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Definition: Let v be a vertex at depth dv in T . For d ≤ dv, a
level ancestor query LA(v, d) on a vertex v asks to report the
ancestor of v at depth d.
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The Problem

Given T , design a data structure that is able to preprocess T
to answer level ancestors queries.
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The Problem

Given T , design a data structure that is able to preprocess T
to answer level ancestors queries.

Trivial solutions:

• Preprocessing time: none Size: O(n) Query time: O(n)

• Preprocessing time: O(n3) Size: O(n2) Query time: O(1)

• Preprocessing time: O(n2) Size: O(n2) Query time: O(1)

LA(v, d) =

(
v if d = dv

LA(parent(v), d) if d < dv

n = # of nodes
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Jump Pointers: Query
0
1
2
3
4
5
6
7
8
9

LA(v, d) = J(. . . J(J(v, ℓk), ℓk−1), . . . , ℓ1)

0 < dv − d = 2ℓk + 2ℓk−1 + · · ·+ 2ℓ1

4

2

1

J(J(J(v, 4), 2), 1)

Number of accessed pointers: O(log h) = O(log n)

ℓi+1 > ℓi



Jump Pointers: Construction

• Maintain a stack S that stores all the ancestors of the
current vertex v of the visit

• S can be updated in O(1) per traversed edge

• When vertex v is visited, its ancestor at depth d in T is the
(dv − d)-th vertex from the top of the stack

With a DFS visit of T :
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• Maintain a stack S that stores all the ancestors of the
current vertex v of the visit

• S can be updated in O(1) per traversed edge

• When vertex v is visited, its ancestor at depth d in T is the
(dv − d)-th vertex from the top of the stack

Time complexity: O(n+ n log h) = O(n log n)

Or using dynamic programming:

J(v, ℓ) =

(
parent(v) if ℓ = 0

J(J(v, ℓ− 1), ℓ− 1) if ℓ > 0

With a DFS visit of T :
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O(n2) O(1)O(n2)

Notes

Jump Pointers

We want to get rid of the log n factors!



Long Path Decomposition
0
1
2
3
4
5
6
7
8
9

Partitions T into a collection of paths D. Recursively defined:

• Select one of the longest root-to-leaf paths P in T

• Select paths recursively from each the tree of the forest T \P



Long Path Decomposition
0
1
2
3
4
5
6
7
8
9

Partitions T into a collection of paths D. Recursively defined:

• Select one of the longest root-to-leaf paths P in T

• Select paths recursively from each the tree of the forest T \P



Long Path Decomposition
0
1
2
3
4
5
6
7
8
9

Partitions T into a collection of paths D. Recursively defined:

• Select one of the longest root-to-leaf paths P in T

• Select paths recursively from each the tree of the forest T \P



Long Path Decomposition
0
1
2
3
4
5
6
7
8
9

Partitions T into a collection of paths D. Recursively defined:

• Select one of the longest root-to-leaf paths P in T

• Select paths recursively from each the tree of the forest T \P



Long Path Decomposition
0
1
2
3
4
5
6
7
8
9

Partitions T into a collection of paths D. Recursively defined:

• Select one of the longest root-to-leaf paths P in T

• Select paths recursively from each the tree of the forest T \P



Long Path Decomposition

For each path Pv = ⟨v = u0, . . . , uk⟩ ∈ D:

• Store an array Av of length k + 1 where Av[i], i = 0, . . . , k,
contains (a reference to) ui

• Each ui stores a reference τ(ui) to v.
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For each path Pv = ⟨v = u0, . . . , uk⟩ ∈ D:

• Store an array Av of length k + 1 where Av[i], i = 0, . . . , k,
contains (a reference to) ui

• Each ui stores a reference τ(ui) to v.

Total space:
P

Pv∈D O(1 + |Pv|) = O(n)

v = u0
u1

u2

uk

Pv
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Long Path Decomposition

To report LA(u, d):

• If d ≥ dv: return Av[d− dv].

• If d < dv: return LA(parent(v), d). (recursively)

Time: O(#recursive calls) = O(#paths in D from v to the root).

• Let v = τ(u)

d = 2
u

v
Pv



Long Path Decomposition

Claim: The number of distinct paths in D encountered in the
path P from v to the root in T is O(

√
n).



Long Path Decomposition

Claim: The number of distinct paths in D encountered in the
path P from v to the root in T is O(

√
n).

• Let Pi be the path of D that contains vi.

