Range Trees

Range Trees

Range Trees

Range Trees

Range Trees

Input:

A set S of $n D$-dimensional points.

Goal:

Design a data stucture that, given $p_{1} \in \mathbb{Z}^{D}, p_{2} \in \mathbb{Z}^{D}$ can:

- Report the number of points $q \in S$ such that $p_{1} \leq q \leq p_{2}$.
- Report the set of points $q \in S$ such that $p_{1} \leq q \leq p_{2}$.
- Report the point $q \in S, p_{1} \leq q \leq p_{2}$, with smallest D-th coordinate.

An easy case: $D=1$

- Points are integers
- Store points in a sorted array (in time $O(n \log n)$).
- Perform queries by binary searching for p_{1} and p_{2}

An easy case: $D=1$

- Points are integers
- Store points in a sorted array (in time $O(n \log n)$).
- Perform queries by binary searching for p_{1} and p_{2}

Query time: $O(\log n+k) \quad k=$ "size" of the output.

- $k=\#$ reported points.
- $k=\Theta(1)$ if we only care about the number of points.

An easy case: $D=1$

- Points are integers
- Store points in a sorted array (in time $O(n \log n)$).
- Perform queries by binary searching for p_{1} and p_{2}

Query time: $O(\log n+k) \quad k=$ "size" of the output.

- $k=\#$ reported points.
- $k=\Theta(1)$ if we only care about the number of points.

Space complexity: $O(n)$

Range Trees: $D=1$

Range Trees: $D=1$

Range Trees: $D=1$

Range Trees: $D=1$

Range Trees: $D=1$

Construction:

- Preliminarily sort S (only once!)
- Split S into S_{1} and S_{2} of $\approx \frac{n}{2}$ elements each.
- Recursively build T_{1} and T_{2} from S_{1} and S_{2}, respectively.
- The root of T has T_{1} and T_{2} as its left and right subtrees.
- Return T

Range Trees: $D=1$

Construction:

- Preliminarily sort S (only once!)
- Split S into S_{1} and S_{2} of $\approx \frac{n}{2}$ elements each.
- Recursively build T_{1} and T_{2} from S_{1} and S_{2}, respectively.
- The root of T has T_{1} and T_{2} as its left and right subtrees.
- Return T

Time: $O(n \log n)+T(n)$, where $T(n)=2 \cdot T\left(\frac{n}{2}\right)+O(1)$

$$
O(n \log n)
$$

Range Trees: $D=1$

Construction:

- Preliminarily sort S (only once!)
- Split S into S_{1} and S_{2} of $\approx \frac{n}{2}$ elements each.
- Recursively build T_{1} and T_{2} from S_{1} and S_{2}, respectively.
- The root of T has T_{1} and T_{2} as its left and right subtrees.
- Return T

Time: $O(n \log n)+T(n)$, where $T(n)=2 \cdot T\left(\frac{n}{2}\right)+O(1)$

$$
O(n \log n)
$$

What if S is already sorted?

Range Trees: $D=1$

Construction:

- Preliminarily sort S (only once!)
- Split S into S_{1} and S_{2} of $\approx \frac{n}{2}$ elements each.
- Recursively build T_{1} and T_{2} from S_{1} and S_{2}, respectively.
- The root of T has T_{1} and T_{2} as its left and right subtrees.
- Return T

Time: $O(n \log n)+T(n)$, where $T(n)=2 \cdot T\left(\frac{n}{2}\right)+O(1)$

$$
O(n \log n)
$$

What if S is already sorted?
$O(n) \quad$ (we will need this later)

Range Trees: $D=1$

Preprocessing time: $O(n \log n)$
Query time: $O(\log n+k)$

- $k=\#$ reported points.
- $k=\Theta(1)$ if we only care about the number of points.

