
Level Ancestors

Definition: Let v be a vertex at depth dv in T . For d ≤ dv, a
level ancestor query LA(v, d) on a vertex v asks to report the
ancestor of v at depth d.

Level Ancestor Queries

T0

1

2

3

4

Definition: Let v be a vertex at depth dv in T . For d ≤ dv, a
level ancestor query LA(v, d) on a vertex v asks to report the
ancestor of v at depth d.

Level Ancestor Queries

v

T

d = 1

0

1

2

3

4

Definition: Let v be a vertex at depth dv in T . For d ≤ dv, a
level ancestor query LA(v, d) on a vertex v asks to report the
ancestor of v at depth d.

Level Ancestor Queries

v

T

d = 1

0

1

2

3

4

Definition: Let v be a vertex at depth dv in T . For d ≤ dv, a
level ancestor query LA(v, d) on a vertex v asks to report the
ancestor of v at depth d.

Level Ancestor Queries

v

T0

1

2

3

4

d = 0

Definition: Let v be a vertex at depth dv in T . For d ≤ dv, a
level ancestor query LA(v, d) on a vertex v asks to report the
ancestor of v at depth d.

Level Ancestor Queries

v

T0

1

2

3

4

d = 0

Definition: Let v be a vertex at depth dv in T . For d ≤ dv, a
level ancestor query LA(v, d) on a vertex v asks to report the
ancestor of v at depth d.

Level Ancestor Queries

v

T0

1

2

3

4

d = 2

Definition: Let v be a vertex at depth dv in T . For d ≤ dv, a
level ancestor query LA(v, d) on a vertex v asks to report the
ancestor of v at depth d.

Level Ancestor Queries

v

T0

1

2

3

4

d = 2

The Problem

Given T , design a data structure that is able to preprocess T
to answer level ancestors queries.

The Problem

Given T , design a data structure that is able to preprocess T
to answer level ancestors queries.

Trivial solutions:

• Preprocessing time: none Size: O(n) Query time: O(n)

n = # of nodes

The Problem

Given T , design a data structure that is able to preprocess T
to answer level ancestors queries.

Trivial solutions:

• Preprocessing time: none Size: O(n) Query time: O(n)

v

n = # of nodes

The Problem

Given T , design a data structure that is able to preprocess T
to answer level ancestors queries.

Trivial solutions:

• Preprocessing time: none Size: O(n) Query time: O(n)

v

n = # of nodes

The Problem

Given T , design a data structure that is able to preprocess T
to answer level ancestors queries.

Trivial solutions:

• Preprocessing time: none Size: O(n) Query time: O(n)

v

n = # of nodes

The Problem

Given T , design a data structure that is able to preprocess T
to answer level ancestors queries.

Trivial solutions:

• Preprocessing time: none Size: O(n) Query time: O(n)

v

n = # of nodes

The Problem

Given T , design a data structure that is able to preprocess T
to answer level ancestors queries.

Trivial solutions:

• Preprocessing time: none Size: O(n) Query time: O(n)

v

n = # of nodes

The Problem

Given T , design a data structure that is able to preprocess T
to answer level ancestors queries.

Trivial solutions:

• Preprocessing time: none Size: O(n) Query time: O(n)

• Preprocessing time: O(n3) Size: O(n2) Query time: O(1)

(precompute the answer to all possible queries)

n = # of nodes

The Problem

Given T , design a data structure that is able to preprocess T
to answer level ancestors queries.