Proof: Let v = v0, v1, . . . , vk be the vertices at which
a new path of D is encountered while traversing P .

v0

v1

v2

v3

vk



Long Path Decomposition

Claim: The number of distinct paths in D encountered in the
path P from v to the root in T is O(

√
n).

• Let Pi be the path of D that contains vi.

Proof: Let v = v0, v1, . . . , vk be the vertices at which
a new path of D is encountered while traversing P .

v0

v1

v2

v3

vk

• Let h(v) be the height v in T (i.e., the length
of the longest path from v to a leaf of T ).



Long Path Decomposition

Claim: The number of distinct paths in D encountered in the
path P from v to the root in T is O(

√
n).

• Let Pi be the path of D that contains vi.

• By the long-path decomposition, |Pi| ≥ h(vi) ≥ i.

Proof: Let v = v0, v1, . . . , vk be the vertices at which
a new path of D is encountered while traversing P .

v0

v1

v2

v3

vk

• Let h(v) be the height v in T (i.e., the length
of the longest path from v to a leaf of T ).



Long Path Decomposition

Claim: The number of distinct paths in D encountered in the
path P from v to the root in T is O(

√
n).

• Let Pi be the path of D that contains vi.

• By the long-path decomposition, |Pi| ≥ h(vi) ≥ i.

Proof: Let v = v0, v1, . . . , vk be the vertices at which
a new path of D is encountered while traversing P .

n ≥
�����

k[

i=1

Pi

����� ≥
kX

i=1

i ≥ k2

2
=⇒

√
2n ≥ k.

v0

v1

v2

v3

vk

• Let h(v) be the height v in T (i.e., the length
of the longest path from v to a leaf of T ).



Long Path Decomposition

Claim: The number of distinct paths in D encountered in the
path P from v to the root in T is O(

√
n).

• Let Pi be the path of D that contains vi.

• By the long-path decomposition, |Pi| ≥ h(vi) ≥ i.

Proof: Let v = v0, v1, . . . , vk be the vertices at which
a new path of D is encountered while traversing P .

n ≥
�����

k[

i=1

Pi

����� ≥
kX

i=1

i ≥ k2

2
=⇒

√
2n ≥ k.

Time: O(
√
n) Is this tight?

v0

v1

v2

v3

vk

• Let h(v) be the height v in T (i.e., the length
of the longest path from v to a leaf of T ).



Long Path Decomposition

v

Time: Ω(
√
n)
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Long Path Decomposition + Ladders

For each ladder Lv = ⟨v′ = u0, u1, . . . , v = uj , . . . , uk⟩:
• Store, in v, an array Bv of length k + 1 where Bv[i]
contains (a reference to) ui

• Each ui with i ≥ j stores a reference τ(ui) to v.

The length of Bv is at most twice the length of Av =⇒ the
total size is still O(n).



Long Path Decomposition + Ladders

To report LA(u, d):

• If d ≥ dv′ : return Bv[d− dv′ ].

• If d < dv′ : return LA(v′, d). (recursively)

For each ladder Lv = ⟨v′ = u0, u1, . . . , v = uj , . . . , uk⟩:
• Store, in v, an array Bv of length k + 1 where Bv[i]
contains (a reference to) ui

• Each ui with i ≥ j stores a reference τ(ui) to v.

The length of Bv is at most twice the length of Av =⇒ the
total size is still O(n).

How many recursive calls?

• Let v = τ(u) and v′ = Bv[0].

v

v′

u



Long Path Decomposition + Ladders

• Since u ∈ Pv we have:

• If we recurse, Lv cannot contain the root of T .

• The height of the queried vertex doubles at every iteration
=⇒ O(log n) iterations.

How many recursive calls?

h(v′) ≥ |Lv| = 2η(Pv)− 1 ≥ 2(1 + h(u))− 1 ≥ 2h(u) + 1

|Lv| = η(Lv)− 1 = 2η(Pv)− 1 v

v′

u
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Long Path Dec. + Ladders + Jump Pointers

To report LA(u, d):

• Let w = J(u, ℓk), v = τ(w) and v′ = Bv[0].

0 < du − d = 2ℓk + 2ℓk−1 + · · ·+ 2ℓ1

• Return Bv[dv′ − d].

d = 1

u

v′

w
v

4

Query time: O(1)
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A trick to reduce space:

Space usage: O(n+ n log n) = O(n log n)|{z}
Ladders

Jump Pointersz }| {

• Only store jump pointers J(v, ℓ) in the leaves v of T .

