Level Ancestors

Given T, design a data structure that is able to preprocess T to answer level ancestors queries.

Given T, design a data structure that is able to preprocess T to answer level ancestors queries.

Trivial solutions:

n=# of nodes

Given T, design a data structure that is able to preprocess T to answer level ancestors queries.

Trivial solutions:

n=# of nodes

Given T, design a data structure that is able to preprocess T to answer level ancestors queries.

Trivial solutions:

n = # of nodes

Given T, design a data structure that is able to preprocess T to answer level ancestors queries.

Trivial solutions:

n=# of nodes

Given T, design a data structure that is able to preprocess T to answer level ancestors queries.

Trivial solutions:

n = # of nodes

Given T, design a data structure that is able to preprocess T to answer level ancestors queries.

Trivial solutions:

n = # of nodes

Given T, design a data structure that is able to preprocess T to answer level ancestors queries.

Trivial solutions:

n=# of nodes

- Preprocessing time: none Size: O(n) Query time: O(n)
- Preprocessing time: $O(n^3)$ Size: $O(n^2)$ Query time: O(1) (precompute the answer to all possible queries)

Given T, design a data structure that is able to preprocess T to answer level ancestors queries.

Trivial solutions:

$$n=\#$$
 of nodes

- Preprocessing time: none Size: O(n) Query time: O(n)
- ullet Preprocessing time: $O(n^3)$ Size: $O(n^2)$ Query time: O(1)
- Preprocessing time: $O(n^2)$ Size: $O(n^2)$ Query time: O(1)

$$LA(v,d) = \begin{cases} v & \text{if } d = d_v \\ LA(parent(v), d) & \text{if } d < d_v \end{cases}$$

For each vertex v and $\ell = 0, 1, \ldots, \lfloor \log d_v \rfloor$, store:

$$J(v,\ell) = \mathsf{LA}(v,d_v - 2^{\ell})$$

For each vertex v and $\ell=0,1,\ldots,\lfloor \log d_v \rfloor$, store:

$$J(v,\ell) = \mathsf{LA}(v,d_v - 2^{\ell})$$

For each vertex v and $\ell=0,1,\ldots,\lfloor \log d_v \rfloor$, store:

$$J(v,\ell) = \mathsf{LA}(v,d_v - 2^{\ell})$$

For each vertex v and $\ell = 0, 1, \ldots, \lfloor \log d_v \rfloor$, store:

$$J(v,\ell) = \mathsf{LA}(v,d_v - 2^{\ell})$$

For each vertex v and $\ell=0,1,\ldots,\lfloor \log d_v \rfloor$, store:

$$J(v,\ell) = \mathsf{LA}(v,d_v - 2^\ell)$$

For each vertex v and $\ell = 0, 1, \ldots, \lfloor \log d_v \rfloor$, store:

$$J(v,\ell) = \mathsf{LA}(v,d_v - 2^\ell)$$

Total size: $O(n \log h) = O(n \log n)$

Jump Pointers: Query

$$0 < d_v - d = 2^{\ell_k} + 2^{\ell_{k-1}} + \dots + 2^{\ell_1}$$

$$\ell_{i+1} > \ell_i$$

$$\mathsf{LA}(v, d) = J(\dots J(J(v, \ell_k), \ell_{k-1}), \dots, \ell_1)$$

Number of accessed pointers: $O(\log h) = O(\log n)$

Jump Pointers: Construction

With a DFS visit of T:

- ullet Maintain a stack S that stores all the ancestors of the current vertex v of the visit
- S can be updated in O(1) per traversed edge
- When vertex v is visited, its ancestor at depth d in T is the (d_v-d) -th vertex from the top of the stack

Jump Pointers: Construction

With a DFS visit of T:

- ullet Maintain a stack S that stores all the ancestors of the current vertex v of the visit
- S can be updated in O(1) per traversed edge
- When vertex v is visited, its ancestor at depth d in T is the (d_v-d) -th vertex from the top of the stack

