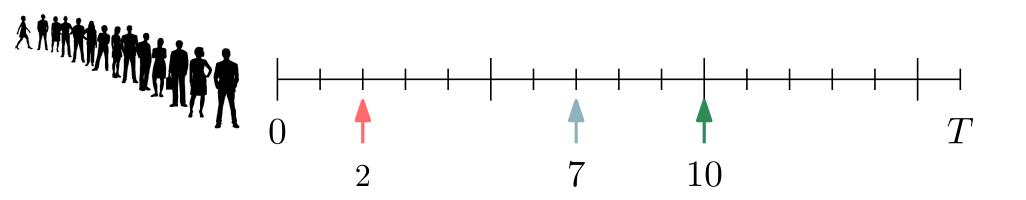
Lazy Employee

An office empoyee takes L minutes to serve a customer. How slowly can he work?

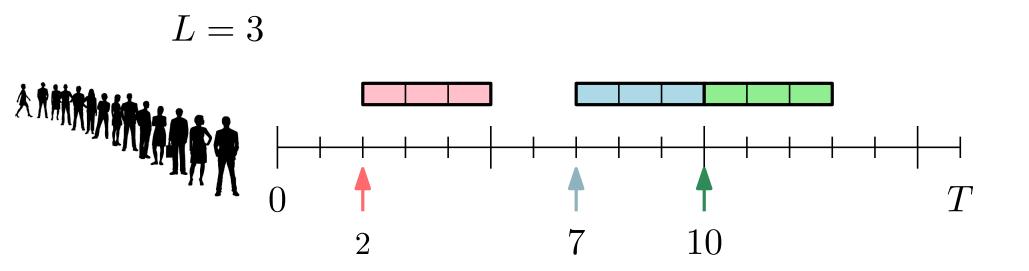
- *n* customers arrive at distinct times $t_1, t_2, \ldots, t_n \in \mathbb{N}^+$
- All customers must leave by time T (closing time, T > n).
- The employee can only serve one customer at a time.
- The employee starts serving the next customer as soon as it finishes the current one. If no customer is available, he has to wait for one to arrive.

Goal: Maximize $L \in \mathbb{N}^+$.

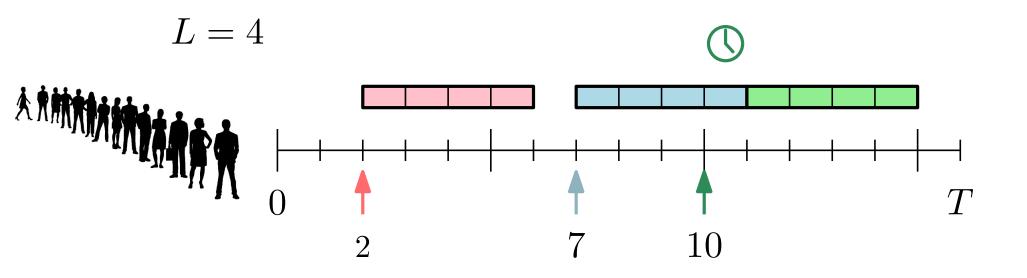
- 3 customers arrive at times $t_1 = 2$, $t_2 = 10$, $t_3 = 7$
- All customers must leave by time T = 16



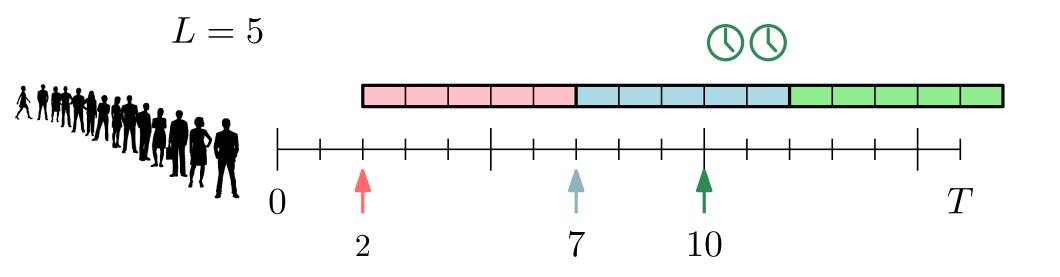
- 3 customers arrive at times $t_1 = 2$, $t_2 = 10$, $t_3 = 7$
- All customers must leave by time T = 16



