Algorithm Design Laboratory with Applications

Prof. Stefano Leucci

Problem: HDMI cables.

You work for a company that manufactures HDMI cables of different lengths $\ell_1, \ell_2, \ldots, \ell_k$. Crating a cable of length ℓ_i means cutting a piece of cable of ℓ_i meters from a spool that initially contains *n* meters of cable and attaching the two HDMI connectors at its endpoints. Each of these connectors costs *c* Euro cents.

A finished cable of length ℓ_i can be sold for a price of p_i Euro cents. Due to different market demands, prices are not necessarily monotonically increasing with the cable length.

Given n, c, the possible lengths $\ell_1, \ell_2, \ldots, \ell_k$, and the corresponding prices p_1, p_2, \ldots, p_k , your goal is to find the best (multi-)set of cables to produce in order to maximize your profit P (i.e., the total revenue from selling the cables minus the overall manufacturing cost).

Input. The input consists of a set of instances, or *test-cases*, of the previous problem. The first line contains the number T of test-cases. The first line of each test-case contains the number n of meters of cable available, the number k of cable lengths than can be produced, and the cost c of a single HDMI connector. The next line contains the k integers ℓ_1, \ldots, ℓ_k . The third and final line of each test case contains the k integers p_1, \ldots, p_k .

Output. The output consists of T lines. The *i*-th line is the answer to the *i*-th test-case and contains the maximum profit P attainable for the given instance.

Assumptions. $1 \le T \le 10;$ $1 \le n \le 2^{20};$ $1 \le k \le 300;$ $\forall i = 1, ..., k, 1 \le \ell_i < 500$ and $1 \le p_i < 500;$ $1 \le c \le 100.$

Example.

Figure 1: An optimal way to cut a 23 meters long cable when k = 5, c = 2, $\ell_1 = 6$, $\ell_2 = 12$, $\ell_3 = 2$, $\ell_4 = 3$, $\ell_5 = 8$, and $p_1 = 19$, $p_2 = 54$, $p_3 = 9$, $p_4 = 8$, $p_5 = 22$. Notice that 1 meter of cable is leftover and will not be sold. The total revenue is 19 + 54 + 9 + 9 = 91 and the manufacturing cost is $4 \cdot 2c = 16$. The profit is 91 - 16 = 75.

Input (corresponding to the above example):

1		
23 5 2		
6 12 2 3 8		
19 54 9 8 22		
Output:		
75		
10		

Requirements. Your algorithm should require O(nk) time (with reasonable hidden constants). **Notes.** A reasonable implementation should not require more than 1 second for each input file. It is allowed to sell less than n meters of cable.