessing
Time

O(n)
O(n?)
O(n?)
O(nlogn)
O(n)
O(nloglogn)
O(n)
O(n)

Query Time

O

n

(n)
O(1)
(1)

)

O

1
O(1
O(logn)

O(1)
O(1)
O(1)

Notes

Sparse Table

+1 RMQ

General case

