Level Ancestors

Level Ancestor Queries

Definition: Let v be a vertex at depth d_{v} in T. For $d \leq d_{v}$, a level ancestor query $\mathrm{LA}(v, d)$ on a vertex v asks to report the ancestor of v at depth d.

Level Ancestor Queries

Definition: Let v be a vertex at depth d_{v} in T. For $d \leq d_{v}$, a level ancestor query $\mathrm{LA}(v, d)$ on a vertex v asks to report the ancestor of v at depth d.

Level Ancestor Queries

Definition: Let v be a vertex at depth d_{v} in T. For $d \leq d_{v}$, a level ancestor query $\mathrm{LA}(v, d)$ on a vertex v asks to report the ancestor of v at depth d.

Level Ancestor Queries

Definition: Let v be a vertex at depth d_{v} in T. For $d \leq d_{v}$, a level ancestor query $\mathrm{LA}(v, d)$ on a vertex v asks to report the ancestor of v at depth d.

Level Ancestor Queries

Definition: Let v be a vertex at depth d_{v} in T. For $d \leq d_{v}$, a level ancestor query $\mathrm{LA}(v, d)$ on a vertex v asks to report the ancestor of v at depth d.

Level Ancestor Queries

Definition: Let v be a vertex at depth d_{v} in T. For $d \leq d_{v}$, a level ancestor query $\mathrm{LA}(v, d)$ on a vertex v asks to report the ancestor of v at depth d.

Level Ancestor Queries

Definition: Let v be a vertex at depth d_{v} in T. For $d \leq d_{v}$, a level ancestor query $\mathrm{LA}(v, d)$ on a vertex v asks to report the ancestor of v at depth d.

The Problem

Given T, design a data structure that is able to preprocess T to answer level ancestors queries.

The Problem

Given T, design a data structure that is able to preprocess T to answer level ancestors queries.

Trivial solutions:

$$
n=\# \text { of nodes }
$$

- Preprocessing time: none Size: $O(n)$ Query time: $O(n)$

The Problem

Given T, design a data structure that is able to preprocess T to answer level ancestors queries.

Trivial solutions:

$$
n=\# \text { of nodes }
$$

- Preprocessing time: none Size: $O(n)$ Query time: $O(n)$

The Problem

Given T, design a data structure that is able to preprocess T to answer level ancestors queries.

Trivial solutions:

$$
n=\# \text { of nodes }
$$

- Preprocessing time: none Size: $O(n)$ Query time: $O(n)$

The Problem

Given T, design a data structure that is able to preprocess T to answer level ancestors queries.

Trivial solutions:

$$
n=\# \text { of nodes }
$$

- Preprocessing time: none Size: $O(n)$ Query time: $O(n)$

The Problem

Given T, design a data structure that is able to preprocess T to answer level ancestors queries.

Trivial solutions:

$$
n=\# \text { of nodes }
$$

- Preprocessing time: none Size: $O(n)$ Query time: $O(n)$

The Problem

Given T, design a data structure that is able to preprocess T to answer level ancestors queries.

Trivial solutions:

$$
n=\# \text { of nodes }
$$

- Preprocessing time: none Size: $O(n)$ Query time: $O(n)$

The Problem

Given T, design a data structure that is able to preprocess T to answer level ancestors queries.

Trivial solutions:
$n=\#$ of nodes

- Preprocessing time: none Size: $O(n)$ Query time: $O(n)$
- Preprocessing time: $O\left(n^{3}\right)$ Size: $O\left(n^{2}\right)$ Query time: $O(1)$
(precompute the answer to all possible queries)

The Problem

Given T, design a data structure that is able to preprocess T to answer level ancestors queries.

