Algorithm Design Laboratory with Applications

Prof. Stefano Leucci

Problem: A massive bookworm.
The university library is replacing some books with new copies, and is gifting the old copies to students. The old copies are arranged in two piles S_{1} e S_{2} containing n and m books, respectively. You can take any number of books from the top of S_{1}, and any number of books from the top of S_{2}, but you cannot take a book from a pile without also taking all the books above it.
Each book has a certain weight in grams (a positive integer). Your backpack can hold up to $W \in \mathbb{N}^{+}$grams, and your goal is that taking the largest number η of books from the two piles without exceeding the (overall) weight of W grams.

Design an algorithm that, given S_{1}, S_{2}, W, and the weight of each book, returns η.
Input. The input consists of a set of instances, or test-cases, of the previous problem. The first line of the input contains the number T of test-cases. The first line of each test-case contains the integers n, m, and W. The second line of each test-case contains n integers w_{1}, \ldots, w_{n}, where w_{i} is the weight of the i-th book from the top of S_{1}. Finally, the third and last line of each test-case contains m integers ' $w_{1}, \ldots, w_{m}^{\prime}$, where w_{i}^{\prime} is the weight of the i-th book from the top of S_{2}.

Output. The output consists of T lines. The i-th lines is the solution to the i-th test case and contains η.
Assumptions. $1 \leq T \leq 10 ; \quad 1 \leq n, m \leq 2^{19} ; \quad W \leq 2^{30}$.
Each book weighs at most 2^{11} grams.
Example. If $W=9$, the weights of the books in S_{1} are $\langle 3,1,1,1,2,2,3\rangle$ (from the top to the bottom of the stack), and those of the books in S_{2} are $\langle 2,1,2,3,1,1,4,2\rangle$, the optimal value of η is 6 and can be attained by taking 4 books from S_{1} and 2 books from S_{2}.

Input:

1
789
$\begin{array}{lllllll}3 & 1 & 1 & 2 & 3\end{array}$
21231142

Output:

6

Requirements. Your algorithm must have an asymptotic time complexity of $O(n+m)$.
Notes. A reasonable implementation should not require more than 1 second for each input file.