Or using dynamic programming:

$$J(v,\ell) = \begin{cases} \mathsf{parent}(v) & \text{if } \ell = 0 \\ J(J(v,\ell-1),\ell-1) & \text{if } \ell > 0 \end{cases}$$

Jump Pointers: Construction

With a DFS visit of T:

- ullet Maintain a stack S that stores all the ancestors of the current vertex v of the visit
- S can be updated in O(1) per traversed edge
- When vertex v is visited, its ancestor at depth d in T is the (d_v-d) -th vertex from the top of the stack

Or using dynamic programming:

$$J(v,\ell) = \begin{cases} \mathsf{parent}(v) & \text{if } \ell = 0 \\ J(J(v,\ell-1),\ell-1) & \text{if } \ell > 0 \end{cases}$$

Time complexity: $O(n + n \log h) = O(n \log n)$

Solutions so far

Size	Preprocessing Time	Query Time	Notes
O(n)	_	O(n)	
$O(n^2)$	$O(n^3)$	O(1)	
$O(n^2)$	$O(n^2)$	O(1)	

Solutions so far

Size	Preprocessing Time	Query Time	Notes
O(n)	_	O(n)	
$O(n^2)$	$O(n^3)$	O(1)	
$O(n^2)$	$O(n^2)$	O(1)	
$O(n \log n)$	$O(n \log n)$	$O(\log n)$	Jump Pointers

Solutions so far

Size	Preprocessing Time	Query Time	Notes
O(n)	_	O(n)	
$O(n^2)$	$O(n^3)$	O(1)	
$O(n^2)$	$O(n^2)$	O(1)	
$O(n \log n)$	$O(n \log n)$	$O(\log n)$	Jump Pointers

We want to get rid of the $\log n$ factors!

- ullet Select one of the longest root-to-leaf paths P in T
- ullet Select paths recursively from each the tree of the forest $T\setminus P$

- ullet Select one of the longest root-to-leaf paths P in T
- ullet Select paths recursively from each the tree of the forest $T\setminus P$

- ullet Select one of the longest root-to-leaf paths P in T
- ullet Select paths recursively from each the tree of the forest $T\setminus P$

- ullet Select one of the longest root-to-leaf paths P in T
- ullet Select paths recursively from each the tree of the forest $T\setminus P$

- ullet Select one of the longest root-to-leaf paths P in T
- ullet Select paths recursively from each the tree of the forest $T\setminus P$

For each path $P_v = \langle v = u_0, \dots, u_k \rangle \in \mathcal{D}$:

- Store an array A_v of length k+1 where $A_v[i]$, $i=0,\ldots,k$, contains (a reference to) u_i
- Each u_i stores a reference $\tau(u_i)$ to v.

For each path $P_v = \langle v = u_0, \dots, u_k \rangle \in \mathcal{D}$:

- Store an array A_v of length k+1 where $A_v[i]$, $i=0,\ldots,k$, contains (a reference to) u_i
- Each u_i stores a reference $\tau(u_i)$ to v.

Total space:
$$\sum_{P_v \in \mathcal{D}} O(1 + |P_v|) = O(n)$$

- Let $v = \tau(u)$
- If $d \ge d_v$: return $A_v[d d_v]$.

- Let $v = \tau(u)$
- If $d \ge d_v$: return $A_v[d d_v]$.
- If $d < d_v$: return LA(parent(v), d). (recursively)

- Let $v = \tau(u)$
- If $d \ge d_v$: return $A_v[d d_v]$.
- If $d < d_v$: return LA(parent(v), d). (recursively)

- Let $v = \tau(u)$
- If $d \ge d_v$: return $A_v[d d_v]$.
- If $d < d_v$: return LA(parent(v), d). (recursively)

To report LA(u, d):

- Let $v = \tau(u)$
- If $d \ge d_v$: return $A_v[d d_v]$.
- If $d < d_v$: return LA(parent(v), d). (recursively)

Time: $O(\#\text{recursive calls}) = O(\#\text{paths in } \mathcal{D} \text{ from } v \text{ to the root}).$

Claim: The number of distinct paths in \mathcal{D} encountered in the path P from v to the root in T is $O(\sqrt{n})$.