Trivial solutions:

$$
n=\# \text { of nodes }
$$

- Preprocessing time: none Size: $O(n)$ Query time: $O(n)$
- Preprocessing time: $O\left(n^{3}\right)$ Size: $O\left(n^{2}\right)$ Query time: $O(1)$
- Preprocessing time: $O\left(n^{2}\right)$ Size: $O\left(n^{2}\right)$ Query time: $O(1)$

$$
\operatorname{LA}(v, d)= \begin{cases}v & \text { if } d=d_{v} \\ \operatorname{LA}(\text { parent }(v), d) & \text { if } d<d_{v}\end{cases}
$$

Jump Pointers: Idea

For each vertex v and $\ell=0,1, \ldots,\left\lfloor\log d_{v}\right\rfloor$, store:

$$
J(v, \ell)=\operatorname{LA}\left(v, d_{v}-2^{\ell}\right)
$$

Jump Pointers: Idea

For each vertex v and $\ell=0,1, \ldots,\left\lfloor\log d_{v}\right\rfloor$, store:

$$
J(v, \ell)=\operatorname{LA}\left(v, d_{v}-2^{\ell}\right)
$$

Jump Pointers: Idea

For each vertex v and $\ell=0,1, \ldots,\left\lfloor\log d_{v}\right\rfloor$, store:

$$
J(v, \ell)=\operatorname{LA}\left(v, d_{v}-2^{\ell}\right)
$$

Jump Pointers: Idea

For each vertex v and $\ell=0,1, \ldots,\left\lfloor\log d_{v}\right\rfloor$, store:

$$
J(v, \ell)=\operatorname{LA}\left(v, d_{v}-2^{\ell}\right)
$$

Jump Pointers: Idea

For each vertex v and $\ell=0,1, \ldots,\left\lfloor\log d_{v}\right\rfloor$, store:

$$
J(v, \ell)=\operatorname{LA}\left(v, d_{v}-2^{\ell}\right)
$$

Jump Pointers: Idea

For each vertex v and $\ell=0,1, \ldots,\left\lfloor\log d_{v}\right\rfloor$, store:

$$
J(v, \ell)=\operatorname{LA}\left(v, d_{v}-2^{\ell}\right)
$$

Total size: $\quad O(n \log h)=O(n \log n)$

Jump Pointers: Query

$$
\begin{array}{ll}
0<d_{v}-d=2^{\ell_{k}}+2^{\ell_{k-1}}+\cdots+2^{\ell_{1}} & \ell_{i+1}>\ell_{i} \\
\operatorname{LA}(v, d)=J\left(\ldots J\left(J\left(v, \ell_{k}\right), \ell_{k-1}\right), \ldots, \ell_{1}\right) &
\end{array}
$$

Number of accessed pointers: $O(\log h)=O(\log n)$

Jump Pointers: Construction

With a DFS visit of T :

- Maintain a stack S that stores all the ancestors of the current vertex v of the visit
- S can be updated in $O(1)$ per traversed edge
- When vertex v is visited, its ancestor at depth d in T is the $\left(d_{v}-d\right)$-th vertex from the top of the stack

Jump Pointers: Construction

With a DFS visit of T :

- Maintain a stack S that stores all the ancestors of the current vertex v of the visit
- S can be updated in $O(1)$ per traversed edge
- When vertex v is visited, its ancestor at depth d in T is the $\left(d_{v}-d\right)$-th vertex from the top of the stack

Or using dynamic programming:

$$
J(v, \ell)= \begin{cases}\operatorname{parent}(v) & \text { if } \ell=0 \\ J(J(v, \ell-1), \ell-1) & \text { if } \ell>0\end{cases}
$$

Jump Pointers: Construction

With a DFS visit of T :

- Maintain a stack S that stores all the ancestors of the current vertex v of the visit
- S can be updated in $O(1)$ per traversed edge
- When vertex v is visited, its ancestor at depth d in T is the $\left(d_{v}-d\right)$-th vertex from the top of the stack

Or using dynamic programming:

$$
J(v, \ell)= \begin{cases}\operatorname{parent}(v) & \text { if } \ell=0 \\ J(J(v, \ell-1), \ell-1) & \text { if } \ell>0\end{cases}
$$

Time complexity: $O(n+n \log h)=O(n \log n)$

Solutions so far

Size	Preprocessing	Query Time	Notes
$O(n)$	-	$O(n)$	
$O\left(n^{2}\right)$	$O\left(n^{3}\right)$	$O(1)$	
$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	$O(1)$	

