Gustavo's Pizza

Gustavo has very peculiar tastes when it comes to pizza al taglio: he wants his *slice* to have as many olives as possible, but never more than k.

The pizza can be cut into discrete positions $t_1 < \cdots < t_n$. A slice (i, j) with j > i represents the interval $[t_i, t_j]$.

The interval $[t_i, t_{i+1}]$ contains η_i olives. Where to cut?

Example

Example

Solution: (3,6). Number of olives: $\sum_{i=3}^{6-1} \eta_i = 8$.

A Naive Solution

- For i = 1, ..., n 1:
 - For j = i + 1, ..., n:
 - $\bullet \ \text{olives} \leftarrow 0$
 - For k = i, ..., j 1:
 - olives \leftarrow olives $+ \eta_k$

A Naive Solution

- For i = 1, ..., n 1:
 - For j = i + 1, ..., n:
 - $\bullet \ \text{olives} \leftarrow 0$
 - For k = i, ..., j 1:
- O(n)

O(n)

O(n)

- olives \leftarrow olives $+ \eta_k$
 - . . .

Total time: $O(n^3)$

A Naive Solution

- For i = 1, ..., n 1:
 - For j = i + 1, ..., n: O(n)
 - olives $\leftarrow 0$
 - For k = i, ..., j 1:
- O(n)

O(n)

• olives \leftarrow olives $+ \eta_k$

Total time: $O(n^3)$

Can we do better?

• Compute partial sums vector S O(n)

- Compute partial sums vector S O(n)
- For i = 1, ..., n 1: O(n)
 - For j = i + 1, ..., n: O(n)
 - olives $\leftarrow S[j-1] S[i-1]$ O(1)

- Compute partial sums vector S O(n)
- For i = 1, ..., n 1: O(n)
 - For j = i + 1, ..., n: O(n)
 - olives $\leftarrow S[j-1] S[i-1]$ O(1)

Total time: $O(n^2)$

- Compute partial sums vector S O(n)
- For i = 1, ..., n 1: O(n)
 - For j = i + 1, ..., n: O(n)
 - olives $\leftarrow S[j-1] S[i-1]$

Total time: $O(n^2)$

O(1)

Can we do better?

- Compute partial sums vector S O(n)
- For i = 1, ..., n 1: O(n)
 - Binary search S for the largest index $j \ge i$ such that $S[j] \le S[i-1] + k$.
 - olives $\leftarrow S[j] S[i-1]$ O(1)

 $O(\log n)$

- Compute partial sums vector S O(n)
- For i = 1, ..., n 1: O(n)
 - Binary search S for the largest index $j \ge i$ such that $S[j] \le S[i-1] + k$. $O(\log n)$
 - olives $\leftarrow S[j] S[i-1]$ O(1)

Total time: $O(n \log n)$

Recap

 $O(n^3)$

• Partial Sums

 $O(n^2)$

• Partial Sums + Binary Search

 $O(n\log n)$

Time

Recap

 $O(n^3)$

• Partial Sums

 $O(n^2)$

Time

Partial Sums + Binary Search

 $O(n\log n)$

Can we do better?

Sliding Window

• Keep two pointers p_1, p_2 to keep track of the current window W, i.e., the subsequence between p_1 and p_2 .

• Keep two pointers p_1, p_2 to keep track of the current window W, i.e., the subsequence between p_1 and p_2 .

• Let $\sigma(p_1, p_2)$ be the sum of the elements in W.

• Keep two pointers p_1, p_2 to keep track of the current window W, i.e., the subsequence between p_1 and p_2 .

- Let $\sigma(p_1, p_2)$ be the sum of the elements in W.
- If $\sigma(p_1, p_2)$ is too large: increase p_1 .

• Keep two pointers p_1, p_2 to keep track of the current window W, i.e., the subsequence between p_1 and p_2 .

- Let $\sigma(p_1, p_2)$ be the sum of the elements in W.
- If $\sigma(p_1, p_2)$ is too large: increase p_1 .
- If $\sigma(p_1, p_2)$ is too small: increase p_2 .

• Keep two pointers p_1, p_2 to keep track of the current window W, i.e., the subsequence between p_1 and p_2 .

