Range Trees

Range Trees

Y2

Y1

Range Trees

Y2

Y1

Range Trees

Range Trees
Input:

A set S of n D-dimensional points.

Goal:
Design a data stucture that, given p; € Z”,py € ZP can:

e Report the number of points ¢ € S such that p; < q < ps.
e Report the set of points ¢ € S such that p; < q < ps.

e Report the point ¢ € 5, p1 < q < po, with smallest D-th
coordinate.

An easy case: D =1

e Points are integers
e Store points in a sorted array (in time O(nlogn)).

e Perform queries by binary searching for p; and ps

e X
> X
o X
Q. X
o X
< X
> X
@.x
<. X
=X

X

An easy case: D =1

e Points are integers
e Store points in a sorted array (in time O(nlogn)).

e Perform queries by binary searching for p; and ps

Query time: O(logn + k) k = “size” of the output.
e k = # reported points.

e k£ =0(1) if we only care about the number of points.

e X
> X
o X
Q. X
o X
< X
> X
. X
<L X
=X

X

\ J

X

An easy case: D =1

e Points are integers
e Store points in a sorted array (in time O(nlogn)).

e Perform queries by binary searching for p; and ps

Query time: O(logn + k) k = “size” of the output.
e k = # reported points.

e k£ =0(1) if we only care about the number of points.

Space complexity: O(n)

K —AHK AKX XK K — K K — K — K K>
a b ¢ d € g h 1 9 k

X
f

Range Trees: D =1

Range Trees: D =1

Range Trees: D =1

O 1o

Range Trees: D =1

O 1o

Range Trees: D =1

Construction:

e Preliminarily sort .S (only once!)
—

e Split S into S7 and S of &~ 5 elements each. O(1)

e Recursively build 77 and 15 from S; and S5, respectively.

e The root of 1" has 17 and 15 as its left and right subtrees.

e Return T

Range Trees: D =1

Construction:

e Preliminarily sort .S (only once!)
—

e Split S into S7 and S of &~ 5 elements each. O(1)

e Recursively build 77 and 15 from S; and S5, respectively.

e The root of 1" has 17 and 15 as its left and right subtrees.

e Return T

Time: O(nlogn) +T(n), where T'(n) =2-T(5) + O(1)
O(nlogn)

Range Trees: D =1

Construction:

e Preliminarily sort .S (only once!)
—

e Split S into S7 and S of &~ 5 elements each. O(1)

e Recursively build 77 and 15 from S; and S5, respectively.

e The root of 1" has 17 and 15 as its left and right subtrees.

e Return T

Time: O(nlogn) +T(n), where T'(n) =2-T(5) + O(1)
O(nlogn)

What if S is already sorted?

Range Trees: D =1

Construction:

e Preliminarily sort .S (only once!)
—

e Split S into S7 and S of &~ 5 elements each. O(1)

e Recursively build 77 and 15 from S; and S5, respectively.

e The root of 1" has 17 and 15 as its left and right subtrees.

e Return T

Time: O(nlogn) +T(n), where T'(n) =2-T(5) + O(1)
O(nlogn)

What if S is already sorted? O(n) (we will need this later)

Range Trees: D =1

Preprocessing time: O(nlogn)
Query time: O(logn + k)
e k = +# reported points.

e k= 0(1) if we only care about the number of points.

Space complexity: O(n)

O 0000 O O O O
K KKK AK KKK AKX AKX

Range Trees: D = 2

S |

Range Trees: D = 2

Range Trees: D = 2

K—AHK—K K —XK K—HK—XK—XK

Range Trees: D = 2

Build a range tree on the set of x-coordinates of the points in S

Range Trees: D = 2

For each node v representing an interval I, = |x1, x2|, build a range tree
R, on the y coodinates of the points in S with x-coordinate in I,

-0
B>~ 0 >0

> >0 > > < O
>0 O+»<1O O =0 >=0 O C

KX —HKHKXK X—XK X — XK — XK — XK — XK K>
I I X

i va 1

Range Trees: D = 2

Range Trees: D = 2

Range Trees: D = 2

X
X
X -
X
X
X
>
A
Y X

y A

Range Trees: D = 2

X
X
X -
X
X
X
>
A
Y X

y A

Range Trees: D = 2

Construction:

e Preliminarily sort S on the x-coordinate.
—>

e Split S into 51 and S of & 5 elements each.

e Recursively build 77 and 15 from S; and S5, respectively.

e Theroot v of T has 17 and I5 as its left and right subtrees.

e Store, in v, a pointer to a new 1D Range Tree on S

e Return T

Range Trees: D = 2

Construction:

e Preliminarily sort S on the x-coordinate.
—>

e Split S into 51 and S of & 5 elements each.

e Recursively build 77 and 15 from S; and S5, respectively.