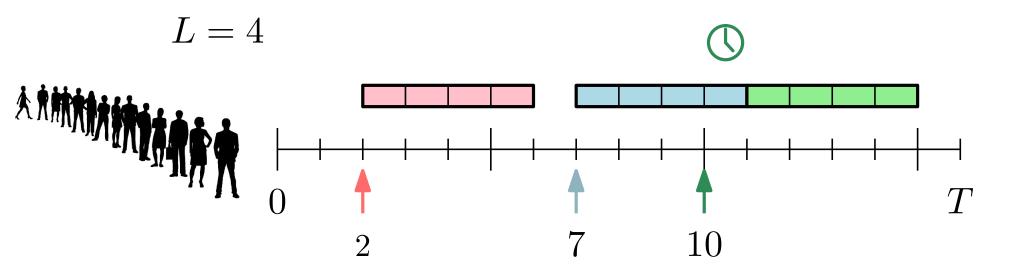
- 3 customers arrive at times $t_1 = 2$, $t_2 = 10$, $t_3 = 7$
- All customers must leave by time T = 16



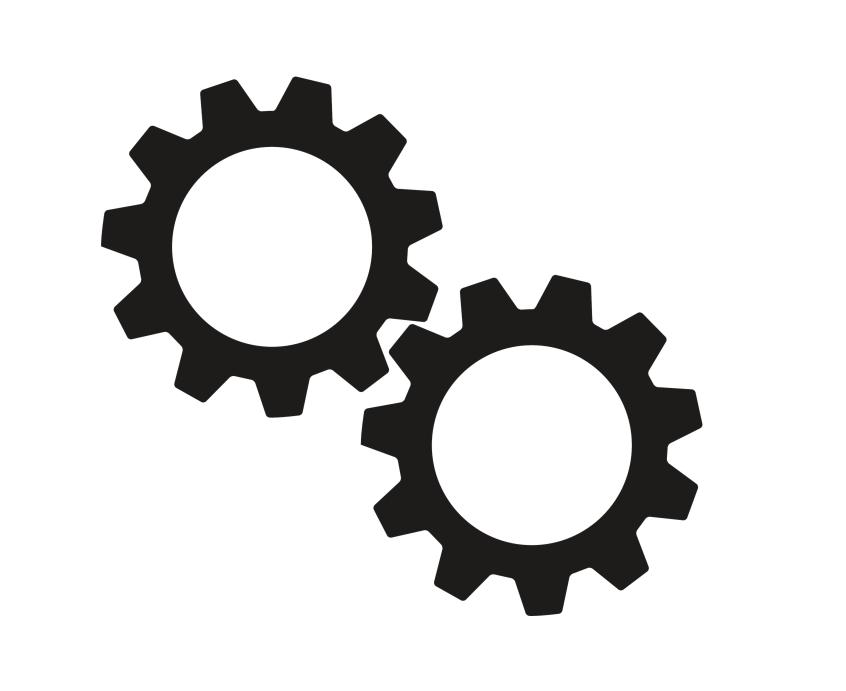
- 3 customers arrive at times $t_1 = 2$, $t_2 = 10$, $t_3 = 7$
- All customers must leave by time T = 16



- 3 customers arrive at times $t_1 = 2$, $t_2 = 10$, $t_3 = 7$
- All customers must leave by time T = 16



Solution: L = 4



• For each possible value of $L=2,\ldots,T$

// Check whether all clients can be serverd

- While there are unserved clients
 - Find and serve next client
- Stop at the first value of L for which clients can't be served
- Return L-1

• For each possible value of L = 2, ..., T O(T)

// Check whether all clients can be serverd

- While there are unserved clients
 - Find and serve next client O(n)

O(n)

- Stop at the first value of L for which clients can't be served
- Return L-1

Time complexity: $O(T \cdot n^2)$

• For each possible value of $L = 2, ..., \times \lceil T/n \rceil = O(T/n)$

// Check whether all clients can be serverd

- While there are unserved clients
 - Find and serve next client O(n)

O(n)

- Stop at the first value of L for which clients can't be served
- Return L-1

Time complexity: $O(T \cdot n)$

- **Preprocessing:** Sort t_1, \ldots, t_n
- Preprocessing: Sort t₁,...,t_n O(n log n)
 For each possible value of L = 2,..., ∑ [T/n] O(T/n)