Trivial solutions:

• Preprocessing time: none Size: O(n) Query time: O(n)

• Preprocessing time: O(n3) Size: O(n2) Query time: O(1)

• Preprocessing time: O(n2) Size: O(n2) Query time: O(1)

LA(v, d) =

(
v if d = dv

LA(parent(v), d) if d < dv

n = # of nodes

Jump Pointers: Idea
0
1
2
3
4

For each vertex v and ℓ = 0, 1, . . . , ⌊log dv⌋, store:

5
6
7
8
9

J(v, ℓ) = LA(v, dv − 2ℓ)

Jump Pointers: Idea
0
1
2
3
4

For each vertex v and ℓ = 0, 1, . . . , ⌊log dv⌋, store:

5
6
7
8
9

J(v, ℓ) = LA(v, dv − 2ℓ)

1

Jump Pointers: Idea
0
1
2
3
4

For each vertex v and ℓ = 0, 1, . . . , ⌊log dv⌋, store:

5
6
7
8
9

J(v, ℓ) = LA(v, dv − 2ℓ)

1
2

Jump Pointers: Idea
0
1
2
3
4

For each vertex v and ℓ = 0, 1, . . . , ⌊log dv⌋, store:

5
6
7
8
9

J(v, ℓ) = LA(v, dv − 2ℓ)

1
2

4

Jump Pointers: Idea
0
1
2
3
4

For each vertex v and ℓ = 0, 1, . . . , ⌊log dv⌋, store:

5
6
7
8
9

J(v, ℓ) = LA(v, dv − 2ℓ)

1
2

4

8

Jump Pointers: Idea
0
1
2
3
4

For each vertex v and ℓ = 0, 1, . . . , ⌊log dv⌋, store:

5
6
7
8
9

J(v, ℓ) = LA(v, dv − 2ℓ)

1
2

4

8

Total size: O(n log h) = O(n log n)

h

Jump Pointers: Query
0
1
2
3
4
5
6
7
8
9

LA(v, d) = J(. . . J(J(v, ℓk), ℓk−1), . . . , ℓ1)

0 < dv − d = 2ℓk + 2ℓk−1 + · · ·+ 2ℓ1

4

2

1

J(J(J(v, 4), 2), 1)

Number of accessed pointers: O(log h) = O(log n)

ℓi+1 > ℓi

Jump Pointers: Construction

• Maintain a stack S that stores all the ancestors of the
current vertex v of the visit

• S can be updated in O(1) per traversed edge

• When vertex v is visited, its ancestor at depth d in T is the
(dv − d)-th vertex from the top of the stack

With a DFS visit of T :

Jump Pointers: Construction

• Maintain a stack S that stores all the ancestors of the
current vertex v of the visit

• S can be updated in O(1) per traversed edge

• When vertex v is visited, its ancestor at depth d in T is the
(dv − d)-th vertex from the top of the stack

Or using dynamic programming:

J(v, ℓ) =

(
parent(v) if ℓ = 0

J(J(v, ℓ− 1), ℓ− 1) if ℓ > 0

With a DFS visit of T :

Jump Pointers: Construction

• Maintain a stack S that stores all the ancestors of the
current vertex v of the visit

• S can be updated in O(1) per traversed edge

• When vertex v is visited, its ancestor at depth d in T is the
(dv − d)-th vertex from the top of the stack

Time complexity: O(n+ n log h) = O(n log n)

Or using dynamic programming:

J(v, ℓ) =

(
parent(v) if ℓ = 0

J(J(v, ℓ− 1), ℓ− 1) if ℓ > 0

With a DFS visit of T :

Solutions so far

Size Preprocessing
Time

Query Time

O(n) O(n)–

O(n2) O(1)O(n3)

O(n2) O(1)O(n2)

Notes

Solutions so far

Size Preprocessing
Time

Query Time

O(n log n) O(n log n) O(log n)

O(n) O(n)–

O(n2) O(1)O(n3)

O(n2) O(1)O(n2)

Notes

Jump Pointers

Solutions so far

Size Preprocessing
Time

Query Time

O(n log n) O(n log n) O(log n)

O(n) O(n)–

O(n2) O(1)O(n3)

O(n2) O(1)O(n2)

Notes

Jump Pointers

We want to get rid of the log n factors!

