## Algorithm Design Laboratory with Applications

Prof. Stefano Leucci

Problem: Number station.
A number station is a radio station that broadcasts sequences of numbers for espionages operations. You are a secret agent and you just received a transmission with the combination of a safe where vital intelligence is held. The transmission is encrypted and consists of a $n \times n$ matrix $A=\left(a_{i}, j\right)_{i, j}$ of non-negative integers. As per your instructions, you are to recover the combination by counting the number of non-empty contiguous submatrices of $A$ whose sum of elements is odd.
Time is key: design and implement an algorithm to quickly compute the safe combination.
Input. The input consists of a set of instances, or test-cases, of the previous problem. The first line of the input contains the number $T$ of test-cases. The first line of each test-case is the integer $n$. The $i$-th of the following $n$ lines describes the $i$-th row of $A$ and contains the $n$ integers $a_{i, 1}, \ldots, a_{i, n}$ separated by a space.
Output. The output consists of $T$ lines, each containing a single integer. The $i$-th line is the answer to the $i$-th test-case and is the number of quadruples of integers $(h, k, x, y)$ with $1 \leq h \leq k \leq n$ and $1 \leq x \leq y \leq n$ such that $\sum_{i=h}^{k} \sum_{j=x}^{y} a_{i, j}$ is odd.
Example. The safe combination associated with the matrix

$$
A=\left[\begin{array}{lll}
1 & 6 & 5 \\
1 & 4 & 8 \\
0 & 2 & 4
\end{array}\right]
$$

is 16 , since $A$ has 16 non-empty contiguous submatrices whose elements sum to an odd number. Namely: $[1],[5],[1],\left[\begin{array}{ll}1 & 6\end{array}\right],\left[\begin{array}{ll}6 & 5\end{array}\right],\left[\begin{array}{ll}1 & 4\end{array}\right],\left[\begin{array}{lll}1 & 4 & 8\end{array}\right],\left[\begin{array}{l}5 \\ 8\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}5 \\ 8 \\ 4\end{array}\right],\left[\begin{array}{ll}6 & 5 \\ 4 & 8\end{array}\right],\left[\begin{array}{ll}1 & 4 \\ 0 & 2\end{array}\right]$, $\left[\begin{array}{lll}1 & 6 & 5 \\ 1 & 4 & 8\end{array}\right],\left[\begin{array}{lll}1 & 4 & 8 \\ 0 & 2 & 4\end{array}\right],\left[\begin{array}{ll}6 & 5 \\ 4 & 8 \\ 2 & 4\end{array}\right]$, and $A$ itself. Notice that the submatrix $[1]$ is counted twice since it appears two times in $A$.

Input (corresponding to matrix $A$ in the above example):
1
3
165
148
024

Output:
16

Assumptions. $1 \leq T \leq 10 ; \quad 1 \leq n \leq 512 ; \quad \forall i, j=1 \ldots, n, 0 \leq a_{i, j} \leq 1024$.
Requirements. Your algorithm must have an asymptotic time complexity of $O\left(n^{3}\right)$.
Notes. A reasonable implementation should not require more than 1 second for each input file.

