Algorithm Design Laboratory with Applications

Prof. Stefano Leucci

Problem: HDMI cables
You work for a company that manufactures HDMI cables of different lengths $\ell_{1}, \ell_{2}, \ldots, \ell_{k}$. Crating a cable of length ℓ_{i} means cutting a piece of cable of ℓ_{i} meters from a spool that initially contains n meters of cable and attaching the two HDMI connectors at its endpoints. Each of these connectors costs c Euro cents.
A finished cable of length ℓ_{i} can be sold for a price of p_{i} Euro cents. Due to different market demands, prices are not necessarily monotonically increasing with the cable length.
Given n, c, the possible lengths $\ell_{1}, \ell_{2}, \ldots, \ell_{k}$, and the corresponding prices $p_{1}, p_{2}, \ldots, p_{k}$, your goal is to find the best (multi-)set of cables to produce in order to maximize your profit P (i.e., the total revenue from selling the cables minus the overall manufacturing cost).
Input. The input consists of a set of instances, or test-cases, of the previous problem. The first line contains the number T of test-cases. The first line of each test-case contains the number n of meters of cable available, the number k of cable lengths than can be produced, and the cost c of a single HDMI connector. The next line contains the k integers $\ell_{1}, \ldots, \ell_{k}$. The third and final line of each test case contains the k integers p_{1}, \ldots, p_{k}.
Output. The output consists of T lines. The i-th line is the answer to the i-th test-case and contains the maximum profit P attainable for the given instance.
Assumptions. $1 \leq T \leq 10 ; \quad 1 \leq n \leq 2^{20} ; 1 \leq k \leq 300 ; \quad \forall i=1, \ldots, k, 1 \leq \ell_{i}<500$ and $1 \leq p_{i}<500 ; \quad 1 \leq c \leq 100$.

Example.

Figure 1: An optimal way to cut a 23 meters long cable when $k=5, c=2, \ell_{1}=6, \ell_{2}=12$, $\ell_{3}=2, \ell_{4}=3, \ell_{5}=8$, and $p_{1}=19, p_{2}=54, p_{3}=9, p_{4}=8, p_{5}=22$. Notice that 1 meter of cable is leftover and will not be sold. The total revenue is $19+54+9+9=91$ and the manufacturing cost is $4 \cdot 2 c=16$. The profit is $91-16=75$.

Input (corresponding to the above example):

1
2352
612238
19549822

Output:
75
Requirements. Your algorithm should require $O(n k)$ time (with reasonable hidden constants).
Notes. A reasonable implementation should not require more than 1 second for each input file. It is allowed to sell less than n meters of cable.

