Algorithm Design Laboratory with Applications

Prof. Stefano Leucci

Problem: Lazy Hikers.

A group of lazy hikers decides to summit the Great Pebble, a massive mountain that is $H \in \mathbb{N}^{+}$ meters tall, by following a path from the base to the top. The path is $D \in \mathbb{N}^{+}$meters long and starts from an elevation of exactly 0 meters above sea level.
Along the path there are $n \in \mathbb{N}^{+}$refuges where the group can stop and rest for the night. The i-th refuge is encountered $d_{i} \in \mathbb{N}^{+}$meters after the beginning of the path (with $0<d<D$) and has an elevation of $h_{i} \in \mathbb{N}^{+}$meters (with $0<h_{i}<H$). The elevation of the refuges is monotonically non-decreasing (w.r.t. the order in which the refuges are encountered on the path).
The hikers, being lazy, have some specific constraints about their journey: they do not want to walk more than W meters per day, they do not want to climb (i.e., increase their elevation by) more than C meters per day, and they absolutely do not want to sleep outside of a refuge.
Design an algorithm that, given n, H, D, and all the values d_{i} and h_{i}, computes the minimum number η of days needed for the hikes to reach the summit of the Great Pebble.
Input. The input consists of a set of instances, or test-cases, of the previous problem. The first line contains the number T of test-cases. The first line of each test case contains the integers n, H, D, C, and W. The next line contains the n integers h_{1}, \ldots, h_{n}. The third and final line of the test case contains the n integers d_{1}, \ldots, d_{n}.
Output. The output consists of T lines. The i-th line is the answer to the i-th test-case and contains the integer η.
Assumptions. $1 \leq T \leq 10 ; \quad 1 \leq n \leq 2^{20} ; \quad 1 \leq H, D, W, C<2^{31}$;
It is always possible to reach the summit while satisfying all the hikers' constraints.

Example.

The following example shows an instance with $n=8, H=2700, D=6200$. The distances in red indicate the length d_{i} of the segment between the start of the path and the i-th refuge (for $i=1, \ldots, n$), except for the distance at the summit which is the total length of the path. An optimal solution for $C=800$ and $W=2000$ is $\eta=5$. A possible schedule that allows to reach the mountain top in 5 days stops at refuges $2,4,5$, and 7 (depicted with a solid red dot).

Input (corresponding to the above picture):
1
8270062008002000
1002502506501100140019002500
4001100150021003400400049005900
Output:

5
Requirements. Your algorithm should require $O(n)$ time (with reasonable hidden constants).
Notes. A reasonable implementation should not require more than 0.5 seconds for each input file.

