Algorithm Design Laboratory with Applications

Prof. Stefano Leucci
Problem: Gift.
Alice and Bob are invited to the birthday party of Charlie. Alice, Bob, and Charlie all live in the same city, which is modeled as a connected undirected edge-weighted graph G, whose vertices represent locations and are indexed with the integers from 0 to $n-1$, and whose m edges represents roads and are weighted with the respective road length (weights are non-negative integers). Alice's home is at vertex v_{A}, Bob's home is at vertex v_{B}, and the location of the party is vertex v_{C}. Alice and Bob independently want to buy a present for Charlie, and then they need to reach v_{C}. The gift shops are located in k distinct vertices $s_{1}, s_{2}, \ldots, s_{k}$ of G and buying a present from s_{i} costs c_{i} dollars. In order to save money on gas, Alice and Bob agree that, after having bought their gifts, they will meet in some vertex v_{M} and then travel together from v_{M} to v_{C} in one of their cars. In this way Alice and Bob independently pay for the gas needed to reach v_{M} and for the cost of their respective gifts, and then they share the cost of the gas needed to travel from v_{M} to v_{C}. Alice's and Bob's car both consume g dollars of gas per unit of length.
Your task is to write an algorithm that finds the best meeting vertex v_{M} in order to minimize the total amount τ paid by Alice and Bob (this includes both the overall gas cost and amount paid to buy the two gifts).
Input. The input consists of a set of instances, or test-cases, of the previous problem. The first line contains the number T of test-cases. The first line of each test-case contains the seven integers $n, m, k, v_{A}, v_{B}, v_{C}$, and g. The i-th of the following k lines describes the i-th gift shop and contains the integers v_{i} and c_{i}. The final m lines each describe one of the edges of G : each line contains three integers u, v, w, to signify that G contains the undirected edge (u, v) with weight w.
Output. The output consists of T lines. The i-th line is the answer to the i-th test-case and contains two integers v_{M} and τ. Here v_{M} is the best meeting point from Alice and Bob (i.e., the one that minimizes the final $\operatorname{cost} \tau$) and τ is the overall amount paid by Alice and Bob if they meet in v_{M}. In cases of ties, prefer the vertex v_{M} with the smallest index.
Assumptions. $1 \leq T \leq 10 ; \quad 1 \leq n \leq 2^{16} ; \quad 1 \leq m \leq 2^{16} ; \quad 1 \leq g \leq 2^{8}$;
$1 \leq k \leq n-3 ; \quad \forall i=1, \ldots, k, \leq s_{i} \in\{0, \ldots, n-1\} \backslash\left\{v_{A}, v_{B}, v_{C}\right\} ; \quad \forall i=1, \ldots, k, 1 \leq c_{i} \leq 2^{12} ;$ The edge weights are integers in $\left\{1, \ldots, 2^{10}\right\}$.

Figure 1: An example instance for $g=2 . v_{A}$ is in red, v_{B} is in blue, v_{C} is in green, and shops are shown in bold. In an optimal solution Alice and Bob meet in vertex $v_{M}=4$. Alice buys her gift in shop s_{1} on vertex 3 , and Bob buys his gift in shop s_{2} on vertex 1 . The cost for Alice to buy the gift and reach v_{M} is $2(2+2+4)+30=46$. The corresponding cost for Bob is $2(5+7)+25=49$. The cost shared between Alice and Bob is $2(3+2+1)=12$. The total cost is $\tau=46+49+12=107$.

Example.

Input (corresponding to Figure 1):
1
91332572
330
125
850
019
062
147
155
232
244
3420
3714
3815
463
566
682
781
Output:
4107
Requirements. Your algorithm should require time $O(m+n \log n)$ (with reasonable hidden constants).
Notes. A reasonable implementation should not require more than 1 second for each input file. The vertices v_{A}, v_{B}, v_{C}, and v_{M} do not necessarily need to be distinct.