Space complexity: $O(n)$

Range Trees: $D=2$

(4,

Range Trees: $D=2$

Range Trees: $D=2$

Range Trees: $D=2$

Build a range tree on the set of x-coordinates of the points in S

Range Trees: $D=2$

For each node v representing an interval $I_{v}=\left[x_{1}, x_{2}\right]$, build a range tree R_{v} on the y coodinates of the points in S with x-coordinate in I_{v}

Range Trees: $D=2$

Range Trees: $D=2$

Range Trees: $D=2$

Range Trees: $D=2$

x
-

Range Trees: $D=2$

Construction:

- Preliminarily sort S on the x-coordinate.
- Split S into S_{1} and S_{2} of $\approx \frac{n}{2}$ elements each.
- Recursively build T_{1} and T_{2} from S_{1} and S_{2}, respectively.
- The root v of T has T_{1} and T_{2} as its left and right subtrees.
- Store, in v, a pointer to a new 1D Range Tree on S
- Return T

Range Trees: $D=2$

Construction:

- Preliminarily sort S on the x-coordinate.
- Split S into S_{1} and S_{2} of $\approx \frac{n}{2}$ elements each.
- Recursively build T_{1} and T_{2} from S_{1} and S_{2}, respectively.
- The root v of T has T_{1} and T_{2} as its left and right subtrees.
- Store, in v, a pointer to a new 1D Range Tree on S
- Return T

Time: $O(n \log n)+T(n)$, where $T(n)=2 \cdot T\left(\frac{n}{2}\right)+O(n \log n)$

$$
O\left(n \log ^{2} n\right)
$$

Range Trees: $D=2$

Construction:
S^{y} is the set S sorted on the y-coordinate

- Preliminarily sort S on the x-coordinate.
- Split S into S_{1} and S_{2} of $\approx \frac{n}{2}$ elements each.
- Recursively build $\left(T_{1}, S_{1}^{y}\right)$ and $\left(T_{2}, S_{2}^{y}\right)$ from S_{1} and S_{2}, respectively.
- The root v of T has T_{1} and T_{2} as its left and right subtrees.
- Merge S_{1}^{y} and S_{2}^{y} into S^{y}.
- Store, in v, a pointer to a new 1D Range Tree on S^{y}
- Return $\left(T, S^{y}\right)$

Range Trees: $D=2$

Construction:
S^{y} is the set S sorted on the y-coordinate

- Preliminarily sort S on the x-coordinate.
- Split S into S_{1} and S_{2} of $\approx \frac{n}{2}$ elements each.
- Recursively build $\left(T_{1}, S_{1}^{y}\right)$ and $\left(T_{2}, S_{2}^{y}\right)$ from S_{1} and S_{2}, respectively.
- The root v of T has T_{1} and T_{2} as its left and right subtrees.
- Merge S_{1}^{y} and S_{2}^{y} into S^{y}.
- Store, in v, a pointer to a new 1D Range Tree on S^{y}
- Return $\left(T, S^{y}\right)$

Time: $O(n \log n)+T(n)$, where $T(n)=2 \cdot T\left(\frac{n}{2}\right)+O(n)$

$$
O(n \log n)
$$

Range Trees: $D=2$

To report the points $p_{1}=\left(x_{1}, y_{1}\right) \leq q \leq p_{2}=\left(x_{2}, y_{2}\right)$:

- Use T to find the $h=O(\log n)$ subtrees R_{1}, \ldots, R_{h} that store the points $q=(x, y)$ with $x_{1} \leq x \leq x_{2}$.
- For each tree $R_{j} \in\left\{R_{1}, \ldots, R_{h}\right\}$ representing the x-interval I_{j} :
- Query R_{j} to report the number of/set of points $q=(x, y)$ with $x \in I_{j}$ and $y_{1} \leq y \leq y_{2}$.

