Gustavo's Pizza

Gustavo has very peculiar tastes when it comes to pizza al
taglio: he wants his slice to have as many olives as possible,
but never more than k.

The pizza can be cut into discrete positions t1 < --- < t,. A
slice (i,7) with j > ¢ represents the interval [t;,1;].

The interval [t;,t;11] contains n; olives. Where to cut?

Example

Example

Solution: (3,6). Number of olives: ZZ 5 1 = 8.

A Naive Solution

e Fori:=1,....,n—1:
e Forg=1+1,....n:
e olives < 0
e Fork=1,...,7 —1:

e olives < olives + 1

A Naive Solution

e Fori=1,...,n—1: O(n)

e Forj=i+1,...,n: O(n)
e olives +— 0

o Fork=14,...,7—1 O(n)

e olives < olives + 1

Total time: O(n?)

A Naive Solution

e Fori=1,...,n—1: O(n)

e Forj=i+1,...,n: O(n)
e olives < (

o Fork=14,...,7—1 O(n)

e olives < olives + 1

Total time: O(n?)

Can we do better?

Partial Sums

ty ta ty ty ts te tr g
4 11 3] 215
1112] 15 | 17| 22

e Compute partial sums vector S

Partial Sums

11 to i3) ls e 7 ts
v=9 5124|1325
S O |5 (7111|1215 17| 22
0 1 n
e Compute partial sums vector S O(n)
e Fori=1,...,n—1: O(n)
e Forj=i+1,...,n: O(n)
e olives «+— S|j — 1] — S|t — 1] O(1)

Partial Sums

0o 1 2 - n
e Compute partial sums vector S O(n)
e Fori=1,...,n—1: O(n)
e Forj=i+1,...,n: O(n)

e olives < S|j — 1] — S|t — 1] O(1)

Total time: O(n?)

Partial Sums

0o 1 2 - n
e Compute partial sums vector S O(n)
e Fori=1,...,n—1: O(n)
e Forj=i+1,...,n: O(n)

e olives < S|j — 1] — S|t — 1] O(1)

Total time: O(n?)
Can we do better?

Partial Sums + Binary Search

k=9

e Fori:=1,....,n—1:

D1 P3 D4 Ps pr ps

D 4 (1| 3| 2] 5

0| o 1112 15 17 | 22

0 1 n
e Compute partial sums vector S O(n)
O(n)

e Binary search S for the largest index 7 > 1
such that S|j] < S|t — 1] + k. O(logn)

e olives « S|j] — S|i — 1] O(1)

Partial Sums + Binary Search

k=9

e Fori:=1,....,n—1:

D1 P3 D4 Ps pr ps

D 4 (1| 3| 2] 5

0| o 1112 15 17 | 22

0 1 n
e Compute partial sums vector S O(n)
O(n)

e Binary search S for the largest index 7 > 1
such that S|j] < S|t — 1] + k. O(logn)

e olives « S|j] — S|i — 1] O(1)

Total time: O(nlogn)

e Naive

e Partial Sums
O(nz) Time

e Partial Sums + Binary Search
O(nlogn)

e Naive

e Partial Sums
O(nz) Time

e Partial Sums + Binary Search
O(nlogn)

Can we do better?

Sliding Window

Sliding Window: |dea

o Keep two pointers p1, ps to keep track of the current
window W, i.e., the subsequence between p; and ps.

k=9 5121411131215

Sliding Window: |dea

Keep two pointers pi, ps to keep track of the current
window W, i.e., the subsequence between p; and ps.

k=9 5121411131215
4 4
P1 P2

Let o(p1,p2) be the sum of the elements in W.

Sliding Window: |dea

o Keep two pointers p1, ps to keep track of the current
window W, i.e., the subsequence between p; and ps.

k=9 5121411131215
¢t
P1 P2

e Let o(p1,p2) be the sum of the elements in W.

o If o(p1,p2) is too large: increase p;.

Sliding Window: |dea

Keep two pointers pi, ps to keep track of the current
window W, i.e., the subsequence between p; and ps.

k=9 5121411131215
4 4
P1 D2

_et o(p1,p2) be the sum of the elements in .

f o(p1,p2) is too large: increase p;.

f o(p1,p2) is too small: increase po.