Solutions so far

Size	Preprocessing	Query Time	Notes
$O(n)$	-	$O(n)$	
$O\left(n^{2}\right)$	$O\left(n^{3}\right)$	$O(1)$	
$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	$O(1)$	
$O(n \log n)$	$O(n \log n)$	$O(\log n)$	Jump Pointers

Solutions so far

Size	Preprocessing	Query Time	Notes
$O(n)$	-	$O(n)$	
$O\left(n^{2}\right)$	$O\left(n^{3}\right)$	$O(1)$	$O(1)$
$O\left(n^{2}\right)$	$O\left(n^{2}\right)$		
$O(n \underline{\log n)}$	$O(\underline{n \log n)}$	$O(\underline{\log n)}$	Jump Pointers

We want to get rid of the $\log n$ factors!

Long Path Decomposition

Partitions T into a collection of paths \mathcal{D}. Recursively defined:

- Select one of the longest root-to-leaf paths P in T
- Select paths recursively from each the tree of the forest $T \backslash P$

Long Path Decomposition

Partitions T into a collection of paths \mathcal{D}. Recursively defined:

- Select one of the longest root-to-leaf paths P in T
- Select paths recursively from each the tree of the forest $T \backslash P$

Long Path Decomposition

Partitions T into a collection of paths \mathcal{D}. Recursively defined:

- Select one of the longest root-to-leaf paths P in T
- Select paths recursively from each the tree of the forest $T \backslash P$

Long Path Decomposition

Partitions T into a collection of paths \mathcal{D}. Recursively defined:

- Select one of the longest root-to-leaf paths P in T
- Select paths recursively from each the tree of the forest $T \backslash P$

Long Path Decomposition

Partitions T into a collection of paths \mathcal{D}. Recursively defined:

- Select one of the longest root-to-leaf paths P in T
- Select paths recursively from each the tree of the forest $T \backslash P$

Long Path Decomposition

For each path $P_{v}=\left\langle v=u_{0}, \ldots, u_{k}\right\rangle \in \mathcal{D}$:

- Store an array A_{v} of length $k+1$ where $A_{v}[i], i=0, \ldots, k$, contains (a reference to) u_{i}
- Each u_{i} stores a reference $\tau\left(u_{i}\right)$ to v.

Long Path Decomposition

For each path $P_{v}=\left\langle v=u_{0}, \ldots, u_{k}\right\rangle \in \mathcal{D}$:

- Store an array A_{v} of length $k+1$ where $A_{v}[i], i=0, \ldots, k$, contains (a reference to) u_{i}
- Each u_{i} stores a reference $\tau\left(u_{i}\right)$ to v.

Total space: $\sum_{P_{v} \in \mathcal{D}} O\left(1+\left|P_{v}\right|\right)=O(n)$

Long Path Decomposition

To report $\mathrm{LA}(u, d)$:

- Let $v=\tau(u)$
- If $d \geq d_{v}$: return $A_{v}\left[d-d_{v}\right]$.

Long Path Decomposition

To report $\mathrm{LA}(u, d)$:

- Let $v=\tau(u)$
- If $d \geq d_{v}$: return $A_{v}\left[d-d_{v}\right]$.
- If $d<d_{v}$: return $\operatorname{LA}(\operatorname{parent}(v), d)$.

Long Path Decomposition

To report $\mathrm{LA}(u, d)$:

- Let $v=\tau(u)$
- If $d \geq d_{v}$: return $A_{v}\left[d-d_{v}\right]$.
- If $d<d_{v}$: return $\operatorname{LA}(\operatorname{parent}(v), d)$.

Long Path Decomposition

To report $\mathrm{LA}(u, d)$:

- Let $v=\tau(u)$
- If $d \geq d_{v}$: return $A_{v}\left[d-d_{v}\right]$.
- If $d<d_{v}$: return $\operatorname{LA}(\operatorname{parent}(v), d)$.

Long Path Decomposition

To report $\operatorname{LA}(u, d)$:

- Let $v=\tau(u)$
- If $d \geq d_{v}$: return $A_{v}\left[d-d_{v}\right]$.
- If $d<d_{v}$: return $\operatorname{LA}(\operatorname{parent}(v), d)$.