Range Trees: $D=2$

To report the points $p_{1}=\left(x_{1}, y_{1}\right) \leq q \leq p_{2}=\left(x_{2}, y_{2}\right)$:

- Use T to find the $h=O(\log n)$ subtrees R_{1}, \ldots, R_{h} that store the points $q=(x, y)$ with $x_{1} \leq x \leq x_{2}$.
- For each tree $R_{j} \in\left\{R_{1}, \ldots, R_{h}\right\}$ representing the x-interval I_{j} :
- Query R_{j} to report the number of/set of points $q=(x, y)$ with $x \in I_{j}$ and $y_{1} \leq y \leq y_{2}$.

Time complexity:
$O(\log n) \cdot O(\log n)+O(k)=O\left(\log ^{2} n+k\right)$

Range Trees: $D=2$

Preprocessing time: $O(n \log n)$

Query time: $O\left(\log ^{2} n+k\right)$

- $k=\#$ reported points.
- $k=\Theta(1)$ if we only care about the number of points.

Space complexity:

- Bounded by the overall size of 1D Range Trees
- Each point belongs to $O(\log n)$ 1D Range Tees
- Total space: $O(n \log n)$

Higher dimensions: construction

To store points $p=(x, y, z, w, \ldots)$ in $D>2$ dimensions: Recursive construction:

- Build a Range Tree T on the first coordinate x of the points:
- For each subtree T_{v} of T associated with the interval $I_{v}=\left[x_{1}, x_{2}\right]$:
- Construct a range tree R_{v} on the last $D-1$ coordinates $(y, z \ldots)$ of the set of points $p=(x, y, \ldots)$ with $x \in I_{v}$.
- Store, in v, a pointer to R_{v}.

Time: $O\left(n \log ^{D-1} n\right)$.
Space: $O\left(n \log ^{D-1} n\right)$.

Higher dimensions: query

Let $p_{1}=\left(x_{1}, y_{1}, z_{1}, \ldots\right), p_{2}=\left(x_{2}, y_{2}, z_{2}, \ldots\right)$.
To report the points $p_{1} \leq q \leq p_{2}$:

- Use T to find the $h=O(\log n)$ subtrees R_{1}, \ldots, R_{h} that store the points $q=(x, y, z, \ldots)$ with $x_{1} \leq x \leq x_{2}$.
- For each tree $R_{j} \in\left\{R_{1}, \ldots, R_{h}\right\}$ representing the x-interval I_{j} :
- Recursively query R_{i} to report the number/set of points q s.t. $x \in I_{j}$ and $\left(y_{1}, z_{1}, \ldots\right) \leq q \leq\left(y_{2}, z_{2}, \ldots\right)$.

Query time: $O\left(\log ^{D} n+k\right)$.

Recap

D	Size	Preprocessing Time	Query Time
1	$O(n)$	$O(n \log n)$	$O(\log n+k)$
2	$O(n \log n)$	$O(n \log n)$	$O\left(\log ^{2} n+k\right)$
>2	$O\left(n \log ^{D-1} n\right)$	$O\left(n \log ^{D-1} n\right)$	$O\left(\log ^{D} n+k\right)$

Notes

Fractional Cascading

Fractional Cascading: The problem

Input:

k sorted arrays A_{1}, \ldots, A_{k} of n elements each:

$$
\begin{aligned}
& \begin{array}{l|l|l|l|l|l|l|l|l|l|l|}
\hline A_{1} & 4 & 9 & 15 & 22 & 23 & 38 & 41 & 50 & 53 & 58 \\
\cline { 2 - 6 }
\end{array} \\
& \begin{array}{l|l|l|l|l|l|l|l|l|l|l|}
\hline A_{2} & 3 & 7 & 10 & 11 & 15 & 17 & 20 & 36 & 62 & 64 \\
\hline
\end{array} \\
& \begin{array}{l|l|l|l|l|l|l|l|l|l|l|}
\hline 21 & \\
\hline 21 & 23 & 29 & 35 & 37 & 40 & 52 & 57 & 61 & 66 \\
\hline
\end{array} \\
& \begin{array}{l|l|l|l|l|l|l|l|l|l|l|}
\hline
\end{array} A_{4} \begin{array}{ll}
2 & 5 \\
\hline
\end{array}
\end{aligned}
$$

Query:

Given x report, for $i=1, \ldots, k, x$ if $x \in A_{i}$ or its predecessor if $x \notin A_{i}$.