- Let $\sigma(p_1, p_2)$ be the sum of the elements in W.
- If $\sigma(p_1, p_2)$ is too large: increase p_1 .
- If $\sigma(p_1, p_2)$ is too small: increase p_2 .
- Return "best" feasible window among those considered.

(plus suitable handling of edge cases)

```
int left=0, right=-1, sum=0;
int best_left=-1, best_right=-1, best_sum=-1;
do
{
   if(sum<=k && right<n-1)</pre>
       sum += A[++right];
   else
       sum -= A[left++];
   if(sum<=k && sum>best_sum)
   {
       best_sum = sum; best_left = left; best_right = right;
    }
} while(left<n-1 || right<n-1);</pre>
std::cout << "Cut from position " << best_left+1</pre>
          << " to position " << best_right+2 << "\n";
```

```
int left=0, right=-1, sum=0;
int best_left=-1, best_right=-1, best_sum=-1;
do
{
   if(sum<=k && right<n-1)</pre>
       sum += A[++right];
   else
                                          Running time?
       sum -= A[left++];
   if(sum<=k && sum>best_sum)
   {
       best_sum = sum; best_left = left; best_right = right;
   }
} while(left<n-1 || right<n-1);</pre>
std::cout << "Cut from position " << best_left+1</pre>
          << " to position " << best_right+2 << "\n";
```

```
int left=0, right=-1, sum=0;
int best_left=-1, best_right=-1, best_sum=-1;
do
{
   if(sum<=k && right<n-1)</pre>
       sum += A[++right];
   else
                                          Running time?
       sum -= A[left++];
                                                O(n)
   if(sum<=k && sum>best_sum)
   {
       best_sum = sum; best_left = left; best_right = right;
   }
} while(left<n-1 || right<n-1);</pre>
std::cout << "Cut from position " << best_left+1</pre>
          << " to position " << best_right+2 << "\n";
```

- Let $W^* = [p_1^*, p_2^*]$ be an optimal interval minimizing p_1^* .
- Consider the first instant where $p_1 = p_1^*$ or $p_2 = p_2^*$.

- Let $W^* = [p_1^*, p_2^*]$ be an optimal interval minimizing p_1^* .
- Consider the first instant where $p_1 = p_1^*$ or $p_2 = p_2^*$.
- If $p_1 = p_1^*$, then $p_2 < p_2^*$ and $\sigma(p_1, p) \le \sigma(p_1^*, p_2^*) \le k$, for every $p \in [p_2, p_2^* 1]$.

- Let $W^* = [p_1^*, p_2^*]$ be an optimal interval minimizing p_1^* .
- Consider the first instant where $p_1 = p_1^*$ or $p_2 = p_2^*$.
- If $p_1 = p_1^*$, then $p_2 < p_2^*$ and $\sigma(p_1, p) \le \sigma(p_1^*, p_2^*) \le k$, for every $p \in [p_2, p_2^* 1]$.
- Therefore, p_2 will be incremented until it reaches p_2^* while $p_1 = p_1^*$ remains constant \implies the algorithm considers W^* .

- Let $W^* = [p_1^*, p_2^*]$ be an optimal interval minimizing p_1^* .
- Consider the first instant where $p_1 = p_1^*$ or $p_2 = p_2^*$.
- If $p_2 = p_2^*$, then $p_1 < p_1^*$ and, for every $p \in [p_1, p_1^* 1]$, $\sigma(p, p_2) > \sigma(p_1^*, p_2^*)$ and hence $\sigma(p, p_2) > k$.

- Let $W^* = [p_1^*, p_2^*]$ be an optimal interval minimizing p_1^* .
- Consider the first instant where $p_1 = p_1^*$ or $p_2 = p_2^*$.
- If $p_2 = p_2^*$, then $p_1 < p_1^*$ and, for every $p \in [p_1, p_1^* 1]$, $\sigma(p, p_2) > \sigma(p_1^*, p_2^*)$ and hence $\sigma(p, p_2) > k$.
- Therefore, p_1 will be incremented until it reaches p_1^* while $p_2 = p_2^*$ remains constant \implies the algorithm considers W^* .

Sliding Window

• We have proven that the algorithm always considers an optimal window.

Sliding Window

• We have proven that the algorithm always considers an optimal window.

