
Gustavo’s Pizza
Gustavo has very peculiar tastes when it comes to pizza al
taglio: he wants his slice to have as many olives as possible,
but never more than k.

The pizza can be cut into discrete positions t1 < · · · < tn. A
slice (i, j) with j > i represents the interval [ti, tj ].

The interval [ti, ti+1] contains ηi olives. Where to cut?
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Solution: (3, 6). Number of olives:
∑6−1

i=3
ηi = 8.

t1 t2 t3 t4 t5 t6 t7 t8





A Naive Solution

• For i = 1, . . . , n− 1:

• For j = i+ 1, . . . , n:

• For k = i, . . . , j − 1:

• olives ← olives + ηk

• olives ← 0

. . .
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Partial Sums

5 2 4 1 3 2 5k = 9

t1 t2 t3 t4 t5 t6 t7 t8

7 11 12 15 17 2250

• For i = 1, . . . , n− 1:

• For j = i+ 1, . . . , n:

• olives ← S[j − 1]− S[i− 1]

S

0 1 2 n. . .

. . .

O(n)

O(n)

O(1)

• Compute partial sums vector S O(n)

Can we do better?
Total time: O(n2)



Partial Sums + Binary Search

• For i = 1, . . . , n− 1:

• Compute partial sums vector S

5 2 4 1 3 2 5k = 9

p1 p2 p3 p4 p5 p6 p7 p8

S

0 1 2 n. . .

• Binary search S for the largest index j ≥ i

such that S[j] ≤ S[i− 1] + k.

• olives ← S[j]− S[i− 1]

O(n)

O(log n)

O(1)

O(n)
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Partial Sums + Binary Search

• For i = 1, . . . , n− 1:

• Compute partial sums vector S

5 2 4 1 3 2 5k = 9

p1 p2 p3 p4 p5 p6 p7 p8

S

0 1 2 n. . .

• Binary search S for the largest index j ≥ i

such that S[j] ≤ S[i− 1] + k.

• olives ← S[j]− S[i− 1]

O(n)

O(log n)

O(1)

Total time: O(n log n)

O(n)

7 11 12 15 17 2250
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Can we do better?
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5 2 4 1 3 2 5k = 9

Sliding Window: Idea

• Keep two pointers p1, p2 to keep track of the current
window W , i.e., the subsequence between p1 and p2.

• If σ(p1, p2) is too large: increase p1.

• If σ(p1, p2) is too small: increase p2.

p1 p2

• Return “best” feasible window among those considered.

(plus suitable handling of edge cases)

• Let σ(p1, p2) be the sum of the elements in W .



A possible implementation
int left=0, right=-1, sum=0;

int best_left=-1, best_right=-1, best_sum=-1;

do

{

if(sum<=k && right<n-1)

sum += A[++right];

else

sum -= A[left++];

if(sum<=k && sum>best_sum)

{

best_sum = sum; best_left = left; best_right = right;

}

} while(left<n-1 || right<n-1);

std::cout << "Cut from position " << best_left+1

<< " to position " << best_right+2 << "\n";
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Running time?
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Why does it work?

p∗1 p∗2
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Observation: p1 (and p2) will get all values from 1 to n.

• Let W ∗ = [p∗1, p
∗

2] be an optimal interval minimizing p∗1.

• Consider the first instant where p1 = p∗1 or p2 = p∗2.
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Why does it work?

p∗1 p∗2

5 2 4 1 3 2 5k = 9

Observation: p1 (and p2) will get all values from 1 to n.

• Let W ∗ = [p∗1, p
∗

2] be an optimal interval minimizing p∗1.

• Consider the first instant where p1 = p∗1 or p2 = p∗2.

• If p2 = p∗2, then p1 < p∗1 and, for every p ∈ [p1, p
∗

1 − 1],
σ(p, p2) > σ(p∗1, p

∗

2) and hence σ(p, p2) > k.

• Therefore, p1 will be incremented until it reaches p∗1 while
p2 = p∗2 remains constant =⇒ the algorithm considers W ∗.



• We have proven that the algorithm always considers an
optimal window.

Sliding Window



Trick/Technique: Sliding Window

Some problems in which you need to find an interval
can be solved in linear time using a sliding window
approach, if you can ensure that an optimal interval will
be considered.

• We have proven that the algorithm always considers an
optimal window.

Sliding Window
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Sushi Belt

• Gustavo can eat an unlimited amount of food, as long as
he never stops eating

Gustavo is in a Sushi-belt restaurant: n small plates are lined
up on a conveyor belt and will soon reach him

• Gustavo does not want to eat any repeated dish

• Gustavo wants to eat as much as possible

What is the maximum number of dishes that
Gustavo can eat?



Given an array A of n integers in {1, . . . , n}, find the longest
contiguous subarray of A that contains only distinct elements.

Sushi Belt
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1 2 3 4 5 6 7 8



Given an array A of n integers in {1, . . . , n}, find the longest
contiguous subarray of A that contains only distinct elements.