Fractional Cascading: The problem

Input:

k sorted arrays A_{1}, \ldots, A_{k} of n elements each:

$$
\begin{aligned}
& x=31
\end{aligned}
$$

$$
\begin{aligned}
& A_{3} \xlongequal{21}|23| 29|35| 37|40| 52|57| 61 \mid 66
\end{aligned}
$$

Query:

Given x report, for $i=1, \ldots, k, x$ if $x \in A_{i}$ or its predecessor if $x \notin A_{i}$.

Fractional Cascading: The problem

Input:

k sorted arrays A_{1}, \ldots, A_{k} of n elements each:

$$
\begin{aligned}
& x=58
\end{aligned}
$$

$$
\begin{aligned}
& A_{3} \xlongequal{21}|23| 29|35| 37|40| 52[57|61| 66
\end{aligned}
$$

Query:

Given x report, for $i=1, \ldots, k, x$ if $x \in A_{i}$ or its predecessor if $x \notin A_{i}$.

Fractional Cascading: A Trivial solution

- For $i=1, \ldots, k$:
- Binary search for x in A_{i}

Time: $O(k \log n)$

Fractional Cascading

First idea: cross linking
Keep pointers from $A_{i}[j]$ to the predecessor of $A_{i}[j]$ in A_{i+1}.

Fractional Cascading

First idea: cross linking
Keep pointers from $A_{i}[j]$ to the predecessor of $A_{i}[j]$ in A_{i+1}.

Fractional Cascading

First idea: cross linking
Keep pointers from $A_{i}[j]$ to the predecessor of $A_{i}[j]$ in A_{i+1}.

Fractional Cascading

First idea: cross linking
Keep pointers from $A_{i}[j]$ to the predecessor of $A_{i}[j]$ in A_{i+1}.

Fractional Cascading

First idea: cross linking
Keep pointers from $A_{i}[j]$ to the predecessor of $A_{i}[j]$ in A_{i+1}.

Fractional Cascading

First idea: cross linking
Keep pointers from $A_{i}[j]$ to the predecessor of $A_{i}[j]$ in A_{i+1}.

Fractional Cascading

First idea: cross linking
Keep pointers from $A_{i}[j]$ to the predecessor of $A_{i}[j]$ in A_{i+1}.

Fractional Cascading

First idea: cross linking
Keep pointers from $A_{i}[j]$ to the predecessor of $A_{i}[j]$ in A_{i+1}.

Fractional Cascading

How much time does it take?

Fractional Cascading

How much time does it take?

Fractional Cascading

How much time does it take?

Fractional Cascading

How much time does it take?

Fractional Cascading

How much time does it take?

Fractional Cascading

How much time does it take?

Fractional Cascading

How much time does it take?

Fractional Cascading

How much time does it take?

Fractional Cascading

How much time does it take?

Fractional Cascading

How much time does it take?

Fractional Cascading

How much time does it take?

Fractional Cascading

How much time does it take?

Fractional Cascading

How much time does it take?

Fractional Cascading

How much time does it take?

Worst-case time: $O(k n)$

Fractional Cascading

Second idea: fractional cascading

For $i=k, k-1, \ldots, 2$: Add every other element of A_{i} to A_{i-1}.

