Algorithm Design Laboratory with Applications

Prof. Stefano Leucci
Problem: A problem of two trees.
A computer scientist with green fingers wants to remove a big tree ${ }^{1}$ from his garden and has hired a moving company to transport it away. The moving company owns a truck that can carry a maximum weight of $W \in \mathbb{N}^{+}$.
The tree is too heavy to be transported at once, but it can be cut into smaller (and lighter) pieces. The computer scientist has modelled this problem with a rooted tree ${ }^{2} T=(V, E)$ in which each edge $e \in E$ has a weight $w(e) \in \mathbb{N}^{+}$. The weight $w\left(T^{\prime}\right)$ of a subtree T^{\prime} of T is the sum of the weights $w(e)$ of all edges e in T^{\prime}.
Cutting a tree T in one of its internal vertices v means splitting T into two $1+c(v)$ trees $T_{0}, T_{1}, \ldots, T_{c(v)}$, where $c(v)$ is the number of children $u_{1}, \ldots, u_{c(v)}$ of v in T. In details:

- T_{0} is unique tree containing v in the forest obtained by deleting $u_{1}, \ldots, u_{c(v)}$ from $T . T_{0}$ is rooted in the same root as T.
- For $i=1, \ldots, c(v), T_{i}$ is the subtree of T induced by v and all the descendants of u_{i} in T. T_{i} is rooted in v.

Figure 1: An example of the trees $T_{0}, \ldots, T_{c(v)}$ resulting from cutting T in v. Edge weights are not shown.

Help the computer scientist design a fast algorithm that determines the minimum number $\eta(T, W)$ of cuts needed to decompose T into a forest F in which each tree $T^{\prime} \in F$ has a weight $w\left(T^{\prime}\right)$ of at most W.
Input. The input consists of a set of instances, or test-cases, of the previous problem. The first line of the input contains the number C of test-cases. Each test-case is described by 3 lines. The first line of each test-case contains W and the number $n>0$ of vertices of T. The vertices of T are indexed from 0 to $n-1$, and the root of T is the vertex with index 0 . The second line contains $n-1$ integers p_{1}, \ldots, p_{n-1} separated by a space, where p_{i} is the index of the parent (in T) of the unique vertex with index i. The third and final line contains $n-1$ integers. The i-th of these integers is the weight $w(e)$ of the edge $e=(v, u)$ connecting the vertex u with index i to its parent v in T.
Output. The output consists of C lines. The i-th line is the answer to the i-th test-case and contains the integer η.
Assumptions. $1 \leq C \leq 10 ; \quad 1 \leq n<2^{18} ; \quad \forall e \in E, 1 \leq w(e) \leq 2^{10} ; \quad \max _{e \in E} w(e) \leq W<2^{31}$.

[^0]The height of T is at most 2^{10}.
Vertices of T with the same parent have consecutive indices in the input.

Example.

Input (corresponding to the tree in the above figure):
1
1021
$\begin{array}{llllllllllllllllll}0 & 0 & 1 & 1 & 1 & 2 & 2 & 3 & 3 & 5 & 7 & 7 & 8 & 8 & 10 & 10 & 10 & 11 \\ 11 & 11\end{array}$
32215112312232251121
Output (obtained, e.g., by cutting the highlighted vertices):
4
Requirements. Your algorithm should require $O(n)$ time (with reasonable hidden constants).
Notes. A reasonable implementation should not require more than 0.5 seconds for each input file.

[^0]: ${ }^{1}$ Unlike the trees the computer scientist is used to, this tree is made of solid wood and its roots are at the bottom.
 ${ }^{2}$ The kind of tree the computer scientist is familiar with.

