
Algorithm Design Laboratory with Applications
Prof. Stefano Leucci

Problem: Water Treatment Plant.

The water treatment plant of Algoland has a very complex system of pipes and valves. There
are n main pipes p1, p2, . . . , pn that leave the plant and m valves v1, . . . , vm that control the
water flow through these pipes.

Opening the i-th valve vi allows 1 Kiloliter (Kl) of water per second to flow into a subset of
pipes Pi ⊆ {p1, p2, . . . , pn} to which vi is connected. It is possible for a pipe pj to receive water
from more than one valve: if there are k open valves connected to pj , then the amount Lj of
water flowing into pj will be of exactly k Kl/s.

Each pipe pj serves a different neighborhood of Algoland which has a specific demand Dj of
water (in Kl/s). To avoid the water pressure to rise to dangerous levels, it is critical for Lj not
to exceed Dj .

Your task is to design an algorithm that, given n, m, the subsets Pi, and the demands Dj ,
determines if there is a subset of valves that can be open (simultaneously) in order to meet all
the pipe demands, without exceeding them.

Input. The input consists of a set of instances, or test-cases, of the previous problem. The first
line contains the number T of test-cases. The first line of each test case contains the integers
n and m. The second line contains the n integers D1, . . . , Dn. The i-th next m lines contains
1 + |Pi| integers: the first integer is |Pi|, while each each of the following integers is the index j
of a pipes pj ∈ Pi.

Output. The output consists of T lines. The i-th line is the answer to the i-th test-case and is
the character Y if there is a set of valves that can be opened to exactly satisfy all the demands,
and N otherwise.

Assumptions. 1 ≤ T ≤ 10; 1 ≤ n ≤ 50; 1 ≤ m ≤ 40; ∀j = 1, . . . , n, 0 ≤ Dj ≤ 40.

Example.

D3 = 3

D2 = 1

D1 = 2

p1

p2

p3

v1 v2 v3 v4 v5

Input (corresponding to the above picture):

1

3 5

2 1 3

2 1 2

1 3

2 2 3

3 1 2 3

2 1 3

1

Output (corresponding to valves v2, v4, and v5. See also the above picture):

Y

Requirements. Your algorithm should require O∗(2
m
2) time (with reasonable hidden polynomial

factors in n and m).

Notes. A reasonable implementation should not require more than 3 seconds for each input file.

2