Sliding Window: |dea

Keep two pointers pi, ps to keep track of the current
window W, i.e., the subsequence between p; and ps.

k=9 5121411131215
4 4
P1 D2

_et o(p1,p2) be the sum of the elements in .

f o(p1,p2) is too large: increase p;.

f o(p1,p2) is too small: increase po.

Return “best” feasible window among those considered.

(plus suitable handling of edge cases)

A possible implementation

int left=0, right=-1, sum=0;
int best_left=-1, best_right=-1, best_sum=-1;

do

{
if (sum<=k && right<n-1)
sum += A[++right];
else
sum -= A[left++];

if (sum<=k && sum>best_sum)

{
best_sum = sum; best_left = left; best_right = right,;

}
} while(left<n-1 || right<n-1);

std::cout << "Cut from position " << best_left+1l
<< " to position " << best_right+2 << "\n";

A possible implementation

int left=0, right=-1, sum=0;
int best_left=-1, best_right=-1, best_sum=-1;

do

{
if (sum<=k && right<n-1)
sum += A[++right];

else . : 5
sun -= A[left++]; Running time:

if (sum<=k && sum>best_sum)

{
best_sum = sum; best_left = left; best_right = right,;

}
} while(left<n-1 || right<n-1);

std::cout << "Cut from position " << best_left+1l
<< " to position " << best_right+2 << "\n";

A possible implementation

int left=0, right=-1, sum=0;
int best_left=-1, best_right=-1, best_sum=-1;

do
{

if (sum<=k && right<n-1)
sum += A[++right];

else . : 5
sun -= A[left++]; Running time:

O(n)
if (sum<=k && sum>best_sum)
{
best_sum = sum; best_left = left; best_right = right,;
}

} while(left<n-1 || right<n-1);

std::cout << "Cut from position " << best_left+1l
<< " to position " << best_right+2 << "\n";

Why does it work?

Observation: p; (and p2) will get all values from 1 to n.

o Let W* = [p}, p5] be an optimal interval minimizing p7.

e Consider the first instant where p; = pj or pa = p5.

Why does it work?

Observation: p; (and p2) will get all values from 1 to n.

o Let W* = [p}, p5] be an optimal interval minimizing p7.

e Consider the first instant where p; = pj or pa = p5.

e If p1 = p7, then p < pj and o(p1,p) < o(pi,p3) < k, for
every p € [pa,p5 — 1].

P1 P2
v v
k=9 5121411131215

Why does it work?

Observation: p; (and p2) will get all values from 1 to n.

o Let W* = [p}, p5] be an optimal interval minimizing p7.

e Consider the first instant where p; = pj or pa = p5.

e If p1 = p7, then p < pj and o(p1,p) < o(pi,p3) < k, for
every p € [pa,p5 — 1].

e Therefore, po will be incremented until it reaches p5 while
p1 = pi remains constant = the algorithm considers W *.

P1 P2
Y Y
k=9 512141113215

Why does it work?

Observation: p; (and p2) will get all values from 1 to n.

o Let W* = [p}, p5] be an optimal interval minimizing p7.

e Consider the first instant where p; = pj or pa = p5.

o If po = p5, then p1 < pT and, for every p € [p1,p} — 1],
o(p,p2) > o(pi,p3) and hence o (p, p2) > k.

P1 P2
Y Y
k=9 512141113215

Why does it work?

Observation: p; (and p2) will get all values from 1 to n.

o Let W* = [p}, p5] be an optimal interval minimizing p7.

e Consider the first instant where p; = pj or pa = p5.
o If po = p5, then p1 < pT and, for every p € [p1,p} — 1],
o(p,p2) > o(pi,p3) and hence o (p, p2) > k.

e Therefore, p; will be incremented until it reaches pj while
p2 = p5 remains constant = the algorithm considers W*.

P1 P2
Y Y
k=9 512141113215

Sliding Window

e \We have proven that the algorithm always considers an
optimal window.