Trick/Technique: Sliding Window

Some problems in which you need to find an interval can be solved in linear time using a sliding window approach, if you can ensure that an optimal interval will be considered.

Gustavo is in a Sushi-belt restaurant: n small plates are lined up on a conveyor belt and will soon reach him

- Gustavo can eat an unlimited amount of food, as long as he never stops eating
- Gustavo does not want to eat any repeated dish
- Gustavo wants to eat as much as possible

What is the maximum number of dishes that Gustavo can eat?

Given an array A of n integers in $\{1, \ldots, n\}$, find the longest contiguous subarray of A that contains only distinct elements.

Given an array A of n integers in $\{1, \ldots, n\}$, find the longest contiguous subarray of A that contains only distinct elements.

Solution: A[3...,6], length: 4

Start eating from the 3rd plate, eat up to (and including) the 6-th plate

- For i = 1, ..., n:
 - For j = i, ..., n:
 - If $A[i \dots j]$ contains no duplicates:
 - $A[i \dots j]$ is a candidate solution
 - . . .
- Return longest candidate solution found

O(n)

O(n)

 $O(n^2)$

• For
$$i = 1, ..., n$$
:

• For
$$j = i, ..., n$$
:

• If $A[i \dots j]$ contains no duplicates:

- $A[i \dots j]$ is a candidate solution
- Return longest candidate solution found

Total time: $O(n^4)$

O(n)

O(n)

 $O(n^2)$

• For
$$i = 1, ..., n$$
:

• For
$$j = i, \ldots, n$$
:

- If $A[i \dots j]$ contains no duplicates:
 - $A[i \dots j]$ is a candidate solution

• Return longest candidate solution found

Total time: $O(n^4)$

O(n)

O(n)

 $O(n^2) O(n)$

• For
$$i = 1, ..., n$$
:

• For
$$j = i, ..., n$$
:

- If $A[i \dots j]$ contains no duplicates:
 - $A[i \dots j]$ is a candidate solution
- Return longest candidate solution found

Total time: $O(n^4)$

Total time: $O(n^3)$ via counting sort

Sushi Belt: Checking for Duplicates

- Do not run counting sort each time we need to check for duplicates
- Keep the number of occurrences of each type updated
- Keep track of the number of duplicates, i.e., counts ≥ 2

Sushi Belt: Checking for Duplicates

- Do not run counting sort each time we need to check for duplicates
- Keep the number of occurrences of each type updated
- Keep track of the number of duplicates, i.e., counts ≥ 2

Sushi Belt: Checking for Duplicates

- Do not run counting sort each time we need to check for duplicates
- Keep the number of occurrences of each type updated
- Keep track of the number of duplicates, i.e., counts ≥ 2

Sushi Belt: (A Less) Naive Solution

O(n)

O(n)

 $Q(n^2) O(n)$

• For
$$i = 1, ..., n$$
:

• For
$$j = i, ..., n$$
:

- If $A[i \dots j]$ contains no duplicates:
 - $A[i \dots j]$ is a candidate solution
- Return longest candidate solution found

Total time: $O(n^4)$

Total time: $O(n^3)$ via counting sort

Sushi Belt: (A Less) Naive Solution

O(n)

O(n)

 $Q(n^2) Q(n) O(1)$

• For
$$i = 1, ..., n$$
:

• For
$$j = i, ..., n$$
:

- If $A[i \dots j]$ contains no duplicates:
 - $A[i \dots j]$ is a candidate solution
- Return longest candidate solution found

Total time:
$$O(n^4)$$

Total time: $O(n^3)$ via counting sort
Total time: $O(n^2)$ by updating counts in $O(1)$ time

- Keep two pointers p_1, p_2 to keep track of the current window $W = [p_1, p_2]$
- Initially $p_1 = 1$, $p_2 = 0$

- Keep two pointers p_1, p_2 to keep track of the current window $W = [p_1, p_2]$
- Initially $p_1 = 1$, $p_2 = 0$

• If $A[p_1 \dots p_2]$ contains no duplicates and $p_2 < n$: increase p_2

- Keep two pointers p_1, p_2 to keep track of the current window $W = [p_1, p_2]$
- Initially $p_1 = 1$, $p_2 = 0$

- If $A[p_1 \dots p_2]$ contains no duplicates and $p_2 < n$: increase p_2
- If $A[p_1 \dots p_2]$ contains duplicates or $p_2 = n$: increase p_1

- Keep two pointers p_1, p_2 to keep track of the current window $W = [p_1, p_2]$
- Initially $p_1 = 1$, $p_2 = 0$

- If $A[p_1 \dots p_2]$ contains no duplicates and $p_2 < n$: increase p_2
- If $A[p_1 \dots p_2]$ contains duplicates or $p_2 = n$: increase p_1
- Return "best" feasible window among those considered.

