Gustavo's Pizza

Gustavo has very peculiar tastes when it comes to pizza al
taglio: he wants his slice to have as many olives as possible,
but never more than k.

The pizza can be cut into discrete positions t1 < --- < t,. A
slice (i,7) with j > ¢ represents the interval [t;,1;].

The interval [t;,t;11] contains n; olives. Where to cut?
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Example

Solution: (3,6). Number of olives: ZZ 5 1 = 8.






A Naive Solution

e Fori:=1,....,n—1:
e Forg=1+1,....n:
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e Fork=1,...,7 —1:

e olives < olives + 1
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Partial Sums + Binary Search
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Can we do better?



Sliding Window



Sliding Window: |dea

o Keep two pointers p1, ps to keep track of the current
window W, i.e., the subsequence between p; and ps.
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e Let o(p1,p2) be the sum of the elements in W.

o If o(p1,p2) is too large: increase p;.
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Sliding Window: |dea

Keep two pointers pi, ps to keep track of the current
window W, i.e., the subsequence between p; and ps.
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_et o(p1,p2) be the sum of the elements in .

f o(p1,p2) is too large: increase p;.

f o(p1,p2) is too small: increase po.

Return “best” feasible window among those considered.

(plus suitable handling of edge cases)



A possible implementation

int left=0, right=-1, sum=0;
int best_left=-1, best_right=-1, best_sum=-1;

do

{
if (sum<=k && right<n-1)
sum += A[++right];
else
sum -= A[left++];

if (sum<=k && sum>best_sum)

{
best_sum = sum; best_left = left; best_right = right,;

}
} while(left<n-1 || right<n-1);

std::cout << "Cut from position " << best_left+1l
<< " to position " << best_right+2 << "\n";
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A possible implementation

int left=0, right=-1, sum=0;
int best_left=-1, best_right=-1, best_sum=-1;

do
{

if (sum<=k && right<n-1)
sum += A[++right];

else . : 5
sun -= A[left++]; Running time:

O(n)
if (sum<=k && sum>best_sum)
{
best_sum = sum; best_left = left; best_right = right,;
}

} while(left<n-1 || right<n-1);

std::cout << "Cut from position " << best_left+1l
<< " to position " << best_right+2 << "\n";



Why does it work?

Observation: p; (and p2) will get all values from 1 to n.

o Let W* = [p}, p5] be an optimal interval minimizing p7.

e Consider the first instant where p; = pj or pa = p5.
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Sliding Window

e \We have proven that the algorithm always considers an
optimal window.

Trick/Technique: Sliding Window

Some problems in which you need to find an interval
can be solved in linear time using a sliding window
approach, if you can ensure that an optimal interval will
be considered.
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Sushi Belt

Gustavo is in a Sushi-belt restaurant: n small plates are lined
up on a conveyor belt and will soon reach him

e Gustavo can eat an unlimited amount of food, as long as
he never stops eating

e Gustavo does not want to eat any repeated dish

e Gustavo wants to eat as much as possible

What is the maximum number of dishes that
Gustavo can eat?



Sushi Belt

Given an array A of n integers in {1,...,n}, find the longest
contiguous subarray of A that contains only distinct elements.




Sushi Belt

Given an array A of n integers in {1,...,n}, find the longest
contiguous subarray of A that contains only distinct elements.

Solution: A[3...,6], length: 4

Start eating from the 3rd plate, eat up to (and including) the
6-th plate
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e Ali...j] is a candidate solution

e Return longest candidate solution found
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Sushi Belt: Naive Solution

e Fori=1,...,n: O(n)
e Forj=u1,...,n: O(n)
o If Ali...j] contains no duplicates: Q7] O(n)

e Ali...j] is a candidate solution

e Return longest candidate solution found

To HAe: n

Total time: O(n?) via counting sort



Sushi Belt: Checking for Duplicates

e Do not run counting sort each time we need to check for

duplicates

o Keep the number of occurrences of each type updated

e Keep track of the number of duplicates, i.e., counts > 2
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Sushi Belt: Checking for Duplicates

e Do not run counting sort each time we need to check for
duplicates

o Keep the number of occurrences of each type updated

e Keep track of the number of duplicates, i.e., counts > 2
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Sushi Belt: (A Less) Naive Solution

e Fori=1,...,n: O(n)
e Forj=u1,...,n: O(n)
o If Ali...j] contains no duplicates: Q7] O(n)

e Ali...j] is a candidate solution

e Return longest candidate solution found
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Sushi Belt: (A Less) Naive Solution

e Fori=1,...,n: O(n)
e Forj=u1,...,n: O(n)

o If Ali...j] contains no duplicates: Q) Q] O(1)

e Ali...j|is a candidate solution

e Return longest candidate solution found

To HAe: n

Total time: Qf#V-viacounting sort

Total time: O(n?) by updating counts in O(1) time




Sushi Belt: Sliding Window

e Keep two pointers py, ps to keep track of the current
window W = [pl,pz]

o Initially p; =1, po =0
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Sushi Belt: Sliding Window

Keep two pointers py, po to keep track of the current
window W = [pl,pz]

Initially p1 =1, po =0

A
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o Let W* = [p}, p5| be an optimal interval

e Consider the first instant where p; = p] or pa = p5.
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If p1 = p] then po < p3 and Alp; ... p| contains no
duplicates for all p =ps,...,p5 — 1

Therefore, pa will be incremented until it reaches p5 while
p1 = p7 remains constant =—> the algorithm considers W*.
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Let W* = [p}, p5| be an optimal interval

Consider the first instant where p; = pj or pa = p5.

If po = p3 then p; < p7 and Alp...ps] contains duplicates
forall p=p1,...,p7 —1

Therefore, p; will be incremented until it reaches p7 while
p2 = p5 remains constant =—> the algorithm considers W*.
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e \We have proven that the algorithm always considers an
optimal window.

e In fact we did not need to make any assumption about a
specific optimal window in our proof...

e Our algorithm discovers all optimal solutions!

Trick/Technique: Sliding Window

Some problems in which you need to find an interval

can be solved in linear time using a sliding window

approach, if you can ensure that an optimal interval will
be considered.




A possible implementation

int left=0, right=-1, duplicates=0;
int best_len = -1;
std: :vector<int> counts(n);

do

{
if (duplicates==0 && right<n-1)
duplicates += ( ++counts[A[++right]l] >= 2 );
else
duplicates -= ( counts[A[left++]]-- >= 2 );

if (duplicates==0)
best_len = std::max(best_len, right-left+1);

} while(left<n-1 || right<n-1);

std: :cout << "Gustavo can eat " << best_len << " dishes\n";



A possible implementation

int left=0, right=-1, duplicates=0;
int best_len = -1;
std: :vector<int> counts(n);

4o Time: O(n)
{
if (duplicates==0 && right<n-1)
duplicates += ( ++counts[A[++right]l] >= 2 );
else
duplicates -= ( counts[A[left++]]-- >= 2 );

if (duplicates==0)
best_len = std::max(best_len, right-left+1);

} while(left<n-1 || right<n-1);

std: :cout << "Gustavo can eat " << best_len << " dishes\n":