Time: $O(\#$ recursive calls $)=O(\#$ paths in \mathcal{D} from v to the root $)$.

Long Path Decomposition

Claim: The number of distinct paths in \mathcal{D} encountered in the path P from v to the root in T is $O(\sqrt{n})$.

Long Path Decomposition

Claim: The number of distinct paths in \mathcal{D} encountered in the path P from v to the root in T is $O(\sqrt{n})$.
Proof: Let $v=v_{0}, v_{1}, \ldots, v_{k}$ be the vertices at which a new path of \mathcal{D} is encountered while traversing P.

- Let P_{i} be the path of \mathcal{D} that contains v_{i}.

Long Path Decomposition

Claim: The number of distinct paths in \mathcal{D} encountered in the path P from v to the root in T is $O(\sqrt{n})$.
Proof: Let $v=v_{0}, v_{1}, \ldots, v_{k}$ be the vertices at which a new path of \mathcal{D} is encountered while traversing P.

- Let P_{i} be the path of \mathcal{D} that contains v_{i}.
- Let $h(v)$ be the height v in T (i.e., the length of the longest path from v to a leaf of T).

Long Path Decomposition

Claim: The number of distinct paths in \mathcal{D} encountered in the path P from v to the root in T is $O(\sqrt{n})$.
Proof: Let $v=v_{0}, v_{1}, \ldots, v_{k}$ be the vertices at which a new path of \mathcal{D} is encountered while traversing P.

- Let P_{i} be the path of \mathcal{D} that contains v_{i}.
- Let $h(v)$ be the height v in T (i.e., the length of the longest path from v to a leaf of T).
- By the long-path decomposition, $\left|P_{i}\right| \geq h\left(v_{i}\right) \geq i$.

Long Path Decomposition

Claim: The number of distinct paths in \mathcal{D} encountered in the path P from v to the root in T is $O(\sqrt{n})$.
Proof: Let $v=v_{0}, v_{1}, \ldots, v_{k}$ be the vertices at which a new path of \mathcal{D} is encountered while traversing P.

- Let P_{i} be the path of \mathcal{D} that contains v_{i}.
- Let $h(v)$ be the height v in T (i.e., the length of the longest path from v to a leaf of T).
- By the long-path decomposition, $\left|P_{i}\right| \geq h\left(v_{i}\right) \geq i$.

$$
n \geq\left|\bigcup_{i=1}^{k} P_{i}\right| \geq \sum_{i=1}^{k} i \geq \frac{k^{2}}{2} \Longrightarrow \sqrt{2 n} \geq k
$$

Long Path Decomposition

Claim: The number of distinct paths in \mathcal{D} encountered in the path P from v to the root in T is $O(\sqrt{n})$.
Proof: Let $v=v_{0}, v_{1}, \ldots, v_{k}$ be the vertices at which a new path of \mathcal{D} is encountered while traversing P.

- Let P_{i} be the path of \mathcal{D} that contains v_{i}.
- Let $h(v)$ be the height v in T (i.e., the length of the longest path from v to a leaf of T).
- By the long-path decomposition, $\left|P_{i}\right| \geq h\left(v_{i}\right) \geq i$.

$$
n \geq\left|\bigcup_{i=1}^{k} P_{i}\right| \geq \sum_{i=1}^{k} i \geq \frac{k^{2}}{2} \Longrightarrow \sqrt{2 n} \geq k
$$

Time: $O(\sqrt{n})$
Is this tight?

Long Path Decomposition

Time: $\Omega(\sqrt{n})$

Solutions so far

Size	Preprocessing	Query Time	Notes
$O(n)$	Time	$O(n)$	
$O\left(n^{2}\right)$	-	$O\left(n^{3}\right)$	$O(1)$
$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	$O(1)$	
$O(n \log n)$	$O(n \log n)$	$O(\log n)$	Jump Pointers

Solutions so far

Size	Preprocessing	Query Time	Notes
$O(n)$	Time	$O(n)$	
$O\left(n^{2}\right)$	-	$O\left(n^{3}\right)$	$O(1)$
$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	$O(1)$	
$O(n \log n)$	$O(n \log n)$	$O(\log n)$	Jump Pointers
$O(n)$	$O(n)$	$O(\sqrt{n})$	Long Path Dec.