// Check whether all clients can be serverd

- While there are unserved clients
 - Find and serve next client
- Stop at the first value of L for which clients can't be served

O(n)O(1)

• Return L-1

Time complexity: $O(T + n \log n)$

- **Preprocessing:** Sort t_1, \ldots, t_n
- Preprocessing: Sort t₁,...,t_n O(n log n) →
 For each possible value of L = 2,..., ∑ [T/n] O(T/n)

// Check whether all clients can be serverd

- While there are unserved clients
 - Find and serve next client
- Stop at the first value of L for which clients can't be served

O(n)

O(1)

• Return L-1

Trick/Technique: Sorting

Sorting can be a powerful preprocessing step.

```
std::sort(arrival_times.begin(), arrival_times.end());
```

```
int L;
for(L=2; L<=1+T/n; L++)</pre>
{
    int time = 1; //Next available time
    for(const int t : arrival_times)
       time = std::max(time, t) + L;
   if(time > T)
       break;
}
std::cout << L-1 << "\n";</pre>
```

Naive algorithm

 $O(T \cdot n^2)$

Naive algorithm (better analysis) $O(T \cdot n)$

+ Preprocessing (sort arrival times) $O(T + n \log n)$

A Key Observation

Definition: We say that L is feasible if it allows to serve all customers by time T.

Observation: The property of being feasible is *monotone* w.r.t. L.

For
$$L > 1$$
, feasible $(L) \implies$ feasible $(L-1)$.
and \neg feasible $(L-1) \implies \neg$ feasible (L) .

A Key Observation

Definition: We say that L is feasible if it allows to serve all customers by time T.

Observation: The property of being feasible is *monotone* w.r.t. L.

Proof sketch

Suppose w.l.o.g. that the t_i s are sorted. For a given L, let c_i^L the time after serving the i customers arriving at times t_1, \ldots, t_i .

We prove by induction on i = 1, ..., n, that $c_i^{L+1} > c_i^L$.

Base case
$$(i = 1)$$
:
 $c_1^{L+1} = t_1 + L + 1 > t_1 + L = c_1^L$.
Induction step $(i > 1)$:
 $c_i^{L+1} = \max\{c_{i-1}^{L+1}, t_i\} + L + 1 > \max\{c_{i-1}^L, t_i\} + L = c_i^L$. \Box

A Key Observation

Definition: We say that L is feasible if it allows to serve all customers by time T.

Observation: The property of being feasible is *monotone* w.r.t. L.

For
$$L > 1$$
, feasible $(L) \implies$ feasible $(L-1)$.
and \neg feasible $(L-1) \implies \neg$ feasible (L) .

Trick/Technique: Binary Search

Use **binary search** to efficiently find the largest feasible value of a monotone property.

```
//Returns the smallest index i in [min, max] such that
//p(i) is false.
//If no such index exists, returns max.
template<typename T>
   T binary_search(T min, T max, bool (*p)(T) )
{
   while(min < max)</pre>
   {
       if(T mid = (min+max)/2; p(mid))
           min = mid+1;
       else
           max = mid;
   }
   return max;
```

Time complexity: $O(\log(\max - \min))$

```
bool feasible(int L)
{
    int time=1;
    for(const int t : arrival_times)
        time = std::max(time, t) + L;
    return time<=T;
}
std::sort(arrival_times.begin(), arrival_times.end());
std::cout << binary_search(2, T, feasible)-1 << "\n";</pre>
```

```
bool feasible(int L)
{
    int time=1;
    for(const int t : arrival_times)
        time = std::max(time, t) + L;
    return time<=T;
}
std::sort(arrival_times.begin(), arrival_times.end());
std::cout << binary_search(2, T, feasible)-1 << "\n";</pre>
```

```
Time complexity: O(n \log T)
```