Long Path Decomposition
0
1
2
3
4
5
6
7
8
9

Partitions T into a collection of paths D. Recursively defined:

• Select one of the longest root-to-leaf paths P in T

• Select paths recursively from each the tree of the forest T \P

Long Path Decomposition
0
1
2
3
4
5
6
7
8
9

Partitions T into a collection of paths D. Recursively defined:

• Select one of the longest root-to-leaf paths P in T

• Select paths recursively from each the tree of the forest T \P

Long Path Decomposition
0
1
2
3
4
5
6
7
8
9

Partitions T into a collection of paths D. Recursively defined:

• Select one of the longest root-to-leaf paths P in T

• Select paths recursively from each the tree of the forest T \P

Long Path Decomposition
0
1
2
3
4
5
6
7
8
9

Partitions T into a collection of paths D. Recursively defined:

• Select one of the longest root-to-leaf paths P in T

• Select paths recursively from each the tree of the forest T \P

Long Path Decomposition
0
1
2
3
4
5
6
7
8
9

Partitions T into a collection of paths D. Recursively defined:

• Select one of the longest root-to-leaf paths P in T

• Select paths recursively from each the tree of the forest T \P

Long Path Decomposition

For each path Pv = ⟨v = u0, . . . , uk⟩ ∈ D:

• Store an array Av of length k + 1 where Av[i], i = 0, . . . , k,
contains (a reference to) ui

• Each ui stores a reference τ(ui) to v.

v = u0
u1

u2

uk

Pv

Long Path Decomposition

For each path Pv = ⟨v = u0, . . . , uk⟩ ∈ D:

• Store an array Av of length k + 1 where Av[i], i = 0, . . . , k,
contains (a reference to) ui

• Each ui stores a reference τ(ui) to v.

Total space:
P

Pv∈D O(1 + |Pv|) = O(n)

v = u0
u1

u2

uk

Pv

Long Path Decomposition

To report LA(u, d):

• If d ≥ dv: return Av[d− dv].

• Let v = τ(u)

v
d = 2

u

Pv

Long Path Decomposition

To report LA(u, d):

• If d ≥ dv: return Av[d− dv].

• If d < dv: return LA(parent(v), d). (recursively)

• Let v = τ(u)

d = 2

u
v

Pv

Long Path Decomposition

To report LA(u, d):

• If d ≥ dv: return Av[d− dv].

• If d < dv: return LA(parent(v), d). (recursively)

• Let v = τ(u)

d = 2

u
v

Pv

Long Path Decomposition

To report LA(u, d):

• If d ≥ dv: return Av[d− dv].

• If d < dv: return LA(parent(v), d). (recursively)

• Let v = τ(u)

d = 2
u

v
Pv

Long Path Decomposition

To report LA(u, d):

• If d ≥ dv: return Av[d− dv].

• If d < dv: return LA(parent(v), d). (recursively)

Time: O(#recursive calls) = O(#paths in D from v to the root).

• Let v = τ(u)

d = 2
u

v
Pv

Long Path Decomposition

Claim: The number of distinct paths in D encountered in the
path P from v to the root in T is O(

√
n).

Long Path Decomposition

Claim: The number of distinct paths in D encountered in the
path P from v to the root in T is O(

√
n).

• Let Pi be the path of D that contains vi.

Proof: Let v = v0, v1, . . . , vk be the vertices at which
a new path of D is encountered while traversing P .

v0

v1

v2

v3

vk

Long Path Decomposition

Claim: The number of distinct paths in D encountered in the
path P from v to the root in T is O(

√
n).

• Let Pi be the path of D that contains vi.

Proof: Let v = v0, v1, . . . , vk be the vertices at which
a new path of D is encountered while traversing P .

v0

v1

v2

v3

vk

• Let h(v) be the height v in T (i.e., the length
of the longest path from v to a leaf of T).

Long Path Decomposition

Claim: The number of distinct paths in D encountered in the
path P from v to the root in T is O(

√
n).

• Let Pi be the path of D that contains vi.

• By the long-path decomposition, |Pi| ≥ h(vi) ≥ i.

Proof: Let v = v0, v1, . . . , vk be the vertices at which
a new path of D is encountered while traversing P .

v0

v1

v2

v3

vk

• Let h(v) be the height v in T (i.e., the length
of the longest path from v to a leaf of T).

