Algorithm Design Laboratory with Applications

Prof. Stefano Leucci

Problem: Bookshelf.

You are shopping for a new bookshelf to organize your collection of $n \in \mathbb{N}^{+}$books indexed with the integers in $\{1, \ldots, n\}$. To fit in your room, the bookshelf can only be tall enough to accommodate 3 shelves, that is, 3 rows of books.
The i-th book in your collection $(i=1, \ldots, n)$ has thickness $t_{i} \in \mathbb{N}^{+}$, therefore a bookshelf of width W will be able to fit all the books if and only if there is a partition $\mathcal{B}=\left\{B_{1}, B_{2}, B_{3}\right\}$ of $\{1, \ldots, n\}$ into 3 sets B_{1}, B_{2}, B_{3} (corresponding to the books to place on the top, middle, and bottom shelf, respectively) such that $\forall B \in \mathcal{B}, \sum_{i \in B} t_{i} \leq W$.
Design an algorithm that, given n and t_{1}, \ldots, t_{n}, computes the minimum width W of a bookshelf capable of fitting all books.
Input. The input consists of a set of instances, or test-cases, of the previous problem. The first line contains the number T of test-cases. Each test case consists of a single line containing the integer n followed by the values t_{1}, \ldots, t_{n}.
Output. The output consists of T lines. The i-th line is the answer to the i-th test-case and contains the minimum width W of a bookshelf capable of fitting all books.
Assumptions. $1 \leq T \leq 10 ; \quad 1 \leq n \leq 2^{6} ; \quad \forall i=1, \ldots, n, 1 \leq t_{i} \leq 2^{6}$.

Example.

Input (corresponding to the above example, book labels represent their thickness):
1
1721311242114211122
Output (a possible arrangement is shown in the figure above):
11
Requirements. Your algorithm should require time $O\left(n \tau^{2}\right)$, where $\tau=\sum_{i=1}^{n} t_{i}$ (with reasonable hidden constants).
Notes. A reasonable implementation should not require more than 3 seconds for each input file.