Naive algorithm

 $O(T \cdot n^2)$

Naive algorithm (better analysis) $O(T \cdot n)$

+ Preprocessing (sort arrival times) $O(T + n \log n)$

Naive algorithm

 $O(T\cdot n^2)$

Naive algorithm (better analysis) $O(T \cdot n)$

+ Preprocessing (sort arrival times) $O(T + n \log n)$

+ Binary Search for L $O(n \log T)$

Naive algorithm

 $O(T \cdot n^2)$

Naive algorithm (better analysis) $O(T \cdot n)$

+ Preprocessing (sort arrival times) $O(T + n \log n)$

+ Binary Search for L $O(n \log T)$

 $O(n \log T)$ is never worse than $O(T + n \log n)$

Naive algorithm

$$O(T \cdot n^2)$$

Naive algorithm (better analysis) $O(T \cdot n)$

+ Preprocessing (sort arrival times) $O(T + n \log n)$

+ Binary Search for L $O(n \log T)$

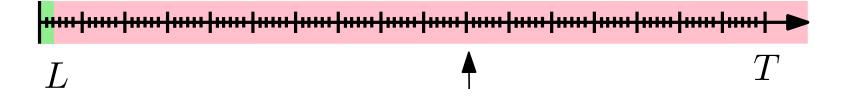
 $O(n \log T)$ is never worse than $O(T + n \log n)$

What if T is large (e.g., 2^n) but L is small?

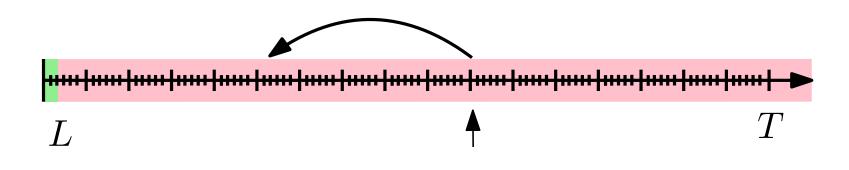
What if T is large (e.g., 2^n) but L is small?

L

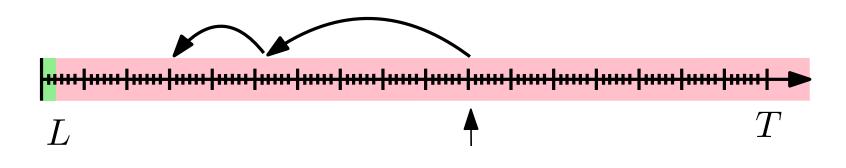
What if T is large (e.g., 2^n) but L is small?



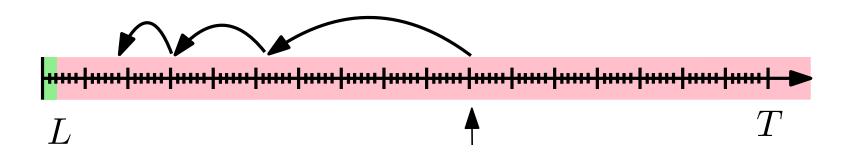
What if T is large (e.g., 2^n) but L is small?



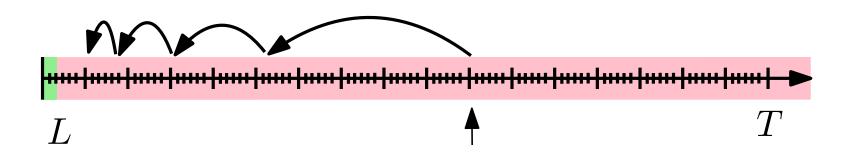
What if T is large (e.g., 2^n) but L is small?



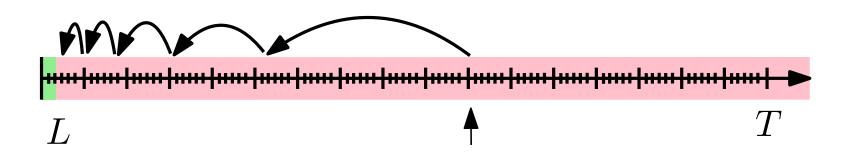
What if T is large (e.g., 2^n) but L is small?