Long Path Decomposition

Claim: The number of distinct paths in D encountered in the
path P from v to the root in T is O(

√
n).

• Let Pi be the path of D that contains vi.

• By the long-path decomposition, |Pi| ≥ h(vi) ≥ i.

Proof: Let v = v0, v1, . . . , vk be the vertices at which
a new path of D is encountered while traversing P .

n ≥
�����

k[

i=1

Pi

����� ≥
kX

i=1

i ≥ k2

2
=⇒

√
2n ≥ k.

v0

v1

v2

v3

vk

• Let h(v) be the height v in T (i.e., the length
of the longest path from v to a leaf of T).

Long Path Decomposition

Claim: The number of distinct paths in D encountered in the
path P from v to the root in T is O(

√
n).

• Let Pi be the path of D that contains vi.

• By the long-path decomposition, |Pi| ≥ h(vi) ≥ i.

Proof: Let v = v0, v1, . . . , vk be the vertices at which
a new path of D is encountered while traversing P .

n ≥
�����

k[

i=1

Pi

����� ≥
kX

i=1

i ≥ k2

2
=⇒

√
2n ≥ k.

Time: O(
√
n) Is this tight?

v0

v1

v2

v3

vk

• Let h(v) be the height v in T (i.e., the length
of the longest path from v to a leaf of T).

Long Path Decomposition

v

Time: Ω(
√
n)

Solutions so far

Size Preprocessing
Time

Query Time

O(n log n) O(n log n) O(log n)

O(n) O(n)–

O(n2) O(1)O(n3)

O(n2) O(1)O(n2)

Notes

Jump Pointers

Solutions so far

Size Preprocessing
Time

Query Time

O(n log n) O(n log n) O(log n)

O(n) O(n)–

O(n2) O(1)O(n3)

O(n2) O(1)O(n2)

Notes

Jump Pointers

O(n) O(n) O(
√
n) Long Path Dec.

Long Path Decomposition + Ladders

0
1
2
3
4
5
6
7
8
9

Extend each path Pv ∈ D into a ladder Lv with η(Pv) more
vertices towards the root (if they exist).

Let η(Pv) be the number of vertices of the path Pv ∈ D.

Long Path Decomposition + Ladders

0
1
2
3
4
5
6
7
8
9

Extend each path Pv ∈ D into a ladder Lv with η(Pv) more
vertices towards the root (if they exist).

Let η(Pv) be the number of vertices of the path Pv ∈ D.

Long Path Decomposition + Ladders

0
1
2
3
4
5
6
7
8
9

Extend each path Pv ∈ D into a ladder Lv with η(Pv) more
vertices towards the root (if they exist).

Let η(Pv) be the number of vertices of the path Pv ∈ D.

Long Path Decomposition + Ladders

0
1
2
3
4
5
6
7
8
9

Extend each path Pv ∈ D into a ladder Lv with η(Pv) more
vertices towards the root (if they exist).

Let η(Pv) be the number of vertices of the path Pv ∈ D.

Long Path Decomposition + Ladders

For each ladder Lv = ⟨v′ = u0, u1, . . . , v = uj , . . . , uk⟩:
• Store, in v, an array Bv of length k + 1 where Bv[i]
contains (a reference to) ui

• Each ui with i ≥ j stores a reference τ(ui) to v.

The length of Bv is at most twice the length of Av =⇒ the
total size is still O(n).

Long Path Decomposition + Ladders

To report LA(u, d):

• If d ≥ dv′ : return Bv[d− dv′].

• If d < dv′ : return LA(v′, d). (recursively)

For each ladder Lv = ⟨v′ = u0, u1, . . . , v = uj , . . . , uk⟩:
• Store, in v, an array Bv of length k + 1 where Bv[i]
contains (a reference to) ui

• Each ui with i ≥ j stores a reference τ(ui) to v.

The length of Bv is at most twice the length of Av =⇒ the
total size is still O(n).