Long Path Decomposition + Ladders

Let $\eta\left(P_{v}\right)$ be the number of vertices of the path $P_{v} \in \mathcal{D}$.
Extend each path $P_{v} \in \mathcal{D}$ into a ladder L_{v} with $\eta\left(P_{v}\right)$ more vertices towards the root (if they exist).

Long Path Decomposition + Ladders

Let $\eta\left(P_{v}\right)$ be the number of vertices of the path $P_{v} \in \mathcal{D}$.
Extend each path $P_{v} \in \mathcal{D}$ into a ladder L_{v} with $\eta\left(P_{v}\right)$ more vertices towards the root (if they exist).

Long Path Decomposition + Ladders

Let $\eta\left(P_{v}\right)$ be the number of vertices of the path $P_{v} \in \mathcal{D}$.
Extend each path $P_{v} \in \mathcal{D}$ into a ladder L_{v} with $\eta\left(P_{v}\right)$ more vertices towards the root (if they exist).

Long Path Decomposition + Ladders

Let $\eta\left(P_{v}\right)$ be the number of vertices of the path $P_{v} \in \mathcal{D}$.
Extend each path $P_{v} \in \mathcal{D}$ into a ladder L_{v} with $\eta\left(P_{v}\right)$ more vertices towards the root (if they exist).

Long Path Decomposition + Ladders

For each ladder $L_{v}=\left\langle v^{\prime}=u_{0}, u_{1}, \ldots, v=u_{j}, \ldots, u_{k}\right\rangle$:

- Store, in v, an array B_{v} of length $k+1$ where $B_{v}[i]$ contains (a reference to) u_{i}
- Each u_{i} with $i \geq j$ stores a reference $\tau\left(u_{i}\right)$ to v.

The length of B_{v} is at most twice the length of $A_{v} \Longrightarrow$ the total size is still $O(n)$.

Long Path Decomposition + Ladders

For each ladder $L_{v}=\left\langle v^{\prime}=u_{0}, u_{1}, \ldots, v=u_{j}, \ldots, u_{k}\right\rangle$:

- Store, in v, an array B_{v} of length $k+1$ where $B_{v}[i]$ contains (a reference to) u_{i}
- Each u_{i} with $i \geq j$ stores a reference $\tau\left(u_{i}\right)$ to v.

The length of B_{v} is at most twice the length of $A_{v} \Longrightarrow$ the total size is still $O(n)$.

To report $\mathrm{LA}(u, d)$:

- Let $v=\tau(u)$ and $v^{\prime}=B_{v}[0]$.
- If $d \geq d_{v^{\prime}}:$ return $B_{v}\left[d-d_{v^{\prime}}\right]$.
- If $d<d_{v^{\prime}}$: return $\operatorname{LA}\left(v^{\prime}, d\right) . \quad$ (recursively)

How many recursive calls?

Long Path Decomposition + Ladders

How many recursive calls?

- If we recurse, L_{v} cannot contain the root of T.

$$
\left|L_{v}\right|=\eta\left(L_{v}\right)-1=2 \eta\left(P_{v}\right)-1
$$

- Since $u \in P_{v}$ we have:

$$
h\left(v^{\prime}\right) \geq\left|L_{v}\right|=2 \eta\left(P_{v}\right)-1 \geq 2(1+h(u))-1 \geq 2 h(u)+1
$$

- The height of the queried vertex doubles at every iteration $\Longrightarrow O(\log n)$ iterations.

Solutions so far

Size	Preprocessing	Query Time	Notes
$O(n)$	Time	$O(n)$	
$O\left(n^{2}\right)$	-	$O\left(n^{3}\right)$	$O(1)$
$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	$O(1)$	
$O(n \log n)$	$O(n \log n)$	$O(\log n)$	Jump Pointers
$O(n)$	$O(n)$	$O(\sqrt{n})$	Long Path Dec.