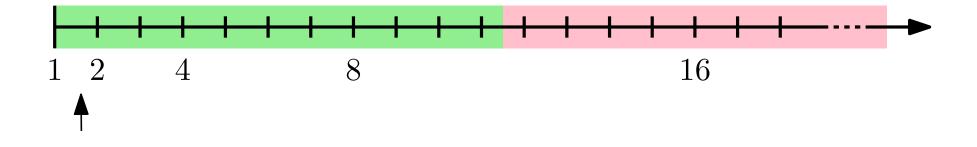


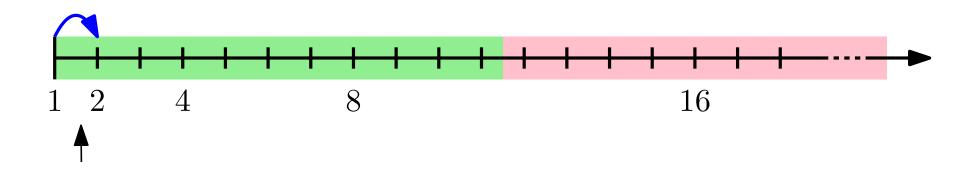
What if T is large (e.g., 2^n) but L is small?

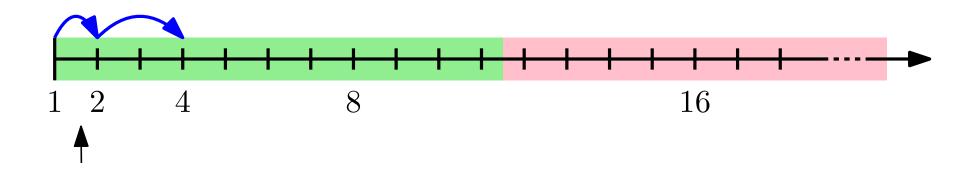


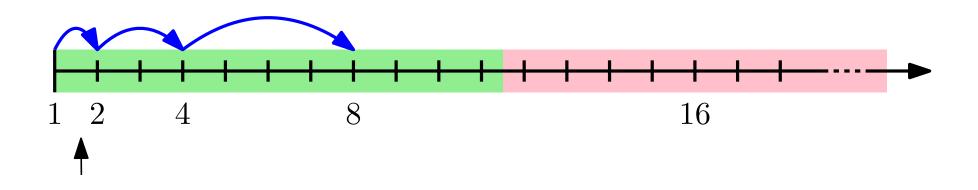
What if T is large (e.g., 2^n) but L is small?

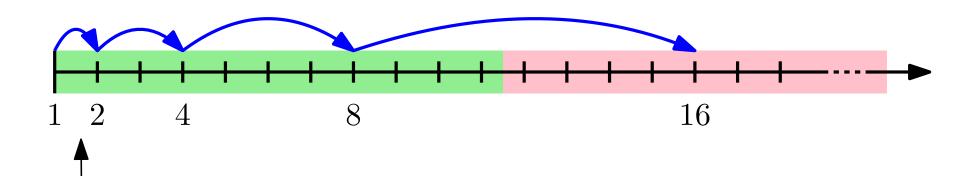




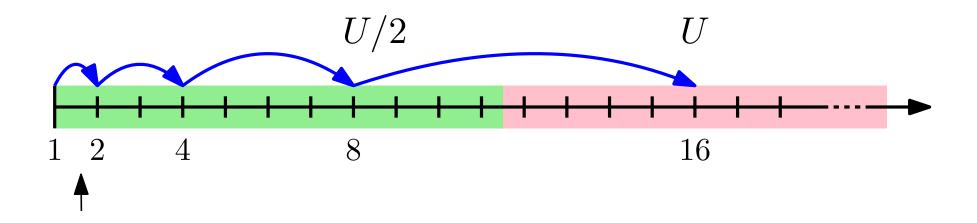




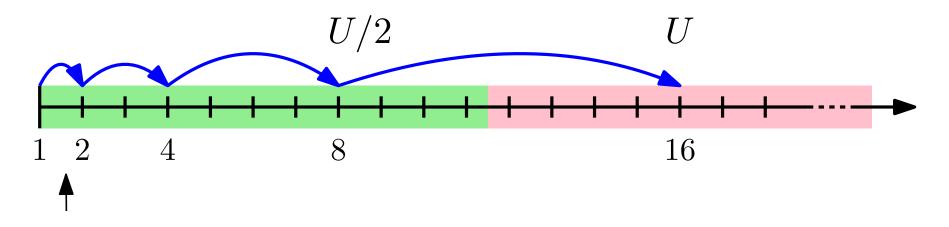




Idea: Check U = 1, 2, 4, 8, ..., until feasible(U) is false. $\implies U \in (L, 2L].$