How many recursive calls?

• Let v = τ(u) and v′ = Bv[0].

v

v′

u

Long Path Decomposition + Ladders

• Since u ∈ Pv we have:

• If we recurse, Lv cannot contain the root of T .

• The height of the queried vertex doubles at every iteration
=⇒ O(log n) iterations.

How many recursive calls?

h(v′) ≥ |Lv| = 2η(Pv)− 1 ≥ 2(1 + h(u))− 1 ≥ 2h(u) + 1

|Lv| = η(Lv)− 1 = 2η(Pv)− 1 v

v′

u

Solutions so far

Size Preprocessing
Time

Query Time

O(n log n) O(n log n) O(log n)

O(n) O(n)–

O(n2) O(1)O(n3)

O(n2) O(1)O(n2)

Notes

Jump Pointers

O(n) O(n) O(
√
n) Long Path Dec.

Solutions so far

Size Preprocessing
Time

Query Time

O(n log n) O(n log n) O(log n)

O(n) O(n)–

O(n2) O(1)O(n3)

O(n2) O(1)O(n2)

Notes

Jump Pointers

O(n) O(n) O(
√
n) Long Path Dec.

O(n) O(n) O(log n) + Ladders

Long Path Dec. + Ladders + Jump Pointers

To report LA(u, d):

• Let w = J(u, ℓk), v = τ(w) and v′ = Bv[0].

0 < du − d = 2ℓk + 2ℓk−1 + · · ·+ 2ℓ1

• Return Bv[dv′ − d].

d = 1

u

v′

w
v

4

Query time: O(1)

Long Path Dec. + Ladders + Jump Pointers

Space usage: O(n+ n log n) = O(n log n)|{z}
Ladders

Jump Pointersz }| {

Long Path Dec. + Ladders + Jump Pointers

A trick to reduce space:

Space usage: O(n+ n log n) = O(n log n)|{z}
Ladders

Jump Pointersz }| {

• Only store jump pointers J(v, ℓ) in the leaves v of T .

• For each node u of T , store a reference to a leaf λu in the
subtree of T rooted at u.

• LA(u, d) = LA(λu, d)

Long Path Dec. + Ladders + Jump Pointers

A trick to reduce space:

Space usage: O(n+ n log n) = O(n log n)|{z}
Ladders

Jump Pointersz }| {

• Only store jump pointers J(v, ℓ) in the leaves v of T .

• For each node u of T , store a reference to a leaf λu in the
subtree of T rooted at u.

• LA(u, d) = LA(λu, d)

Space usage: O(n+ L log n), where L = #leaves of T .

Solutions so far

Size Preprocessing
Time

Query Time

O(n log n) O(n log n) O(log n)

O(n) O(n)–

O(n2) O(1)O(n3)

O(n2) O(1)O(n2)

Notes

Jump Pointers

O(n) O(n) O(
√
n) Long Path Dec.

O(n) O(n) O(log n) + Ladders

Solutions so far

Size Preprocessing
Time

Query Time

O(n log n) O(n log n) O(log n)

O(n) O(n)–

O(n2) O(1)O(n3)

O(n2) O(1)O(n2)

Notes

Jump Pointers

O(n) O(n) O(
√
n) Long Path Dec.

O(n) O(n) O(log n) + Ladders

+ Ladders, JPO(1)O(n+ L log n)O(n+ L log n)

Solutions so far

Size Preprocessing
Time

Query Time

O(n log n) O(n log n) O(log n)

O(n) O(n)–

O(n2) O(1)O(n3)

O(n2) O(1)O(n2)

Notes

Jump Pointers

O(n) O(n) O(
√
n) Long Path Dec.

O(n) O(n) O(log n) + Ladders

+ Ladders, JPO(1)O(n+ L log n)O(n+ L log n)

If only we had O(n
log n) leaves...

Macro-Micro trees

Macro-Micro trees

Find the set M of all maximally deep vertices with at least
x = 1

4 log n descendants.