e Theroot v of T has 17 and I5 as its left and right subtrees.

e Store, in v, a pointer to a new 1D Range Tree on S

e Return T

Time: O(nlogn) + T'(n), where T'(n) =2-T(%) + O(nlogn)

O(nlog®n)

Range Trees: D = 2

_ SY Is the set S sorted on the y-coordinate
Construction:

e Preliminarily sort S on the z-coordinate.

e Split S into 7 and S of & 5 elements each.

e Recursively build (77,57) and (13,55) from S; and S5,
respectively.

e Theroot v of T has 17 and I5 as its left and right subtrees.
e Merge S7 and S3 into SY.

e Store, in v, a pointer to a new 1D Range Tree on SY

e Return (7,5Y)

Range Trees: D = 2

_ SY Is the set S sorted on the y-coordinate
Construction:

e Preliminarily sort S on the z-coordinate.

e Split S into 7 and S of & 5 elements each.

e Recursively build (77,57) and (13,55) from S; and S5,
respectively.

e Theroot v of T has 17 and I5 as its left and right subtrees.

e Merge SY and S into SY.
e Store, in v, a pointer to a new 1D Range Tree on SY

e Return (7,5Y)
Time: O(nlogn) +T'(n), where T(n)=2-T(%)+ O(n)
O(nlogn)

Range Trees: D = 2

To report the points p1 = (z1,y1) < ¢ < p2 = (T2, y2):
e Use T to find the h = O(logn) subtrees Ry, ..., Ry that
store the points ¢ = (x,y) with 1 < x < x5,

o For each tree R; € {Ry,..., Ry} representing the
z-interval 1;:

e Query R, to report the number of/set of points
q = (x,y) with x € I, and y; <y < yo.

Range Trees: D = 2

To report the points p1 = (z1,y1) < ¢ < p2 = (T2, y2):

e Use T to find the h = O(logn) subtrees Ry, ..., Ry that
store the points ¢ = (x,y) with 1 < x < x5,

o For each tree R; € {Ry,..., Ry} representing the
z-interval 1;:

e Query R, to report the number of/set of points
q = (x,y) with x € I, and y; <y < yo.

Time complexity:

O(logn) - O(logn) + O(k) = O(log® n + k)

I — |

|
Number of R;s Time to query R; “size” of the output

Range Trees: D = 2

Preprocessing time: O(nlogn)

Query time: O(log®n + k)
e k = # reported points.

e k£ =0(1) if we only care about the number of points.

Space complexity:
e Bounded by the overall size of 1D Range Trees
e Each point belongs to O(logn) 1D Range Tees
e Total space: O(nlogn)

Higher dimensions: construction

To store points p = (x,vy, 2, w, ...) in D > 2 dimensions:
Recursive construction:

e Build a Range Tree T" on the first coordinate x of the points:

e For each subtree T, of 1" associated with the interval
I’U — [331,332]:

e Construct a range tree R, on the last D — 1 coordinates
(¢, z...) of the set of points p = (z,y,...) with x € I,,.

e Store, in v, a pointer to R,,.

Time: O(nlog” ' n).

Y

Space: O(nlog” ' n). /j%\

Higher dimensions: query

Let P1 — (xl,yl,zl, . .), Do — (SCQ,yQ,ZQ, ..)

To report the points p; < q < ps:

e Use T to find the h = O(logn) subtrees Ry, ..., Ry that
store the points ¢ = (z,v, z,...) with 1 <z < x,.

e For each tree R, € {R1,..., Ry} representing the
z-interval I;:

e Recursively query R; to report the number/set of points
qs.t xc [j and (yl,Zl,...) < qg< (yQ,ZQ,...).

Query time: O(log” n + k).

> 2

Recap

Preprocessing
Time
O(nlogn)

O(nlogn)

O(nlog” ' n)

Query Time
O(logn + k)
O(log® n + k)

O(log” n + k)

Notes

Fractional Cascading

Fractional Cascading: The problem

Input:
k sorted arrays A, ..., A, of n elements each:

A1 | 41]9]15(22|23|38]41|50(53 |58

Ao |3 |710|11]|15|17]|20(36(62|64

Ag |21(23]29(35|37]40(52|57|61|66

Aq |2]5]6[15(24(27]|39(50(54|76

Query:

Given x report, forte =1,....k, x if x € A; or its predecessor

Fractional Cascading: The problem

Input:
k sorted arrays A, ..., A, of n elements each:

A1 | 4]9](15(22/23]38]41|50|53|58

r =31
Ao | 3] 7(10|11]15[17|20|36|62|64
Az |21(23]29]35(37|40(52|57|61|66
Ay [2|56 [15(24]|27|39|50|54|76
Query:
Given x report, forte =1,....k, x if x € A; or its predecessor

Fractional Cascading: The problem

Input:
k sorted arrays A, ..., A, of n elements each:

A1 | 41]9(15]22|23(38|41[50(53[58

T = 98
As | 3] 7(10]11|15]17/20{36/62|64
Az |21]23|29(35|37(40|52|57]|61|66
As | 2|56 |15]24[27|39]50|54|76
Query:
Given x report, forte =1,....k, x if x € A; or its predecessor

Fractional Cascading: A Trivial solution

o Fori=1,...,k:

e Binary search for x in A;

Time: O(klogn)

Fractional Cascading

First idea: cross linking

Keep pointers from A;|j] to the predecessor of A;|j] in A;y1.