- Let $W^* = [p_1^*, p_2^*]$ be an optimal interval
- Consider the first instant where $p_1 = p_1^*$ or $p_2 = p_2^*$.

- Let $W^* = [p_1^*, p_2^*]$ be an optimal interval
- Consider the first instant where $p_1 = p_1^*$ or $p_2 = p_2^*$.
- If $p_1 = p_1^*$ then $p_2 < p_2^*$ and $A[p_1 \dots p]$ contains no duplicates for all $p = p_2, \dots, p_2^* 1$

- Let $W^* = [p_1^*, p_2^*]$ be an optimal interval
- Consider the first instant where $p_1 = p_1^*$ or $p_2 = p_2^*$.
- If $p_1 = p_1^*$ then $p_2 < p_2^*$ and $A[p_1 \dots p]$ contains no duplicates for all $p = p_2, \dots, p_2^* 1$
- Therefore, p_2 will be incremented until it reaches p_2^* while $p_1 = p_1^*$ remains constant \implies the algorithm considers W^* .

- Let $W^* = [p_1^*, p_2^*]$ be an optimal interval
- Consider the first instant where $p_1 = p_1^*$ or $p_2 = p_2^*$.
- If $p_2 = p_2^*$ then $p_1 < p_1^*$ and $A[p \dots p_2]$ contains duplicates for all $p = p_1, \dots, p_1^* 1$

- Let $W^* = [p_1^*, p_2^*]$ be an optimal interval
- Consider the first instant where $p_1 = p_1^*$ or $p_2 = p_2^*$.
- If $p_2 = p_2^*$ then $p_1 < p_1^*$ and $A[p \dots p_2]$ contains duplicates for all $p = p_1, \dots, p_1^* 1$
- Therefore, p_1 will be incremented until it reaches p_1^* while $p_2 = p_2^*$ remains constant \implies the algorithm considers W^* .

- We have proven that the algorithm always considers an optimal window.
- In fact we did not need to make any assumption about a specific optimal window in our proof...

- We have proven that the algorithm always considers an optimal window.
- In fact we did not need to make any assumption about a specific optimal window in our proof...
- Our algorithm discovers **all** optimal solutions!

- We have proven that the algorithm always considers an optimal window.
- In fact we did not need to make any assumption about a specific optimal window in our proof...
- Our algorithm discovers **all** optimal solutions!

Trick/Technique: Sliding Window

Some problems in which you need to find an interval can be solved in linear time using a sliding window approach, if you can ensure that an optimal interval will be considered.

```
int left=0, right=-1, duplicates=0;
int best_len = -1;
std::vector<int> counts(n);
do
{
   if(duplicates==0 && right<n-1)</pre>
       duplicates += ( ++counts[A[++right]] >= 2 );
   else
       duplicates -= ( counts[A[left++]]-- >= 2 );
   if(duplicates==0)
       best_len = std::max(best_len, right-left+1);
} while(left<n-1 || right<n-1);</pre>
std::cout << "Gustavo can eat " << best_len << " dishes\n";</pre>
```

```
int left=0, right=-1, duplicates=0;
int best_len = -1;
std::vector<int> counts(n);
                                               Time: O(n)
do
{
   if(duplicates==0 && right<n-1)</pre>
       duplicates += ( ++counts[A[++right]] >= 2 );
   else
       duplicates -= ( counts[A[left++]]-- >= 2 );
   if(duplicates==0)
       best_len = std::max(best_len, right-left+1);
} while(left<n-1 || right<n-1);</pre>
std::cout << "Gustavo can eat " << best_len << " dishes\n";</pre>
```