Solutions so far

Size	Preprocessing	Query Time	Notes
$O(n)$	Time	$O(n)$	
$O\left(n^{2}\right)$	-	$O\left(n^{3}\right)$	$O(1)$
$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	$O(1)$	
$O(n \log n)$	$O(n \log n)$	$O(\log n)$	Jump Pointers
$O(n)$	$O(n)$	$O(\sqrt{n})$	Long Path Dec.
$O(n)$	$O(n)$	$O(\log n)$	+ Ladders

Long Path Dec. + Ladders + Jump Pointers

$0<d_{u}-d=2^{\ell_{k}}+2^{\ell_{k-1}}+\cdots+2^{\ell_{1}}$
To report $\mathrm{LA}(u, d)$:

- Let $w=J\left(u, \ell_{k}\right), v=\tau(w)$ and $v^{\prime}=B_{v}[0]$.
- Return $B_{v}\left[d_{v^{\prime}}-d\right]$.

Long Path Dec. + Ladders + Jump Pointers

Long Path Dec. + Ladders + Jump Pointers

Jump Pointers

Space usage: $O(n+\overbrace{n \log n})=O(n \log n)$
Ladders

A trick to reduce space:

- Only store jump pointers $J(v, \ell)$ in the leaves v of T.
- For each node u of T, store a reference to a leaf λ_{u} in the subtree of T rooted at u.
- $\operatorname{LA}(u, d)=\operatorname{LA}\left(\lambda_{u}, d\right)$

Long Path Dec. + Ladders + Jump Pointers

 Jump PointersSpace usage: $O(n+\overbrace{n \log n})=O(n \log n)$
Ladders

A trick to reduce space:

- Only store jump pointers $J(v, \ell)$ in the leaves v of T.
- For each node u of T, store a reference to a leaf λ_{u} in the subtree of T rooted at u.
- $\operatorname{LA}(u, d)=\operatorname{LA}\left(\lambda_{u}, d\right)$

Space usage: $O(n+L \log n)$, where $L=\#$ leaves of T.

Solutions so far

Size	Preprocessing	Query Time	Notes
$O(n)$	-	$O(n)$	
$O\left(n^{2}\right)$	$O\left(n^{3}\right)$	$O(1)$	
$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	$O(1)$	
$O(n \log n)$	$O(n \log n)$	$O(\log n)$	Jump Pointers
$O(n)$	$O(n)$	$O(\sqrt{n})$	Long Path Dec.
$O(n)$	$O(n)$	$O(\log n)$	+ Ladders

Solutions so far

Size	Preprocessing	Query Time	Notes
$O(n)$	-	$O(n)$	
$O\left(n^{2}\right)$	$O\left(n^{3}\right)$	$O(1)$	
$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	$O(1)$	
$O(n \log n)$	$O(n \log n)$	$O(\log n)$	Jump Pointers
$O(n)$	$O(n)$	$O(\sqrt{n})$	Long Path Dec.
$O(n)$	$O(n)$	$O(\log n)$	+ Ladders
$O(n+L \log n)$	$O(n+L \log n)$	$O(1)$	+ Ladders, JP

Solutions so far

Size	Preprocessing	Query Time	Notes
$O(n)$	-	$O(n)$	
$O\left(n^{2}\right)$	$O\left(n^{3}\right)$	$O(1)$	
$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	$O(1)$	
$O(n \log n)$	$O(n \log n)$	$O(\log n)$	Jump Pointers
$O(n)$	$O(n)$	$O(\sqrt{n})$	Long Path Dec.
$O(n)$	$O(n)$	$O(\log n)$	+ Ladders
$O(n+\underline{L \log n)}$	$O(n+\underline{L \log n)}$	$O(1)$	+ Ladders, JP

If only we had $O\left(\frac{n}{\log n}\right)$ leaves...

Macro-Micro trees

Macro-Micro trees

Find the set M of all maximally deep vertices with at least $x=\frac{1}{4} \log n$ descendants.

Macro-Micro trees

Find the set M of all maximally deep vertices with at least $x=\frac{1}{4} \log n$ descendants.

Macro-Micro trees

Find the set M of all maximally deep vertices with at least $x=\frac{1}{4} \log n$ descendants.
Split T into a macro-tree T^{\prime} containing all the ancestors of the vertices in M and several micro-trees in $T \backslash T^{\prime}$.