Sushi Belt

2 1 3 1 4 2 3A 4

1 2 3 4 5 6 7 8

Solution: A[3 . . . , 6], length: 4

Start eating from the 3rd plate, eat up to (and including) the
6-th plate





Sushi Belt: Naive Solution

• For i = 1, . . . , n:

• For j = i, . . . , n:

• If A[i . . . j] contains no duplicates:

• A[i . . . j] is a candidate solution

. . .
• Return longest candidate solution found
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Sushi Belt: Naive Solution

• For i = 1, . . . , n:

• For j = i, . . . , n:

• If A[i . . . j] contains no duplicates:

• A[i . . . j] is a candidate solution

. . .
• Return longest candidate solution found

O(n)
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O(n2)

Total time: O(n4)

Total time: O(n3) via counting sort

O(n)



Sushi Belt: Checking for Duplicates
• Do not run counting sort each time we need to check for
duplicates

• Keep track of the number of duplicates, i.e., counts ≥ 2

• Keep the number of occurrences of each type updated
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duplicates = 1Occurrences:
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• Keep track of the number of duplicates, i.e., counts ≥ 2
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Sushi Belt: Checking for Duplicates
• Do not run counting sort each time we need to check for
duplicates

• Keep track of the number of duplicates, i.e., counts ≥ 2

• Keep the number of occurrences of each type updated

2 1 3 1 4 2 3A 4

1 2 3 4 5 6 7 8

i

2 1

1 2 3 4

Occurrences: 1

j

2 duplicates = 2



Sushi Belt: (A Less) Naive Solution

• For i = 1, . . . , n:

• For j = i, . . . , n:

• If A[i . . . j] contains no duplicates:

• A[i . . . j] is a candidate solution

. . .
• Return longest candidate solution found
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Sushi Belt: (A Less) Naive Solution

• For i = 1, . . . , n:

• For j = i, . . . , n:

• If A[i . . . j] contains no duplicates:

• A[i . . . j] is a candidate solution

. . .
• Return longest candidate solution found

O(n)

O(n)

O(n2)

Total time: O(n4)

Total time: O(n3) via counting sort

O(n)

Total time: O(n2) by updating counts in O(1) time

O(1)



Sushi Belt: Sliding Window

• Keep two pointers p1, p2 to keep track of the current
window W = [p1, p2]
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• Initially p1 = 1, p2 = 0
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• Keep two pointers p1, p2 to keep track of the current
window W = [p1, p2]
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1 2 3 4 5 6 7 8

• If A[p1 . . . p2] contains no duplicates and p2 < n: increase p2

• If A[p1 . . . p2] contains duplicates or p2 = n: increase p1

• Initially p1 = 1, p2 = 0

p2p1



Sushi Belt: Sliding Window

• Keep two pointers p1, p2 to keep track of the current
window W = [p1, p2]

2 1 3 1 4 2 3A 4

1 2 3 4 5 6 7 8

• If A[p1 . . . p2] contains no duplicates and p2 < n: increase p2

• If A[p1 . . . p2] contains duplicates or p2 = n: increase p1

• Return “best” feasible window among those considered.

• Initially p1 = 1, p2 = 0

p2p1



Sliding Window: Correctness
• Let W ∗ = [p∗1, p

∗

2] be an optimal interval

• Consider the first instant where p1 = p∗1 or p2 = p∗2.
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p1 = p∗1 remains constant =⇒ the algorithm considers W ∗.
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Sliding Window: Correctness
• Let W ∗ = [p∗1, p

∗

2] be an optimal interval

• Consider the first instant where p1 = p∗1 or p2 = p∗2.

2 1 3 1 4 2 3A 4

p∗1 p∗2

• If p2 = p∗2 then p1 < p∗1 and A[p . . . p2] contains duplicates
for all p = p1, . . . , p

∗

1 − 1

• Therefore, p1 will be incremented until it reaches p∗1 while
p2 = p∗2 remains constant =⇒ the algorithm considers W ∗.
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specific optimal window in our proof...
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Sliding Window: Correctness

• We have proven that the algorithm always considers an
optimal window.

• In fact we did not need to make any assumption about a
specific optimal window in our proof...

• Our algorithm discovers all optimal solutions!

Trick/Technique: Sliding Window

Some problems in which you need to find an interval
can be solved in linear time using a sliding window
approach, if you can ensure that an optimal interval will
be considered.



int left=0, right=-1, duplicates=0;

int best_len = -1;

std::vector<int> counts(n);

do

{

if(duplicates==0 && right<n-1)

duplicates += ( ++counts[A[++right]] >= 2 );

else

duplicates -= ( counts[A[left++]]-- >= 2 );

if(duplicates==0)

best_len = std::max(best_len, right-left+1);

} while(left<n-1 || right<n-1);

std::cout << "Gustavo can eat " << best_len << " dishes\n";

A possible implementation



int left=0, right=-1, duplicates=0;

int best_len = -1;

std::vector<int> counts(n);

do

{

if(duplicates==0 && right<n-1)

duplicates += ( ++counts[A[++right]] >= 2 );

else

duplicates -= ( counts[A[left++]]-- >= 2 );

if(duplicates==0)

best_len = std::max(best_len, right-left+1);

} while(left<n-1 || right<n-1);

std::cout << "Gustavo can eat " << best_len << " dishes\n";

A possible implementation

Time: O(n)


