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Range Trees

Input:

A set S of n D-dimensional points.

Goal:

Design a data stucture that, given p1 ∈ ZD, p2 ∈ ZD can:

• Report the set of points q ∈ S such that p1 ≤ q ≤ p2.

• Report the number of points q ∈ S such that p1 ≤ q ≤ p2.

• Report the point q ∈ S, p1 ≤ q ≤ p2, with smallest D-th
coordinate.

• . . .



An easy case: D = 1

a b e f i j k lg hc d

• Points are integers

• Store points in a sorted array (in time O(n log n)).

• Perform queries by binary searching for p1 and p2
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• Points are integers

• Store points in a sorted array (in time O(n log n)).

• Perform queries by binary searching for p1 and p2

Query time: O(log n+ k) k = “size” of the output.

• k = Θ(1) if we only care about the number of points.

• k = # reported points.



An easy case: D = 1

a b e f i j k lg hc d

• Points are integers

• Store points in a sorted array (in time O(n log n)).

• Perform queries by binary searching for p1 and p2

Query time: O(log n+ k) k = “size” of the output.

• k = Θ(1) if we only care about the number of points.

• k = # reported points.

Space complexity: O(n)
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Range Trees: D = 1
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Range Trees: D = 1

Construction:

• Preliminarily sort S (only once!)

• Split S into S1 and S2 of ≈ n
2 elements each.

• Recursively build T1 and T2 from S1 and S2, respectively.

• The root of T has T1 and T2 as its left and right subtrees.

O(1)

• Return T
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Range Trees: D = 1

Construction:

• Preliminarily sort S (only once!)

• Split S into S1 and S2 of ≈ n
2 elements each.

• Recursively build T1 and T2 from S1 and S2, respectively.

• The root of T has T1 and T2 as its left and right subtrees.

T (n) = 2 · T (n2 ) +O(1)Time: O(n log n) + T (n), where

O(n log n)

O(1)

What if S is already sorted? O(n)

• Return T

(we will need this later)



Query time: O(log n+ k)

• k = Θ(1) if we only care about the number of points.

• k = # reported points.

Space complexity: O(n)

Range Trees: D = 1
Preprocessing time: O(n log n)
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Range Trees: D = 2
Build a range tree on the set of x-coordinates of the points in S
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Range Trees: D = 2
For each node v representing an interval Iv = [x1, x2], build a range tree
Rv on the y coodinates of the points in S with x-coordinate in Iv

vRv

Iv
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Range Trees: D = 2
Construction:

• Preliminarily sort S on the x-coordinate.

• Split S into S1 and S2 of ≈ n
2 elements each.

• Recursively build T1 and T2 from S1 and S2, respectively.

• Store, in v, a pointer to a new 1D Range Tree on S

• Return T

• The root v of T has T1 and T2 as its left and right subtrees.



Range Trees: D = 2
Construction:

• Preliminarily sort S on the x-coordinate.

• Split S into S1 and S2 of ≈ n
2 elements each.

• Recursively build T1 and T2 from S1 and S2, respectively.

• Store, in v, a pointer to a new 1D Range Tree on S

T (n) = 2 · T (n2 ) +O(n log n)Time: O(n log n) + T (n), where

O(n log2 n)

• Return T

• The root v of T has T1 and T2 as its left and right subtrees.



Range Trees: D = 2

Construction:

• Preliminarily sort S on the x-coordinate.

• Split S into S1 and S2 of ≈ n
2 elements each.

• Recursively build (T1, S
y
1 ) and (T2, S

y
2 ) from S1 and S2,

respectively.

• Store, in v, a pointer to a new 1D Range Tree on Sy

• Merge Sy
1 and Sy

2 into Sy.

• Return (T, Sy)

• The root v of T has T1 and T2 as its left and right subtrees.

Sy is the set S sorted on the y-coordinate



Range Trees: D = 2

Construction:

• Preliminarily sort S on the x-coordinate.

• Split S into S1 and S2 of ≈ n
2 elements each.