Sliding Window

e \We have proven that the algorithm always considers an
optimal window.

Trick/Technique: Sliding Window

Some problems in which you need to find an interval
can be solved in linear time using a sliding window
approach, if you can ensure that an optimal interval will
be considered.

Sushi Belt

Sushi Belt

Gustavo is in a Sushi-belt restaurant: n small plates are lined
up on a conveyor belt and will soon reach him

e Gustavo can eat an unlimited amount of food, as long as
he never stops eating

e Gustavo does not want to eat any repeated dish

e Gustavo wants to eat as much as possible

What is the maximum number of dishes that
Gustavo can eat?

Sushi Belt

Given an array A of n integers in {1,...,n}, find the longest
contiguous subarray of A that contains only distinct elements.

Sushi Belt

Given an array A of n integers in {1,...,n}, find the longest
contiguous subarray of A that contains only distinct elements.

Solution: A[3...,6], length: 4

Start eating from the 3rd plate, eat up to (and including) the
6-th plate

Sushi Belt: Naive Solution

o Fori=1,...,n:
e For 9 =1,...,n:
e If Afv...j] contains no duplicates:

e Ali...j] is a candidate solution

e Return longest candidate solution found

Sushi Belt: Naive Solution

e Fori=1,...,n: O(n)
e Forj=u1,...,n: O(n)
o If Ali...j| contains no duplicates: O(n?)

e Ali...j] is a candidate solution

e Return longest candidate solution found

Total time: O(n*)

Sushi Belt: Naive Solution

e Fori=1,...,n: O(n)
e Forj=u1,...,n: O(n)
o If Ali...j] contains no duplicates: O(n?)

e Ali...j] is a candidate solution

e Return longest candidate solution found

Total time: O(n*)

Sushi Belt: Naive Solution

e Fori=1,...,n: O(n)
e Forj=u1,...,n: O(n)
o If Ali...j] contains no duplicates: Q7] O(n)

e Ali...j] is a candidate solution

e Return longest candidate solution found

To HAe: n

Total time: O(n?) via counting sort

Sushi Belt: Checking for Duplicates

e Do not run counting sort each time we need to check for

duplicates

o Keep the number of occurrences of each type updated

e Keep track of the number of duplicates, i.e., counts > 2

1 2 3 5 7
A 21113 4 3 | 4
0 J
Occurrences: duplicates = 1

Sushi Belt: Checking for Duplicates

e Do not run counting sort each time we need to check for

duplicates

o Keep the number of occurrences of each type updated

e Keep track of the number of duplicates, i.e., counts > 2

1 2 3 6 7
A 21113 2 | 3| 4
0 J
Occurrences: duplicates = 1

Sushi Belt: Checking for Duplicates

e Do not run counting sort each time we need to check for
duplicates

o Keep the number of occurrences of each type updated

e Keep track of the number of duplicates, i.e., counts > 2

1

A 2

3 4 5 6

3| 1|4 2

<. = | = (N
.= | 0 |

Occurrences: 9 1 9 1 duplicates = 2

Sushi Belt: (A Less) Naive Solution

e Fori=1,...,n: O(n)
e Forj=u1,...,n: O(n)
o If Ali...j] contains no duplicates: Q7] O(n)

e Ali...j] is a candidate solution

e Return longest candidate solution found

To HAe: n

Total time: O(n?) via counting sort

Sushi Belt: (A Less) Naive Solution

e Fori=1,...,n: O(n)
e Forj=u1,...,n: O(n)

o If Ali...j] contains no duplicates: Q) Q] O(1)

e Ali...j|is a candidate solution

e Return longest candidate solution found

To HAe: n

Total time: Qf#V-viacounting sort

Total time: O(n?) by updating counts in O(1) time

Sushi Belt: Sliding Window

e Keep two pointers py, ps to keep track of the current
window W = [pl,pz]

o Initially p; =1, po =0

A 2 11 |3 (14|23 |4

Sushi Belt: Sliding Window

e Keep two pointers py, ps to keep track of the current
window W = [pl,pz]

o Initially p; =1, po =0
1 2 3 4 5 6 4 3
A 2 |1 |3 |14 2|34

f f

P1 P2

o If Alpy...p2] contains no duplicates and ps < n: increase ps

Sushi Belt: Sliding Window

Keep two pointers py, po to keep track of the current
window W = [pl,pz]

