Algorithm Design Laboratory with Applications

Prof. Stefano Leucci

Problem: Water Treatment Plant.

The water treatment plant of Algoland has a very complex system of pipes and valves. There are n main pipes $p_{1}, p_{2}, \ldots, p_{n}$ that leave the plant and m valves v_{1}, \ldots, v_{m} that control the water flow through these pipes.
Opening the i-th valve v_{i} allows 1 Kiloliter (Kl) of water per second to flow into a subset of pipes $P_{i} \subseteq\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ to which v_{i} is connected. It is possible for a pipe p_{j} to receive water from more than one valve: if there are k open valves connected to p_{j}, then the amount L_{j} of water flowing into p_{j} will be of exactly $k \mathrm{Kl} / \mathrm{s}$.
Each pipe p_{j} serves a different neighborhood of Algoland which has a specific demand D_{j} of water (in Kl/s). To avoid the water pressure to rise to dangerous levels, it is critical for L_{j} not to exceed D_{j}.
Your task is to design an algorithm that, given n, m, the subsets P_{i}, and the demands D_{j}, determines if there is a subset of valves that can be open (simultaneously) in order to meet all the pipe demands, without exceeding them.

Input. The input consists of a set of instances, or test-cases, of the previous problem. The first line contains the number T of test-cases. The first line of each test case contains the integers n and m. The second line contains the n integers D_{1}, \ldots, D_{n}. The i-th next m lines contains $1+\left|P_{i}\right|$ integers: the first integer is $\left|P_{i}\right|$, while each each of the following integers is the index j of a pipes $p_{j} \in P_{i}$.
Output. The output consists of T lines. The i-th line is the answer to the i-th test-case and is the character Y if there is a set of valves that can be opened to exactly satisfy all the demands, and N otherwise.

Assumptions. $1 \leq T \leq 10 ; \quad 1 \leq n \leq 50 ; \quad 1 \leq m \leq 40 ; \quad \forall j=1, \ldots, n, 0 \leq D_{j} \leq 40$.
Example.

Input (corresponding to the above picture):

```
1
3 5
2 1 3
2 1 2
13
2 2 
3 1 2 3
2 1 3
```

Output (corresponding to valves v_{2}, v_{4}, and v_{5}. See also the above picture):
Y
Requirements. Your algorithm should require $O^{*}\left(2^{\frac{m}{2}}\right)$ time (with reasonable hidden polynomial factors in n and m).
Notes. A reasonable implementation should not require more than 3 seconds for each input file.