• Recursively build (T1, S
y
1 ) and (T2, S

y
2 ) from S1 and S2,

respectively.

• Store, in v, a pointer to a new 1D Range Tree on Sy

• Merge Sy
1 and Sy

2 into Sy.

• Return (T, Sy)

• The root v of T has T1 and T2 as its left and right subtrees.

T (n) = 2 · T (n2 ) +O(n)Time: O(n log n) + T (n), where

O(n log n)

Sy is the set S sorted on the y-coordinate



To report the points p1 = (x1, y1) ≤ q ≤ p2 = (x2, y2):

• Use T to find the h = O(log n) subtrees R1, . . . , Rh that
store the points q = (x, y) with x1 ≤ x ≤ x2.

• For each tree Rj ∈ {R1, . . . , Rh} representing the
x-interval Ij :

• Query Rj to report the number of/set of points
q = (x, y) with x ∈ Ij and y1 ≤ y ≤ y2.

Range Trees: D = 2



To report the points p1 = (x1, y1) ≤ q ≤ p2 = (x2, y2):

• Use T to find the h = O(log n) subtrees R1, . . . , Rh that
store the points q = (x, y) with x1 ≤ x ≤ x2.

• For each tree Rj ∈ {R1, . . . , Rh} representing the
x-interval Ij :

• Query Rj to report the number of/set of points
q = (x, y) with x ∈ Ij and y1 ≤ y ≤ y2.

O(log n) ·O(log n) +O(k) = O(log2 n+ k)

Number of Ris Time to query Ri

Time complexity:

“size” of the output

Range Trees: D = 2



Range Trees: D = 2

Space complexity:

• Each point belongs to O(log n) 1D Range Tees

• Bounded by the overall size of 1D Range Trees

• Total space: O(n log n)

Preprocessing time: O(n log n)

Query time: O(log2 n+ k)

• k = Θ(1) if we only care about the number of points.

• k = # reported points.



Higher dimensions: construction
To store points p = (x, y, z, w, ...) in D > 2 dimensions:
Recursive construction:

• Build a Range Tree T on the first coordinate x of the points:

• For each subtree Tv of T associated with the interval
Iv = [x1, x2]:

• Construct a range tree Rv on the last D − 1 coordinates
(y, z . . . ) of the set of points p = (x, y, . . . ) with x ∈ Iv.

• Store, in v, a pointer to Rv.

Space: O(n logD−1 n).

Time: O(n logD−1 n).



Higher dimensions: query

To report the points p1 ≤ q ≤ p2:

Let p1 = (x1, y1, z1, . . . ), p2 = (x2, y2, z2, . . . ).

• Use T to find the h = O(log n) subtrees R1, . . . , Rh that
store the points q = (x, y, z, . . . ) with x1 ≤ x ≤ x2.

• For each tree Rj ∈ {R1, . . . , Rh} representing the
x-interval Ij :

• Recursively query Ri to report the number/set of points
q s.t. x ∈ Ij and (y1, z1, . . . ) ≤ q ≤ (y2, z2, . . . ).

Query time: O(logD n+ k).



Recap

Size Preprocessing
Time

Query Time Notes

2

1

D

O(n)

O(n log n)

O(n log n)

O(n log n)

> 2 O(n logD−1 n) O(n logD−1 n)

O(log n+ k)

O(log2 n+ k)

O(logD n+ k)
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Fractional Cascading: The problem

k sorted arrays A1, . . . , Ak of n elements each:

Given x report, for i = 1, . . . , k, x if x ∈ Ai or its predecessor
if x ̸∈ Ai.

Input:

Query:

4 9 15 22 23 38 41 50 53 58

3 7 10 11 15 17 20 36 62 64

21 23 29 35 37 40 52 57 61 66

2 5 6 15 24 27 39 50 54 76

A1

A2

A3

A4
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Fractional Cascading: The problem

k sorted arrays A1, . . . , Ak of n elements each:

Given x report, for i = 1, . . . , k, x if x ∈ Ai or its predecessor
if x ̸∈ Ai.