Idea: Check U = 1, 2, 4, 8, ..., until feasible(U) is false. $\implies U \in (L, 2L].$



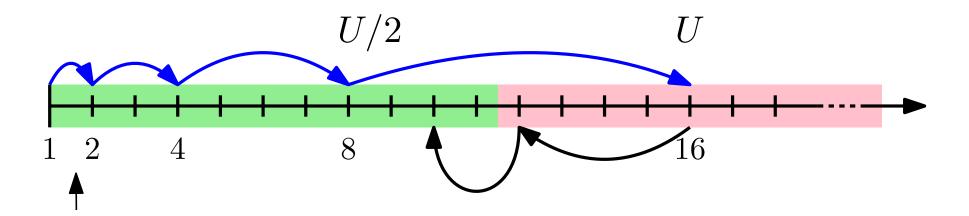
Trick/Technique: Exponential Search

Idea: Check U = 1, 2, 4, 8, ..., until feasible(U) is false. $\implies U \in (L, 2L].$



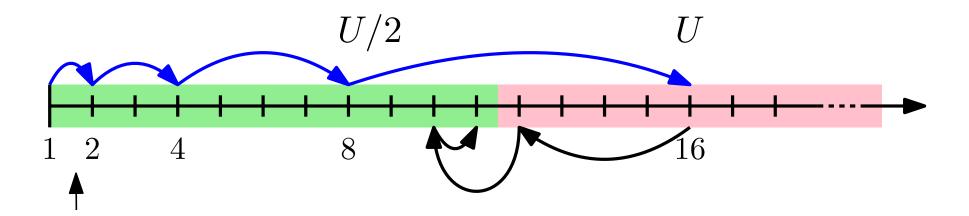
Trick/Technique: Exponential Search

Idea: Check U = 1, 2, 4, 8, ..., until feasible(U) is false. $\implies U \in (L, 2L].$



Trick/Technique: Exponential Search

Idea: Check U = 1, 2, 4, 8, ..., until feasible(U) is false. $\implies U \in (L, 2L].$



Trick/Technique: Exponential Search

A Possible Implementation

```
//If p(min) is false returns min
//Otherwise returns an index min+i in (min, max] such that
//p(min+i) is false and p(min+i/2) is true.
//If no such index exists, returns max.
template<typename T>
       T exponential_search(T min, T max, bool (*p)(T) )
{
   if(!p(min))
       return min;
   for(T i=1; min+i<max; i*=2)</pre>
       if(!p(min+i))
           return min+i;
   return max;
}
```

Time complexity: $O(\log(\max - \min))$

A Possible Implementation

std::sort(arrival_times.begin(), arrival_times.end());
int U = exponential_search(2, T, feasible);
std::cout << binary_search(U/2, U, feasible) - 1;</pre>

Time complexity: $O(n \log n + n \log L)$

Solutions so far

Naive algorithm

 $O(T \cdot n^2)$

Naive algorithm (better analysis) $O(T \cdot n)$

+ Preprocessing (sort arrival times) $O(T + n \log n)$

+ Binary Search for L $O(n \log T)$

Solutions so far

Naive algorithm

 $O(T \cdot n^2)$

Naive algorithm (better analysis) $O(T \cdot n)$

+ Preprocessing (sort arrival times) $O(T + n \log n)$

+ Binary Search for L $O(n \log T)$

+ Exponential search

 $O(n\log n + n\log L)$

Solutions so far

Naive algorithm

 $O(T \cdot n^2)$

Naive algorithm (better analysis) $O(T \cdot n)$

+ Preprocessing (sort arrival times) $O(T + n \log n)$

+ Binary Search for L $O(n \log T)$

+ Exponential search

 $O(n\log n + n\log L)$

 $O(n \log n + n \log L)$ is never worse than $O(n \log T)$

Trick/Technique: Sorting

Sorting can be a powerful preprocessing step.

Trick/Technique: Sorting

Sorting can be a powerful preprocessing step.

Trick/Technique: Binary Search

Use **binary search** to efficiently find the largest feasible value of a monotone property.

Trick/Technique: Sorting

Sorting can be a powerful preprocessing step.

Trick/Technique: Binary Search

Use **binary search** to efficiently find the largest feasible value of a monotone property.

Trick/Technique: Exponential Search