Macro-Micro trees

Find the set M of all maximally deep vertices with at least $x=\frac{1}{4} \log n$ descendants.
Split T into a macro-tree T^{\prime} containing all the ancestors of the vertices in M and several micro-trees in $T \backslash T^{\prime}$.

Macro-Micro trees

Find the set M of all maximally deep vertices with at least $x=\frac{1}{4} \log n$ descendants.
Split T into a macro-tree T^{\prime} containing all the ancestors of the vertices in M and several micro-trees in $T \backslash T^{\prime}$.

Handling the Macro-tree

How many leaves in T^{\prime} ? The leaves of T^{\prime} are the vertices in M.
Each vertex in M has at least $\frac{1}{4} \log n$ descendants in T.
$|M| \cdot \frac{1}{4} \log n \leq n \Longrightarrow|M|=O\left(\frac{n}{\log n}\right)$.
Build the previous LA oracle \mathcal{O}^{\prime} on T^{\prime}.
Size/build time: $O(n+|M| \log n)=O(n)$. Query time: $O(1)$.

Handling the Micro-trees

How many different types of micro-trees?
A rooted tree on $\leq m$ vertices can be uniquely represented by an array of $2(m-1)$ bits.

Handling the Micro-trees

How many different types of micro-trees?
A rooted tree on $\leq m$ vertices can be uniquely represented by an array of $2(m-1)$ bits.

Perform a DFS traversal. Write 0 when an edge is traversed towards the leaves, and 1 when it is traversed towards the root.

Handling the Micro-trees

How many different types of micro-trees?
A rooted tree on $\leq m$ vertices can be uniquely represented by an array of $2(m-1)$ bits.

Perform a DFS traversal. Write 0 when an edge is traversed towards the leaves, and 1 when it is traversed towards the root.

Handling the Micro-trees

How many different types of micro-trees?
A rooted tree on $\leq m$ vertices can be uniquely represented by an array of $2(m-1)$ bits.

Perform a DFS traversal. Write 0 when an edge is traversed towards the leaves, and 1 when it is traversed towards the root.

Handling the Micro-trees

How many different types of micro-trees?
A rooted tree on $\leq m$ vertices can be uniquely represented by an array of $2(m-1)$ bits.

Perform a DFS traversal. Write 0 when an edge is traversed towards the leaves, and 1 when it is traversed towards the root.

Handling the Micro-trees

How many different types of micro-trees?
A rooted tree on $\leq m$ vertices can be uniquely represented by an array of $2(m-1)$ bits.

Perform a DFS traversal. Write 0 when an edge is traversed towards the leaves, and 1 when it is traversed towards the root.

Handling the Micro-trees

How many different types of micro-trees?
A rooted tree on $\leq m$ vertices can be uniquely represented by an array of $2(m-1)$ bits.

Perform a DFS traversal. Write 0 when an edge is traversed towards the leaves, and 1 when it is traversed towards the root.

Handling the Micro-trees

How many different types of micro-trees?
A rooted tree on $\leq m$ vertices can be uniquely represented by an array of $2(m-1)$ bits.

Perform a DFS traversal. Write 0 when an edge is traversed towards the leaves, and 1 when it is traversed towards the root.

Handling the Micro-trees

How many different types of micro-trees?
A rooted tree on $\leq m$ vertices can be uniquely represented by an array of $2(m-1)$ bits.

Perform a DFS traversal. Write 0 when an edge is traversed towards the leaves, and 1 when it is traversed towards the root.

Handling the Micro-trees

How many different types of micro-trees?
A rooted tree on $\leq m$ vertices can be uniquely represented by an array of $2(m-1)$ bits.

Perform a DFS traversal. Write 0 when an edge is traversed towards the leaves, and 1 when it is traversed towards the root.

Handling the Micro-trees

How many different types of micro-trees?
A rooted tree on $\leq m$ vertices can be uniquely represented by an array of $2(m-1)$ bits.

Perform a DFS traversal. Write 0 when an edge is traversed towards the leaves, and 1 when it is traversed towards the root.