Claim: The number of distinct paths in \mathcal{D} encountered in the path P from v to the root in T is $O(\sqrt{n})$.

Proof: Let $v = v_0, v_1, \dots, v_k$ be the vertices at which a new path of \mathcal{D} is encountered while traversing P.

• Let P_i be the path of \mathcal{D} that contains v_i .

Claim: The number of distinct paths in \mathcal{D} encountered in the path P from v to the root in T is $O(\sqrt{n})$.

Proof: Let $v = v_0, v_1, \dots, v_k$ be the vertices at which a new path of \mathcal{D} is encountered while traversing P.

- Let P_i be the path of \mathcal{D} that contains v_i .
- Let h(v) be the height v in T (i.e., the length of the longest path from v to a leaf of T).

Claim: The number of distinct paths in \mathcal{D} encountered in the path P from v to the root in T is $O(\sqrt{n})$.

Proof: Let $v = v_0, v_1, \dots, v_k$ be the vertices at which a new path of \mathcal{D} is encountered while traversing P.

- Let P_i be the path of \mathcal{D} that contains v_i .
- Let h(v) be the height v in T (i.e., the length of the longest path from v to a leaf of T).
- By the long-path decomposition, $|P_i| \ge h(v_i) \ge i$.

Claim: The number of distinct paths in \mathcal{D} encountered in the path P from v to the root in T is $O(\sqrt{n})$.

Proof: Let $v = v_0, v_1, \dots, v_k$ be the vertices at which a new path of \mathcal{D} is encountered while traversing P.

- Let P_i be the path of \mathcal{D} that contains v_i .
- Let h(v) be the height v in T (i.e., the length of the longest path from v to a leaf of T).
- By the long-path decomposition, $|P_i| \ge h(v_i) \ge i$.

$$n \ge \left| \bigcup_{i=1}^k P_i \right| \ge \sum_{i=1}^k i \ge \frac{k^2}{2} \implies \sqrt{2n} \ge k.$$

Claim: The number of distinct paths in \mathcal{D} encountered in the path P from v to the root in T is $O(\sqrt{n})$.

Proof: Let $v = v_0, v_1, \dots, v_k$ be the vertices at which a new path of \mathcal{D} is encountered while traversing P.

- Let P_i be the path of \mathcal{D} that contains v_i .
- Let h(v) be the height v in T (i.e., the length of the longest path from v to a leaf of T).
- By the long-path decomposition, $|P_i| \ge h(v_i) \ge i$.

$$n \ge \left| \bigcup_{i=1}^k P_i \right| \ge \sum_{i=1}^k i \ge \frac{k^2}{2} \implies \sqrt{2n} \ge k.$$

Time: $O(\sqrt{n})$

Is this tight?

 v_3

Time: $\Omega(\sqrt{n})$

Size	Preprocessing Time	Query Time	Notes
O(n)	_	O(n)	
$O(n^2)$	$O(n^3)$	O(1)	
$O(n^2)$	$O(n^2)$	O(1)	
$O(n \log n)$	$O(n \log n)$	$O(\log n)$	Jump Pointers

Size	Preprocessing Time	Query Time	Notes
O(n)	_	O(n)	
$O(n^2)$	$O(n^3)$	O(1)	
$O(n^2)$	$O(n^2)$	O(1)	
$O(n \log n)$	$O(n \log n)$	$O(\log n)$	Jump Pointers
O(n)	O(n)	$O(\sqrt{n})$	Long Path Dec.

Let $\eta(P_v)$ be the number of vertices of the path $P_v \in \mathcal{D}$.