• For each node u of T , store a reference to a leaf λu in the
subtree of T rooted at u.

• LA(u, d) = LA(λu, d)

Space usage: O(n+ L log n), where L = #leaves of T .
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Notes
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O(n) O(n) O(log n) + Ladders

+ Ladders, JPO(1)O(n+ L log n)O(n+ L log n)

If only we had O( n
log n ) leaves...



Macro-Micro trees



Macro-Micro trees

Find the set M of all maximally deep vertices with at least
x = 1

4 log n descendants.



Macro-Micro trees

Find the set M of all maximally deep vertices with at least
x = 1

4 log n descendants.

Example for x = 7



Macro-Micro trees

Find the set M of all maximally deep vertices with at least
x = 1

4 log n descendants.

Example for x = 7

Split T into a macro-tree T ′ containing all the ancestors of the
vertices in M and several micro-trees in T \ T ′.



Macro-Micro trees

Find the set M of all maximally deep vertices with at least
x = 1

4 log n descendants.

Example for x = 7

Split T into a macro-tree T ′ containing all the ancestors of the
vertices in M and several micro-trees in T \ T ′.



Macro-Micro trees

Find the set M of all maximally deep vertices with at least
x = 1

4 log n descendants.

Example for x = 7

Split T into a macro-tree T ′ containing all the ancestors of the
vertices in M and several micro-trees in T \ T ′.



Handling the Macro-tree

How many leaves in T ′?

T ′

The leaves of T ′ are the vertices in M .

Each vertex in M has at least 1
4 log n descendants in T .

|M | · 1
4 log n ≤ n =⇒ |M | = O( n

log n ).

Build the previous LA oracle O′ on T ′.

Size/build time: O(n+|M | log n)=O(n). Query time: O(1).
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Handling the Micro-trees

How many different types of micro-trees?

A rooted tree on ≤ m vertices can be uniquely represented by
an array of 2(m− 1) bits.

Perform a DFS traversal. Write 0 when an edge is traversed
towards the leaves, and 1 when it is traversed towards the root.

0 0 1 0 0 11 0 1 1

Pad with 1s.
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Handling the Micro-trees

How many different types of micro-trees?

A rooted tree on ≤ m vertices can be uniquely represented by
an array of 2(m− 1) bits.

At most 22(m−1) < 22m trees with up to m vertices

=⇒ O(22
1
4 log n) = O(

√
n) micro-tree types.
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For each of the O(
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n) distinct micro-trees types Ti

• Build the trival oracle Oi with size/preprocessing time
O(|Ti|2) and query time O(1).
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Handling the Micro-trees

For each of the O(
√
n) distinct micro-trees types Ti

• Build the trival oracle Oi with size/preprocessing time
O(|Ti|2) and query time O(1).

Total size/time: O(
√
n) ·O(log2 n) +O(n) = O(n).

For each vertex u of T that belongs to a micro tree:

• Store, in u, the index i of the type of its micro-tree.

• Store, in u, the vertex µ(u) in Ti corresponding to u.

• Store, in u, the root ρ(u) of its micro-tree.



Answering a Query

To answer LA(u, d):

• If u is in the macro tree T ′: query O′ for LA(u, d).

• If u is in a micro-tree T ′′:

• Let i be the type of the micro-tree containing u.

• If d < dρ(u): query O′ for LA(parent(ρ(u)), d).

• Query Oi for LA(µ(u), d− dρ(u)).

Query time: O(1).

• Otherwise:

(and map it back to a vertex in T ′′)



Solutions so far

Size Preprocessing
Time

Query Time

O(n log n) O(n log n) O(log n)

O(n) O(n)–

O(n2) O(1)O(n3)

O(n2) O(1)O(n2)

Notes

Jump Pointers

O(n) O(n) O(
√
n) Long Path Dec.

O(n) O(n) O(log n) + Ladders

+ Ladders, JPO(1)O(n+ L log n)O(n+ L log n)



Solutions so far

Size Preprocessing
Time

Query Time

O(n log n) O(n log n) O(log n)

O(n) O(n)–

O(n2) O(1)O(n3)

O(n2) O(1)O(n2)

Notes

Jump Pointers

O(n) O(n) O(
√
n) Long Path Dec.

O(n) O(n) O(log n) + Ladders

+ Ladders, JPO(1)O(n+ L log n)O(n+ L log n)

+Macro-Micro treesO(1)O(n)O(n)