TN/

3|3
Ao | 3]710]11]15(17]|20|36|62|64

|/

Ag [19(23]29(35|37]40|52|57|61|66
15(24(2739|50

Ay 12]5]6 54|76

A1 [419]15|22]|23(38(41|50|53|58
0|1

Fractional Cascading

First idea: cross linking

Keep pointers from A;|j] to the predecessor of A;|j] in A;y1.

TR/

Ag |3 710 2|64
As (19 716166

\\\\\\\\l/

Ay 015476

Fractional Cascading

First idea: cross linking

Keep pointers from A;|j] to the predecessor of A;|j] in A;y1.

VAN N/

Ay 336 2]64
As (19 716166

\\\\\\\\l/

Ay 015476

Fractional Cascading

First idea: cross linking

Keep pointers from A;|j] to the predecessor of A;|j] in A;y1.

TR/

23|2 716166

\\\\\\\l/

Ay |2 015476

Fractional Cascading

First idea: cross linking

Keep pointers from A;|j] to the predecessor of A;|j] in A;y1.

TR/

66

76

Fractional Cascading

First idea: cross linking

Keep pointers from A;|j] to the predecessor of A;|j] in A;y1.

TR/

29(3 716166

\\\\\\\l/

Ay [2]5]6][15]24]27]39[50][54]76

Fractional Cascading

First idea: cross linking

Keep pointers from A;|j] to the predecessor of A;|j] in A;y1.

TR/

66

76

Fractional Cascading

First idea: cross linking

Keep pointers from A;|j] to the predecessor of A;|j] in A;y1.

TR/

Ay (21516115 24@39 50]54[76

Fractional Cascading

How much time does it take?

Ay

Fractional Cascading

How much time does it take?

N aaess

Fractional Cascading

How much time does it take?

Ay

/

Fractional Cascading

How much time does it take?

Ay

/

Fractional Cascading

How much time does it take?

N aaess

Ao []

Fractional Cascading

How much time does it take?

N aaess

Fractional Cascading

How much time does it take?

N aaess

Fractional Cascading

How much time does it take?

N aaess

Fractional Cascading

How much time does it take?

N aaess

Fractional Cascading

How much time does it take?

N aaess

Fractional Cascading

How much time does it take?

N aaess
S aeas

Fractional Cascading

How much time does it take?

N aaess
S aeas

Fractional Cascading

How much time does it take?

N aaess

Fractional Cascading

How much time does it take?

N aaess

Worst-case time: O(kn)

Fractional Cascading

Second idea: fractional cascading

For: =k, k—1,...,2: Add every other element of A; to A;_1.

VTN Y72

//////////////

As |5 [15]19/23]2

\\\l \l///////

Ay 15[24[27(39]50[54|76]

Fractional Cascading

Keep pointers from newly added elements to A; to their
predecessor among the original elements of A,

Almr\?r\p(\ﬁ\ ~_n

9111|15|15(20(22|23|29|37|38|41|50({53|57 (58|64

~ AN AN N

Ao |37 (1011]15(15]17]20(|23(29|36|37(50|57|62|64|66

| A | A F\
Ag | 5(15|19(23|27(29|35(37|40(50(52(57|61|66|76

Fractional Cascading

Keep pointers from newly added elements to A; to their
predecessor among the original elements of A,

AN\

A 17

| A

'\

L

23

29

37

38

41

o0

03

57

58|64

| A

11 15&0

A\

AN

\

As |37

10

11

15

15

17

20

23

29

36

37

50

57

62

64

66

| A

Y\

\

19

23

27

29

39

37

40

50

02

o7

61

66

76

15

24

27

39

o0

54

76

Fractional Cascading

Keep pointers from newly added elements to A; to their
predecessor among the original elements of A,

AN\

A 17

A

| A

'\

L

23

29

37

38

41

o0

03

57

58|64

A\

AN

\

10

20

23

29

36

37

50

57

62

64

66

Y\

\

15

19

23

29

39

37

40

50

02

o7

61

66

76

15

24

27

39

o0

54

76

Fractional Cascading

Keep pointers from newly added elements to A; to their
predecessor among the original elements of A,