Let $\eta(P_v)$ be the number of vertices of the path $P_v \in \mathcal{D}$.

Let $\eta(P_v)$ be the number of vertices of the path $P_v \in \mathcal{D}$.

Let $\eta(P_v)$ be the number of vertices of the path $P_v \in \mathcal{D}$.

For each ladder $L_v = \langle v' = u_0, u_1, \dots, v = u_j, \dots, u_k \rangle$:

- Store, in v, an array B_v of length k+1 where $B_v[i]$ contains (a reference to) u_i
- Each u_i with $i \geq j$ stores a reference $\tau(u_i)$ to v.

The length of B_v is at most twice the length of $A_v \implies$ the total size is still O(n).

For each ladder $L_v = \langle v' = u_0, u_1, \dots, v = u_j, \dots, u_k \rangle$:

- Store, in v, an array B_v of length k+1 where $B_v[i]$ contains (a reference to) u_i
- Each u_i with $i \geq j$ stores a reference $\tau(u_i)$ to v.

The length of B_v is at most twice the length of $A_v \implies$ the total size is still O(n).

To report LA(u, d):

- Let $v = \tau(u)$ and $v' = B_v[0]$.
- If $d \ge d_{v'}$: return $B_v[d d_{v'}]$.
- If $d < d_{v'}$: return LA(v', d). (recursively)

How many recursive calls?

How many recursive calls?

ullet If we recurse, L_v cannot contain the root of T.

$$|L_v| = \eta(L_v) - 1 = 2\eta(P_v) - 1$$

• Since $u \in P_v$ we have:

$$h(v') \ge |L_v| = 2\eta(P_v) - 1 \ge 2(1 + h(u)) - 1 \ge 2h(u) + 1$$

• The height of the queried vertex doubles at every iteration $\Longrightarrow O(\log n)$ iterations.

Size	Preprocessing Time	Query Time	Notes
O(n)	_	O(n)	
$O(n^2)$	$O(n^3)$	O(1)	
$O(n^2)$	$O(n^2)$	O(1)	
$O(n \log n)$	$O(n \log n)$	$O(\log n)$	Jump Pointers
O(n)	O(n)	$O(\sqrt{n})$	Long Path Dec.

Size	Preprocessing Time	Query Time	Notes
O(n)	_	O(n)	
$O(n^2)$	$O(n^3)$	O(1)	
$O(n^2)$	$O(n^2)$	O(1)	
$O(n \log n)$	$O(n \log n)$	$O(\log n)$	Jump Pointers
O(n)	O(n)	$O(\sqrt{n})$	Long Path Dec.
O(n)	O(n)	$O(\log n)$	+ Ladders

$$0 < d_u - d = 2^{\ell_k} + 2^{\ell_{k-1}} + \dots + 2^{\ell_1}$$

To report LA(u, d):

- Let $w = J(u, \ell_k)$, $v = \tau(w)$ and $v' = B_v[0]$.
 - Return $B_v[d_{v'}-d]$.

Query time: O(1)

Jump Pointers

Space usage: $O(n + n \log n) = O(n \log n)$

Ladders

Jump Pointers

Space usage:
$$O(n + n \log n) = O(n \log n)$$

Ladders

A trick to reduce space:

- Only store jump pointers $J(v,\ell)$ in the leaves v of T.
- For each node u of T, store a reference to a leaf λ_u in the subtree of T rooted at u.
- $\mathsf{LA}(u,d) = \mathsf{LA}(\lambda_u,d)$

Jump Pointers

Space usage:
$$O(n + n \log n) = O(n \log n)$$

Ladders

A trick to reduce space:

- Only store jump pointers $J(v,\ell)$ in the leaves v of T.
- For each node u of T, store a reference to a leaf λ_u in the subtree of T rooted at u.
- $\mathsf{LA}(u,d) = \mathsf{LA}(\lambda_u,d)$

Space usage: $O(n + L \log n)$, where L = #leaves of T.