Handling the Micro-trees

How many different types of micro-trees?
A rooted tree on $\leq m$ vertices can be uniquely represented by an array of $2(m-1)$ bits.

Perform a DFS traversal. Write 0 when an edge is traversed towards the leaves, and 1 when it is traversed towards the root.

Pad with 1s.

Handling the Micro-trees

How many different types of micro-trees?
A rooted tree on $\leq m$ vertices can be uniquely represented by an array of $2(m-1)$ bits.

At most $2^{2(m-1)}<2^{2 m}$ trees with up to m vertices
$\Longrightarrow O\left(2^{2 \frac{1}{4} \log n}\right)=O(\sqrt{n})$ micro-tree types.

Handling the Micro-trees

For each of the $O(\sqrt{n})$ distinct micro-trees types T_{i}

- Build the trival oracle \mathcal{O}_{i} with size/preprocessing time $O\left(\left|T_{i}\right|^{2}\right)$ and query time $O(1)$.

Handling the Micro-trees

For each of the $O(\sqrt{n})$ distinct micro-trees types T_{i}

- Build the trival oracle \mathcal{O}_{i} with size/preprocessing time $O\left(\left|T_{i}\right|^{2}\right)$ and query time $O(1)$.

For each vertex u of T that belongs to a micro tree:

- Store, in u, the index i of the type of its micro-tree.
- Store, in u, the vertex $\mu(u)$ in T_{i} corresponding to u.
- Store, in u, the root $\rho(u)$ of its micro-tree.

Handling the Micro-trees

For each of the $O(\sqrt{n})$ distinct micro-trees types T_{i}

- Build the trival oracle \mathcal{O}_{i} with size/preprocessing time $O\left(\left|T_{i}\right|^{2}\right)$ and query time $O(1)$.

For each vertex u of T that belongs to a micro tree:

- Store, in u, the index i of the type of its micro-tree.
- Store, in u, the vertex $\mu(u)$ in T_{i} corresponding to u.
- Store, in u, the root $\rho(u)$ of its micro-tree.

Total size/time: $O(\sqrt{n}) \cdot O\left(\log ^{2} n\right)+O(n)=O(n)$.

Answering a Query

To answer $\operatorname{LA}(u, d)$:

- If u is in the macro tree T^{\prime} : query \mathcal{O}^{\prime} for $\operatorname{LA}(u, d)$.
- If u is in a micro-tree $T^{\prime \prime}$:
- If $d<d_{\rho(u)}$: query \mathcal{O}^{\prime} for $\operatorname{LA}(\operatorname{parent}(\rho(u)), d)$.
- Otherwise:
- Let i be the type of the micro-tree containing u.
- Query O_{i} for $\operatorname{LA}\left(\mu(u), d-d_{\rho(u)}\right)$.
(and map it back to a vertex in $T^{\prime \prime}$)

Query time: $O(1)$.

Solutions so far

Size	Preprocessing	Query Time	Notes
$O(n)$	-	$O(n)$	
$O\left(n^{2}\right)$	$O\left(n^{3}\right)$	$O(1)$	
$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	$O(1)$	
$O(n \log n)$	$O(n \log n)$	$O(\log n)$	Jump Pointers
$O(n)$	$O(n)$	$O(\sqrt{n})$	Long Path Dec.
$O(n)$	$O(n)$	$O(\log n)$	+ Ladders
$O(n+L \log n)$	$O(n+L \log n)$	$O(1)$	+ Ladders, JP

Solutions so far

Size	Preprocessing	Query Time	Notes
$O(n)$	Time		
$O\left(n^{2}\right)$	$O\left(n^{3}\right)$	$O(1)$	
$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	$O(1)$	
$O(n \log n)$	$O(n \log n)$	$O(\log n)$	Jump Pointers
$O(n)$	$O(n)$	$O(\sqrt{n})$	Long Path Dec.
$O(n)$	$O(n)$	$O(\log n)$	+ Ladders
$O(n+L \log n)$	$O(n+L \log n)$	$O(1)$	+ Ladders, JP
$O(n)$	$O(n)$	$O(1)$	+ Macro-Micro trees