AN\

'\

A 17

9

11

| A

'\

R

L

23129

37

38

41

o0

03

57

58|64

a

As |37

10

11

15

15

| A

AN

\

36

37

50

57

62

64

66

9

Y\

\

19

23

27

29

39

37

40150

02

o7

61

66

76

15

24

27

39

o0

54|76

Fractional Cascading

Keep pointers from newly added elements to A; to their
predecessor among the original elements of A,

AN\

AN | ANEE AN
A; | 4]7]9|11]15[15]20(22]23|29(37|38(41|50(53|57|58 |64
;6\ N
Ag |37 36/37(50|57(62|64|66
N\
As | 51519 52|57(61|66|76

15

24

27

39

o0

54

76

Fractional Cascading

Keep pointers from newly added elements to A; to their
predecessor among the original elements of A,

AN\

A 17

| ANEEN AN
11|15]15(20|22|23|29|37|38|41|50(53|57|58|64
;6\ N
36(37(50(57|62(64|66
P\
52|57(61|66|76

15

24

27

39

o0

54

76

Fractional Cascading

Keep pointers from newly added elements to A; to their
predecessor among the original elements of A,

AN\

| A\
Ay |4|7]9]|11]15]15

| A

'\

20

L

23

29

37

38

41

o0

03

57

o8

64

AN

\

36

37

50

57

62

64

66

\

02

o7

61

66

76

Fractional Cascading

Keep pointers from newly added elements to A; to their
predecessor among the original elements of A,

AN\

N\
Ay 1471911

| A

'\

23

29

37

38

41

o0

03

57

o8

64

AN

\

29

36

37

50

57

62

64

66

\

50

02

o7

61

66

76

Size O(kn)

27

39

o0

54

76

Preprocessing O(kn)

Query: O(k + logn)

Layered Range Trees

Layered Range Trees, D = 2

Reuse the cross-linking idea from fractional cascading

Layered Range Trees, D = 2

Reuse the cross-linking idea from fractional cascading

| [«—()
I Ul
| «—() | |«)
U) U Ul
[J=() =) 1 ()] ()
Ul U U] U]

Layered Range Trees, D = 2

Reuse the cross-linking idea from fractional cascading

] | l«—()
I Ul
C T T 1<)] [<)
U) U Ul
T J=() [T (T 1 () (1] ()
Ul Ul U] U]

Layered Range Trees, D = 2

YV element y in the 1D range tree of v, store a pointer to the
predecessor of y in the 1D range tree of the left/right child of v.

Layered Range Trees, D = 2

YV element y in the 1D range tree of v, store a pointer to the
predecessor of y in the 1D range tree of the left/right child of v.

Layered Range Trees, D = 2

YV element y in the 1D range tree of v, store a pointer to the
predecessor of y in the 1D range tree of the left/right child of v.

——— @
¥ e) L ()
-@ \-i ®] <) 1] <)
AN

S

Layered Range Trees, D = 2

YV element y in the 1D range tree of v, store a pointer to the
predecessor of y in the 1D range tree of the left/right child of v.

——— @
¥ e) L ()
-@ \-i ®] <) 1] <)
AN

O JOU O O O O N\

X HK—AKXK K—XK X K—X X K—XK—>
Query: O(k + logn) L

> 2

Recap

Preprocessing
Time
O(nlogn)

O(nlogn)

O(nlog” ' n)

Query Time
O(logn + k)
O(log® n + k)

O(log” n + k)

Notes

> 2

Recap

Preprocessing
Time
O(nlogn)

O(nlogn)
O(nlog” ' n)

O(nlogn)

Query Time

O(logn + k)
O(log® n + k)
O(log® n + k)

O(logn + k)

Notes

with
cross-linking

> 2

> 2

O(

D—-1

nlog” " n)

O(nlogn)

O(

nlog” ' n)

Recap

Preprocessing
Time
O(nlogn)

O(nlogn)
O(nlog” ' n)
O(nlogn)

O(nlog” ' n)

Query Time

O(logn + k)
O(log® n + k)
O(log® n + k)
O(logn + k)

O(log” ' n+k)

Notes

with
cross-linking

with
cross-linking

> 2

2

> 2

O(nlogn)
O(nlog” ' n)
O(nlogn)

O(nlog”~'n)

Recap

Preprocessing
Time
O(nlogn)

O(nlogn)
O(nlog” ' n)
O(nlogn)

O(nlog” ' n)

Query Time

O(logn + k)
O(log® n + k)
O(log® n + k)
O(logn + k)

O(log” ' n+k)

Notes

with
cross-linking

with
cross-linking

Can be made dynamic (supports point insertion / deletion) in
O(log” n) amortized time per update.