Fractional Cascading

Keep pointers from newly added elements to A_{i} to their predecessor among the original elements of A_{i}

Fractional Cascading

Keep pointers from newly added elements to A_{i} to their predecessor among the original elements of A_{i}

Fractional Cascading

Keep pointers from newly added elements to A_{i} to their predecessor among the original elements of A_{i}

Fractional Cascading

Keep pointers from newly added elements to A_{i} to their predecessor among the original elements of A_{i}

Fractional Cascading

Keep pointers from newly added elements to A_{i} to their predecessor among the original elements of A_{i}

Fractional Cascading

Keep pointers from newly added elements to A_{i} to their predecessor among the original elements of A_{i}

Fractional Cascading

Keep pointers from newly added elements to A_{i} to their predecessor among the original elements of A_{i}

Fractional Cascading

Keep pointers from newly added elements to A_{i} to their predecessor among the original elements of A_{i}

Size $O(k n) \quad$ Preprocessing $O(k n) \quad$ Query: $O(k+\log n)$

Layered Range Trees

Layered Range Trees, $D=2$

Reuse the cross-linking idea from fractional cascading

Layered Range Trees, $D=2$

Reuse the cross-linking idea from fractional cascading

Layered Range Trees, $D=2$

Reuse the cross-linking idea from fractional cascading

Layered Range Trees, $D=2$

\forall element y in the 1D range tree of v, store a pointer to the predecessor of y in the 1D range tree of the left/right child of v.

Layered Range Trees, $D=2$

\forall element y in the 1D range tree of v, store a pointer to the predecessor of y in the 1D range tree of the left/right child of v.

Layered Range Trees, $D=2$

\forall element y in the 1D range tree of v, store a pointer to the predecessor of y in the 1D range tree of the left/right child of v.

Layered Range Trees, $D=2$

\forall element y in the 1D range tree of v, store a pointer to the predecessor of y in the 1D range tree of the left/right child of v.

Recap

D	Size	Preprocessing Time	Query Time
1	$O(n)$	$O(n \log n)$	$O(\log n+k)$
2	$O(n \log n)$	$O(n \log n)$	$O\left(\log ^{2} n+k\right)$
>2	$O\left(n \log ^{D-1} n\right)$	$O\left(n \log ^{D-1} n\right)$	$O\left(\log ^{D} n+k\right)$

Notes

Recap

D	Size	Preprocessing Time 1	Query Time	Notes
2	$O(n)$	$O(n \log n)$	$O(\log n+k)$	
>2	$O(n \log n)$	$O(n \log n)$	$O\left(\log ^{2} n+k\right)$	
2	$O\left(n \log ^{D-1} n\right)$	$O\left(n \log ^{D-1} n\right)$	$O\left(\log ^{D} n+k\right)$	
	$O(n \log n)$	$O(n \log n)$	$O(\log n+k)$	with cross-linking

Recap

D	Size	Preprocessing Time	Query Time	Notes
1	$O(n)$	$O(n \log n)$	$O(\log n+k)$	
2	$O(n \log n)$	$O(n \log n)$	$O\left(\log ^{2} n+k\right)$	
>2	$O\left(n \log ^{D-1} n\right)$	$O\left(n \log ^{D-1} n\right)$	$O\left(\log ^{D} n+k\right)$	
2	$O(n \log n)$	$O(n \log n)$	$O(\log n+k)$	with cross-linking
>2	$O\left(n \log ^{D-1} n\right)$	$O\left(n \log ^{D-1} n\right)$	$O\left(\log ^{D-1} n+k\right)$	with cross-linking

Recap

D	Size	Preprocessing Time	Query Time	Notes
1	$O(n)$	$O(n \log n)$	$O(\log n+k)$	
2	$O(n \log n)$	$O(n \log n)$	$O\left(\log ^{2} n+k\right)$	
>2	$O\left(n \log ^{D-1} n\right)$	$O\left(n \log ^{D-1} n\right)$	$O\left(\log ^{D} n+k\right)$	
2	$O(n \log n)$	$O(n \log n)$	$O(\log n+k)$	with cross-linking
>2	$O\left(n \log ^{D-1} n\right)$	$O\left(n \log ^{D-1} n\right)$	$O\left(\log ^{D-1} n+k\right)$	with cross-linking

Can be made dynamic (supports point insertion / deletion) in $O\left(\log ^{D} n\right)$ amortized time per update.