Macro-Micro trees

Find the set M of all maximally deep vertices with at least
x = 1

4 log n descendants.

Example for x = 7

Macro-Micro trees

Find the set M of all maximally deep vertices with at least
x = 1

4 log n descendants.

Example for x = 7

Split T into a macro-tree T ′ containing all the ancestors of the
vertices in M and several micro-trees in T \ T ′.

Macro-Micro trees

Find the set M of all maximally deep vertices with at least
x = 1

4 log n descendants.

Example for x = 7

Split T into a macro-tree T ′ containing all the ancestors of the
vertices in M and several micro-trees in T \ T ′.

Macro-Micro trees

Find the set M of all maximally deep vertices with at least
x = 1

4 log n descendants.

Example for x = 7

Split T into a macro-tree T ′ containing all the ancestors of the
vertices in M and several micro-trees in T \ T ′.

Handling the Macro-tree

How many leaves in T ′?

T ′

The leaves of T ′ are the vertices in M .

Each vertex in M has at least 1
4 log n descendants in T .

|M | · 1
4 log n ≤ n =⇒ |M | = O(n

log n).

Build the previous LA oracle O′ on T ′.

Size/build time: O(n+|M | log n)=O(n). Query time: O(1).

Handling the Micro-trees

How many different types of micro-trees?

A rooted tree on ≤ m vertices can be uniquely represented by
an array of 2(m− 1) bits.

Handling the Micro-trees

How many different types of micro-trees?

A rooted tree on ≤ m vertices can be uniquely represented by
an array of 2(m− 1) bits.

Perform a DFS traversal. Write 0 when an edge is traversed
towards the leaves, and 1 when it is traversed towards the root.

0

1 2 . . . 2(m− 1)

Handling the Micro-trees

How many different types of micro-trees?

A rooted tree on ≤ m vertices can be uniquely represented by
an array of 2(m− 1) bits.

Perform a DFS traversal. Write 0 when an edge is traversed
towards the leaves, and 1 when it is traversed towards the root.

0 0

1 2 . . . 2(m− 1)

Handling the Micro-trees

How many different types of micro-trees?

A rooted tree on ≤ m vertices can be uniquely represented by
an array of 2(m− 1) bits.

Perform a DFS traversal. Write 0 when an edge is traversed
towards the leaves, and 1 when it is traversed towards the root.

0 0 1

1 2 . . . 2(m− 1)

Handling the Micro-trees

How many different types of micro-trees?

A rooted tree on ≤ m vertices can be uniquely represented by
an array of 2(m− 1) bits.

Perform a DFS traversal. Write 0 when an edge is traversed
towards the leaves, and 1 when it is traversed towards the root.

0 0 1 1

1 2 . . . 2(m− 1)

Handling the Micro-trees

How many different types of micro-trees?

A rooted tree on ≤ m vertices can be uniquely represented by
an array of 2(m− 1) bits.

Perform a DFS traversal. Write 0 when an edge is traversed
towards the leaves, and 1 when it is traversed towards the root.

0 0 1 01

1 2 . . . 2(m− 1)

Handling the Micro-trees

How many different types of micro-trees?

A rooted tree on ≤ m vertices can be uniquely represented by
an array of 2(m− 1) bits.

Perform a DFS traversal. Write 0 when an edge is traversed
towards the leaves, and 1 when it is traversed towards the root.

0 0 1 0 01

1 2 . . . 2(m− 1)

Handling the Micro-trees

How many different types of micro-trees?

A rooted tree on ≤ m vertices can be uniquely represented by
an array of 2(m− 1) bits.

Perform a DFS traversal. Write 0 when an edge is traversed
towards the leaves, and 1 when it is traversed towards the root.

0 0 1 0 0 11

1 2 . . . 2(m− 1)

Handling the Micro-trees

How many different types of micro-trees?

A rooted tree on ≤ m vertices can be uniquely represented by
an array of 2(m− 1) bits.

Perform a DFS traversal. Write 0 when an edge is traversed
towards the leaves, and 1 when it is traversed towards the root.