Initially p1 =1, po =0

A

1 2 3 4 S} 6 4 8
21113 | 114 2] 3] 4

P1 P2
. p2] contains no duplicates and py < n: increase ps
. p2] contains duplicates or ps = n: increase p;

Sushi Belt: Sliding Window

Keep two pointers py, po to keep track of the current
window W = [pl,pz]

Initially p1 =1, po =0

A

f Alp: ..

f Alp: ..

Return “best” feasible wind

1 2 3 4 o 6 4 8
2 (1 (3 (1 (4|2 |3 |4
P1 P2
. p2] contains no duplicates and py < n: increase ps
. p2] contains duplicates or ps = n: increase p;

ow among those considered.

Sliding Window: Correctness

o Let W* = [p}, p5| be an optimal interval

e Consider the first instant where p; = p] or pa = p5.

Sliding Window: Correctness

o Let W* = [p}, p5| be an optimal interval

e Consider the first instant where p; = p] or pa = p5.

o If p1 = pT then po < pd and A|p; ...p| contains no
duplicates for all p =ps,...,p5 — 1

Sliding Window: Correctness

Let W* = [p}, p5| be an optimal interval

Consider the first instant where p; = pj or pa = p5.

If p1 = p] then po < p3 and Alp; ... p| contains no
duplicates for all p =ps,...,p5 — 1

Therefore, pa will be incremented until it reaches p5 while
p1 = p7 remains constant =—> the algorithm considers W*.

Sliding Window: Correctness

o Let W* = [p}, p5| be an optimal interval
e Consider the first instant where p; = p] or pa = p5.

o If po = p3 then p; < pi and Alp...p2] contains duplicates
forall p=p1,...,p7 —1

Sliding Window: Correctness

Let W* = [p}, p5| be an optimal interval

Consider the first instant where p; = pj or pa = p5.

If po = p3 then p; < p7 and Alp...ps] contains duplicates
forall p=p1,...,p7 —1

Therefore, p; will be incremented until it reaches p7 while
p2 = p5 remains constant =—> the algorithm considers W*.

Sliding Window: Correctness

e \We have proven that the algorithm always considers an
optimal window.

e In fact we did not need to make any assumption about a
specific optimal window in our proof...

Sliding Window: Correctness

e \We have proven that the algorithm always considers an
optimal window.

e In fact we did not need to make any assumption about a
specific optimal window in our proof...

e Our algorithm discovers all optimal solutions!

Sliding Window: Correctness

e \We have proven that the algorithm always considers an
optimal window.

e In fact we did not need to make any assumption about a
specific optimal window in our proof...

e Our algorithm discovers all optimal solutions!

Trick/Technique: Sliding Window

Some problems in which you need to find an interval

can be solved in linear time using a sliding window

approach, if you can ensure that an optimal interval will
be considered.

A possible implementation

int left=0, right=-1, duplicates=0;
int best_len = -1;
std: :vector<int> counts(n);

do

{
if (duplicates==0 && right<n-1)
duplicates += (++counts[A[++right]l] >= 2);
else
duplicates -= (counts[A[left++]]-- >= 2);

if (duplicates==0)
best_len = std::max(best_len, right-left+1);

} while(left<n-1 || right<n-1);

std: :cout << "Gustavo can eat " << best_len << " dishes\n";

A possible implementation

int left=0, right=-1, duplicates=0;
int best_len = -1;
std: :vector<int> counts(n);

4o Time: O(n)
{
if (duplicates==0 && right<n-1)
duplicates += (++counts[A[++right]l] >= 2);
else
duplicates -= (counts[A[left++]]-- >= 2);

if (duplicates==0)
best_len = std::max(best_len, right-left+1);

} while(left<n-1 || right<n-1);

std: :cout << "Gustavo can eat " << best_len << " dishes\n":