Size	Preprocessing Time	Query Time	Notes
O(n)	_	O(n)	
$O(n^2)$	$O(n^3)$	O(1)	
$O(n^2)$	$O(n^2)$	O(1)	
$O(n \log n)$	$O(n \log n)$	$O(\log n)$	Jump Pointers
O(n)	O(n)	$O(\sqrt{n})$	Long Path Dec.
O(n)	O(n)	$O(\log n)$	+ Ladders

Size	Preprocessing Time	Query Time	Notes
O(n)	_	O(n)	
$O(n^2)$	$O(n^3)$	O(1)	
$O(n^2)$	$O(n^2)$	O(1)	
$O(n \log n)$	$O(n \log n)$	$O(\log n)$	Jump Pointers
O(n)	O(n)	$O(\sqrt{n})$	Long Path Dec.
O(n)	O(n)	$O(\log n)$	+ Ladders
$O(n + L\log n)$	$O(n + L \log n)$	O(1)	+ Ladders, JP

Size	Preprocessing Time	Query Time	Notes
O(n)	_	O(n)	
$O(n^2)$	$O(n^3)$	O(1)	
$O(n^2)$	$O(n^2)$	O(1)	
$O(n \log n)$	$O(n \log n)$	$O(\log n)$	Jump Pointers
O(n)	O(n)	$O(\sqrt{n})$	Long Path Dec.
O(n)	O(n)	$O(\log n)$	+ Ladders
$O(n + L \log n)$	$O(n + L \log n)$	O(1)	+ Ladders, JP

If only we had $O(\frac{n}{\log n})$ leaves...

Find the set M of all maximally deep vertices with at least $x=\frac{1}{4}\log n$ descendants.

Find the set M of all maximally deep vertices with at least $x=\frac{1}{4}\log n$ descendants.

Find the set M of all maximally deep vertices with at least $x=\frac{1}{4}\log n$ descendants.

Split T into a macro-tree T' containing all the ancestors of the vertices in M and several micro-trees in $T \setminus T'$.

Find the set M of all maximally deep vertices with at least $x=\frac{1}{4}\log n$ descendants.

Split T into a macro-tree T' containing all the ancestors of the vertices in M and several micro-trees in $T \setminus T'$.

Macro-Micro trees

Find the set M of all maximally deep vertices with at least $x=\frac{1}{4}\log n$ descendants.

Split T into a macro-tree T' containing all the ancestors of the vertices in M and several micro-trees in $T \setminus T'$.

How many leaves in T'? The leaves of T' are the vertices in M.

Each vertex in M has at least $\frac{1}{4} \log n$ descendants in T.

$$|M| \cdot \frac{1}{4} \log n \le n \implies |M| = O(\frac{n}{\log n}).$$

Build the previous LA oracle \mathcal{O}' on T'.

Size/build time: $O(n+|M|\log n) = O(n)$. Query time: O(1).

How many different types of micro-trees?

A rooted tree on $\leq m$ vertices can be uniquely represented by an array of 2(m-1) bits.

How many different types of micro-trees?

A rooted tree on $\leq m$ vertices can be uniquely represented by an array of 2(m-1) bits.

How many different types of micro-trees?

A rooted tree on $\leq m$ vertices can be uniquely represented by an array of 2(m-1) bits.

How many different types of micro-trees?

A rooted tree on $\leq m$ vertices can be uniquely represented by an array of 2(m-1) bits.

How many different types of micro-trees?

A rooted tree on $\leq m$ vertices can be uniquely represented by an array of 2(m-1) bits.

How many different types of micro-trees?

A rooted tree on $\leq m$ vertices can be uniquely represented by an array of 2(m-1) bits.

How many different types of micro-trees?

A rooted tree on $\leq m$ vertices can be uniquely represented by an array of 2(m-1) bits.

How many different types of micro-trees?

A rooted tree on $\leq m$ vertices can be uniquely represented by an array of 2(m-1) bits.