Input:

Query:

x = 58
4 9 15 22 23 38 41 50 53 58

3 7 10 11 15 17 20 36 62 64

21 23 29 35 37 40 52 57 61 66

2 5 6 15 24 27 39 50 54 76

A1

A2

A3

A4



Fractional Cascading: A Trivial solution

• For i = 1, . . . , k:

• Binary search for x in Ai

Time: O(k log n)
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3 7 10 11 15 17 20 36 62 64

19 23 29 35 37 40 52 57 61 66

2 5 6 15 24 27 39 50 54 76

First idea: cross linking

Keep pointers from Ai[j] to the predecessor of Ai[j] in Ai+1.
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Worst-case time: O(kn)

Fractional Cascading

x

How much time does it take?

A1
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2 5 6 15 24 27 39 50 54 76

19 235 15 27 29 35 37 52 57 61 66

3 7 10 11 15 17 20 36 62 64

40 50 76

15 23 29 37 50 57 66

4 9 15 22 23 38 41 50 53 587 15 20 29 37 57 6411

Second idea: fractional cascading

For i = k, k− 1, . . . , 2: Add every other element of Ai to Ai−1.

Fractional Cascading
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Keep pointers from newly added elements to Ai to their
predecessor among the original elements of Ai
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2 5 6 15 24 27 39 50 54 76

19 235 15 27 29 35 37 52 57 61 66

3 7 10 11 15 17 20 36 62 64

40 50 76

15 23 29 37 50 57 66

4 9 15 22 23 38 41 50 53 587 15 20 29 37 57 6411

Keep pointers from newly added elements to Ai to their
predecessor among the original elements of Ai

Size O(kn) Preprocessing O(kn) Query: O(k + log n)

Fractional Cascading
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A3

A4
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Layered Range Trees, D = 2

Reuse the cross-linking idea from fractional cascading
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Reuse the cross-linking idea from fractional cascading
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Layered Range Trees, D = 2

x

∀ element y in the 1D range tree of v, store a pointer to the
predecessor of y in the 1D range tree of the left/right child of v.
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Layered Range Trees, D = 2

x

∀ element y in the 1D range tree of v, store a pointer to the
predecessor of y in the 1D range tree of the left/right child of v.

Query: O(k + log n)



Recap

Size Preprocessing
Time

Query Time Notes

2

1

D

O(n)

O(n log n)

O(log n+ k)

O(log2 n+ k)

O(n log n)

O(n log n)

> 2 O(n logD−1 n) O(n logD−1 n) O(logD n+ k)



Recap

Size Preprocessing
Time

Query Time Notes

2

1

D

O(n)

O(n log n)

O(log n+ k)

O(log2 n+ k)

O(n log n)

O(n log n)

> 2 O(n logD−1 n) O(n logD−1 n) O(logD n+ k)

2 O(n log n) O(log n+ k)O(n log n)
with

cross-linking



Recap

Size Preprocessing
Time

Query Time Notes

2

1

D

O(n)

O(n log n)

O(log n+ k)

O(log2 n+ k)

O(n log n)

O(n log n)

> 2 O(n logD−1 n) O(n logD−1 n) O(logD n+ k)

2 O(n log n) O(log n+ k)O(n log n)

> 2 O(n logD−1 n) O(n logD−1 n) O(logD−1 n+ k)
with

cross-linking

with
cross-linking



Recap

Size Preprocessing
Time

Query Time Notes

2

1

D

O(n)

O(n log n)

O(log n+ k)

O(log2 n+ k)

O(n log n)

O(n log n)

> 2 O(n logD−1 n) O(n logD−1 n) O(logD n+ k)

2 O(n log n) O(log n+ k)O(n log n)

> 2 O(n logD−1 n) O(n logD−1 n) O(logD−1 n+ k)
with

cross-linking

Can be made dynamic (supports point insertion / deletion) in
O(logD n) amortized time per update.

with
cross-linking