0 0 1 0 0 11 0

1 2 . . . 2(m− 1)

Handling the Micro-trees

How many different types of micro-trees?

A rooted tree on ≤ m vertices can be uniquely represented by
an array of 2(m− 1) bits.

Perform a DFS traversal. Write 0 when an edge is traversed
towards the leaves, and 1 when it is traversed towards the root.

0 0 1 0 0 11 0 1

1 2 . . . 2(m− 1)

Handling the Micro-trees

How many different types of micro-trees?

A rooted tree on ≤ m vertices can be uniquely represented by
an array of 2(m− 1) bits.

Perform a DFS traversal. Write 0 when an edge is traversed
towards the leaves, and 1 when it is traversed towards the root.

0 0 1 0 0 11 0 1 1

1 2 . . . 2(m− 1)

Handling the Micro-trees

How many different types of micro-trees?

A rooted tree on ≤ m vertices can be uniquely represented by
an array of 2(m− 1) bits.

Perform a DFS traversal. Write 0 when an edge is traversed
towards the leaves, and 1 when it is traversed towards the root.

0 0 1 0 0 11 0 1 1

Pad with 1s.

1 1

1 2 . . . 2(m− 1)

Handling the Micro-trees

How many different types of micro-trees?

A rooted tree on ≤ m vertices can be uniquely represented by
an array of 2(m− 1) bits.

At most 22(m−1) < 22m trees with up to m vertices

=⇒ O(22
1
4 log n) = O(

√
n) micro-tree types.

Handling the Micro-trees

For each of the O(
√
n) distinct micro-trees types Ti

• Build the trival oracle Oi with size/preprocessing time
O(|Ti|2) and query time O(1).

Handling the Micro-trees

For each of the O(
√
n) distinct micro-trees types Ti

• Build the trival oracle Oi with size/preprocessing time
O(|Ti|2) and query time O(1).

For each vertex u of T that belongs to a micro tree:

• Store, in u, the index i of the type of its micro-tree.

• Store, in u, the vertex µ(u) in Ti corresponding to u.

• Store, in u, the root ρ(u) of its micro-tree.

Handling the Micro-trees

For each of the O(
√
n) distinct micro-trees types Ti

• Build the trival oracle Oi with size/preprocessing time
O(|Ti|2) and query time O(1).

Total size/time: O(
√
n) ·O(log2 n) +O(n) = O(n).

For each vertex u of T that belongs to a micro tree:

• Store, in u, the index i of the type of its micro-tree.

• Store, in u, the vertex µ(u) in Ti corresponding to u.

• Store, in u, the root ρ(u) of its micro-tree.

Answering a Query

To answer LA(u, d):

• If u is in the macro tree T ′: query O′ for LA(u, d).

• If u is in a micro-tree T ′′:

• Let i be the type of the micro-tree containing u.

• If d < dρ(u): query O′ for LA(parent(ρ(u)), d).

• Query Oi for LA(µ(u), d− dρ(u)).

Query time: O(1).

• Otherwise:

(and map it back to a vertex in T ′′)

Solutions so far

Size Preprocessing
Time

Query Time

O(n log n) O(n log n) O(log n)

O(n) O(n)–

O(n2) O(1)O(n3)

O(n2) O(1)O(n2)

Notes

Jump Pointers

O(n) O(n) O(
√
n) Long Path Dec.

O(n) O(n) O(log n) + Ladders

+ Ladders, JPO(1)O(n+ L log n)O(n+ L log n)

Solutions so far

Size Preprocessing
Time

Query Time

O(n log n) O(n log n) O(log n)

O(n) O(n)–

O(n2) O(1)O(n3)

O(n2) O(1)O(n2)

Notes

Jump Pointers

O(n) O(n) O(
√
n) Long Path Dec.

O(n) O(n) O(log n) + Ladders

+ Ladders, JPO(1)O(n+ L log n)O(n+ L log n)

+Macro-Micro treesO(1)O(n)O(n)