How many different types of micro-trees?

A rooted tree on $\leq m$ vertices can be uniquely represented by an array of 2(m-1) bits.

How many different types of micro-trees?

A rooted tree on $\leq m$ vertices can be uniquely represented by an array of 2(m-1) bits.

How many different types of micro-trees?

A rooted tree on $\leq m$ vertices can be uniquely represented by an array of 2(m-1) bits.

How many different types of micro-trees?

A rooted tree on $\leq m$ vertices can be uniquely represented by an array of 2(m-1) bits.

Perform a DFS traversal. Write 0 when an edge is traversed towards the leaves, and 1 when it is traversed towards the root.

Pad with 1s.

How many different types of micro-trees?

A rooted tree on $\leq m$ vertices can be uniquely represented by an array of 2(m-1) bits.

At most $2^{2(m-1)} < 2^{2m}$ trees with up to m vertices $\Longrightarrow O(2^{2\frac{1}{4}\log n}) = O(\sqrt{n})$ micro-tree types.

For each of the $O(\sqrt{n})$ distinct micro-trees types T_i

• Build the trival oracle O_i with size/preprocessing time $O(|T_i|^2)$ and query time O(1).

For each of the $O(\sqrt{n})$ distinct micro-trees types T_i

• Build the trival oracle O_i with size/preprocessing time $O(|T_i|^2)$ and query time O(1).

For each vertex u of T that belongs to a micro tree:

- Store, in u, the index i of the type of its micro-tree.
- Store, in u, the vertex $\mu(u)$ in T_i corresponding to u.
- Store, in u, the root $\rho(u)$ of its micro-tree.

For each of the $O(\sqrt{n})$ distinct micro-trees types T_i

• Build the trival oracle O_i with size/preprocessing time $O(|T_i|^2)$ and query time O(1).

For each vertex u of T that belongs to a micro tree:

- Store, in u, the index i of the type of its micro-tree.
- Store, in u, the vertex $\mu(u)$ in T_i corresponding to u.
- Store, in u, the root $\rho(u)$ of its micro-tree.

Total size/time: $O(\sqrt{n}) \cdot O(\log^2 n) + O(n) = O(n)$.

Answering a Query

To answer LA(u, d):

- If u is in the macro tree T': query \mathcal{O}' for $\mathsf{LA}(u,d)$.
- If u is in a micro-tree T'':
 - If $d < d_{\rho(u)}$: query \mathcal{O}' for LA(parent($\rho(u)$), d).
 - Otherwise:
 - ullet Let i be the type of the micro-tree containing u.
 - Query O_i for $LA(\mu(u), d d_{\rho(u)})$. (and map it back to a vertex in T'')

Query time: O(1).

Solutions so far

Size	Preprocessing Time	Query Time	Notes
O(n)	_	O(n)	
$O(n^2)$	$O(n^3)$	O(1)	
$O(n^2)$	$O(n^2)$	O(1)	
$O(n \log n)$	$O(n \log n)$	$O(\log n)$	Jump Pointers
O(n)	O(n)	$O(\sqrt{n})$	Long Path Dec.
O(n)	O(n)	$O(\log n)$	+ Ladders
$O(n + L\log n)$	$O(n + L \log n)$	O(1)	+ Ladders, JP

Solutions so far

Size	Preprocessing Time	Query Time	Notes
O(n)	_	O(n)	
$O(n^2)$	$O(n^3)$	O(1)	
$O(n^2)$	$O(n^2)$	O(1)	
$O(n \log n)$	$O(n \log n)$	$O(\log n)$	Jump Pointers
O(n)	O(n)	$O(\sqrt{n})$	Long Path Dec.
O(n)	O(n)	$O(\log n)$	+ Ladders
$O(n + L \log n)$	$O(n + L \log n)$	O(1)	+ Ladders, JP
O(n)	O(n)	O(1)	+ Macro-Micro trees