Algorithm Design Laboratory with Applications

Prof. Stefano Leucci

Problem: Gift.

Alice and Bob are invited to the birthday party of Charlie. Alice, Bob, and Charlie all live in the same city, which is modeled as a connected undirected edge-weighted graph G, whose vertices represent locations and are indexed with the integers from 0 to n-1, and whose m edges represents roads and are weighted with the respective road length (weights are non-negative integers). Alice's home is at vertex v_A , Bob's home is at vertex v_B , and the location of the party is vertex v_C . Alice and Bob independently want to buy a present for Charlie, and then they need to reach v_C . The gift shops are located in k distinct vertices s_1, s_2, \ldots, s_k of G and buying a present from s_i costs c_i dollars. In order to save money on gas, Alice and Bob agree that, after having bought their gifts, they will meet in some vertex v_M and then travel together from v_M to v_C in one of their cars. In this way Alice and Bob independently pay for the gas needed to reach v_M and for the cost of their respective gifts, and then they share the cost of the gas needed to travel from v_M to v_C . Alice's and Bob's car both consume g dollars of gas per unit of length.

Your task is to write an algorithm that finds the best meeting vertex v_M in order to minimize the *total amount* τ paid by Alice and Bob (this includes both the overall gas cost and amount paid to buy the two gifts).

Input. The input consists of a set of instances, or *test-cases*, of the previous problem. The first line contains the number T of test-cases. The first line of each test-case contains the seven integers n, m, k, v_A , v_B , v_C , and g. The i-th of the following k lines describes the i-th gift shop and contains the integers v_i and c_i . The final m lines each describe one of the edges of G: each line contains three integers u, v, w, to signify that G contains the undirected edge (u, v) with weight w.

Output. The output consists of T lines. The i-th line is the answer to the i-th test-case and contains two integers v_M and τ . Here v_M is the best meeting point from Alice and Bob (i.e., the one that minimizes the final cost τ) and τ is the overall amount paid by Alice and Bob if they meet in v_M . In cases of ties, prefer the vertex v_M with the smallest index.

Assumptions. $1 \le T \le 10$; $1 \le n \le 2^{16}$; $1 \le m \le 2^{16}$; $1 \le g \le 2^8$; $1 \le k \le n-3$; $\forall i = 1, \ldots, k, \le s_i \in \{0, \ldots, n-1\} \setminus \{v_A, v_B, v_C\}$; $\forall i = 1, \ldots, k, 1 \le c_i \le 2^{12}$; The edge weights are integers in $\{1, \ldots, 2^{10}\}$.

Figure 1: An example instance for g=2. v_A is in red, v_B is in blue, v_C is in green, and shops are shown in bold. In an optimal solution Alice and Bob meet in vertex $v_M=4$. Alice buys her gift in shop s_1 on vertex 3, and Bob buys his gift in shop s_2 on vertex 1. The cost for Alice to buy the gift and reach v_M is 2(2+2+4)+30=46. The corresponding cost for Bob is 2(5+7)+25=49. The cost shared between Alice and Bob is 2(3+2+1)=12. The total cost is $\tau=46+49+12=107$.

Example.

Input (corresponding to Figure 1):

```
1
9 13 3 2 5 7 2
3 30
1 25
8 50
0 1 9
0 6 2
1 4 7
1 5 5
2 3 2
2 4 4
3 4 20
3 7 14
3 8 15
4 6 3
5 6 6
6 8 2
7 8 1
Output:
4 107
```

Requirements. Your algorithm should require time $O(m + n \log n)$ (with reasonable hidden constants).

Notes. A reasonable implementation should not require more than 1 second for each input file. The vertices v_A , v_B , v_C , and v_M do not necessarily need to be distinct.