Interval Scheduling

Interval Scheduling

You need to compute a non-preemptive schedule on a
supercomputer.

e There are n jobs indexed by 1,...,n submitted for
execution.

e Each job 7 has a desired start time s(z) and a completion
time e(i) > s(2).

e Two jobs ¢ and j are compatible if the intervals [s(7), e(7))
and [s(7),e(y)) are disjoint.

: : 1111
Goal: Find a subset of mutually compatible
jobs of maximum cardinality. D

B —
<) |) |
B —
I]]
I I :||||
0 1 2 D
8(1) 6(1) T

Optimal solution: {

Greedy template:

e Start with an empty set of jobs R = (.

e Examine jobs in some order.

e \When job 7 is examined: add 7 to R if it is compatible
with all jobs 5 already in R.

e Finally, return R.

Greedy template:

e Start with an empty set of jobs R = (.

e Examine jobs in some order.

e \When job 7 is examined: add 7 to R if it is compatible
with all jobs 5 already in R.

e Finally, return R.

Key question:
In what order should we process the jobs?

Some Possibilities:

Earliest Start Time: Increasing order of s(7).

Earliest Finish Time: Increasing order of e(i).

Shortest Interval: Increasing order of e(i) — s(%).

Fewest Conflicts: Increasing order w.r.t. the number of
conflicting jobs.

Earliest Start Time

Earliest Start Time

Earliest Start Time

Shortest Interval

Shortest Interval

Shortest Interval

Fewest Conflicts

Fewest Conflicts

Fewest Conflicts

Some Possibilities:

o Earliest Start Tirmm order of s(1).

e Earliest Finish Time: Increasing order of e(i).

e Shortest Inté fg_order of e(i) — s(¢).

o Fewt pflicts' Increasing ordss=w=r=t=the number of
conflicting-tebs

Earliest Finish Time

o Let 7 ={1...,n} be the set of jobs in input.
e R+ 1)

e While [J is not empty:

e Find a job i € J minimizing e(1).
e Add 7 to R

e Remove from J all jobs 7 € J that are not compatible
with ¢ (including @ itself).

e Return R

Observation: R is always a set of mutually compatible jobs.

EFT: Proof of Correctness

Let R* be an optimal set of jobs.

Let 41, %2,...,%my (resp. i],%5,...,7;) be the indices of the jobs
in R (resp. R*), sorted w.r.t. e(-).

We want to prove m = |R| > |R*| = /.

Claim: For k =1,...,/¢, index i} exists and e(ix) < e(i}).

EFT: Proof of Correctness

Let R* be an optimal set of jobs.

Let 41, %2,...,%my (resp. i],%5,...,7;) be the indices of the jobs
in R (resp. R*), sorted w.r.t. e(-).

We want to prove m = |R| > |R*| = /.
Claim: For k =1,...,/¢, index i} exists and e(ix) < e(i}).

Base case (kK =1):

e Sincen > 1, J is not empty before the first iteration, and
11 exists.

e By the choice of 71: e(i1) < Min,;—1,. . n e(g) < e(e])

EFT: Proof of Correctness

Claim: For k =1,...,/¢, index iy exists and e(ix) < e(i}).
Induction step (k > 1):

e i} is compatible with if_,, thus e(if_,) < s(i})

EFT: Proof of Correctness

Claim: For k =1,...,/¢, index iy exists and e(ix) < e(i}).

Induction step (k > 1):

* K

e i, is compatible with 7 ., thus e(i}y_;) < s(¢})

e by induction hypothesis e(i;_1) < e(i}_;)

EFT: Proof of Correctness

Claim: For k =1,...,/¢, index iy exists and e(ix) < e(i}).
Induction step (k > 1):

e i} is compatible with if_,, thus e(if_,) < s(i})

e by induction hypothesis e(i;_1) < e(i}_;)
e Thefore, at the beginning ot the k-th iteration, i;, € J

since It Is compatible with 21, ...,
[] | |
21 L—2 tk—1

EFT: Proof of Correctness

Claim: For k =1,...,/¢, index iy exists and e(ix) < e(i}).
Induction step (k > 1):
e ¢} is compatible with i; _,, thus e(i;_;) < s(i})

e by induction hypothesis e(i;_1) < e(i}_;)

e Thefore, at the beginning ot the k-th iteration, i;, € J
since It Is compatible with 21, ...,

e By the greedy choice: e(ix) = minese(j) < e(if).

— 1 ... [|

11 1—2 1k—1

EFT: Proof of Correctness

Claim: For £k =1,...,¢, index i; exists and e(ix) < e(i}).

Trick/ Technique: Greedy Stays Ahead

At each step, the solution produced by greedy is not
worse than the one produced by any other algorithm.

Implementing EFT

e Naive implementation: O(n?) time.

A better implementation:
® (i1,...,0n) < sort {1,...,n} w.rt. e(-).
e Let R = () be the current (partial) solution.

e Let f = 0 be the current finish time.

e Forj=1,...,n:
o H'-S(Z])Zf
® R%RU{ZJ}

o f < e(ij)

e Return R

Implementing EFT

e Naive implementation: O(n?) time.

A better implementation:
 (i1,...,10,) < sort {1,...,n} w.r.t. e(). O(nlogn)
e Let R = () be the current (partial) solution.

e Let f = 0 be the current finish time.

e Forj=1,...,n:)

o |f S(ij) Z f:
® R%RU{ZJ}
o [eli;)

e Return R Time complexity: O(nlogn)

> O(n)

Implementing EFT

struct job { int id; int start; int end; };
std: :vector<job> jobs;

//[...] Read jobs

std: :sort(jobs.begin(), jobs.end(), [](const job &jl, const job &j2)
{ return jl.end < j2.end; })

int £ = 0;
std: :vector<int> schedule;
for(const job &j : jobs)

{
if (j.start >= f)
{
schedule.push_back(j.id) ;
f = j.end;
+
}

//schedule contains an optimal set of jobs

Interval Partitioning

Interval Partitioning

e There are n jobs indexed by 1,.... n.

e Each job ¢ has a start time s(7) and a completion time
e(?) > s(1).

e Two jobs ¢ and j are compatible if the intervals [s(7), e(7))
and [s(7),e(y)) are disjoint.

e All jobs must be executed, but you can use k processors.

e Jobs scheduled on the same processor must be mutually
compatible.

Goal: Minimize k. L 1L IIIT

(and return the k£ corresponding schedules) D D D

Example

I | | | | | |
I | | | | | |
| L]
I | | | | | |
I | | | | | |
I | | | | | |

Is kK = 3 optimal?

Is kK = 3 optimal?

e Observation: There are 3 jobs that must be executed
simultaneously.

e 3 is a lower bound to the optimal solution £*.

Is kK = 3 optimal?

e Observation: There are 3 jobs that must be executed
simultaneously.

e 3 is a lower bound to the optimal solution £*.

e Definition: The depth D of a set of intervals is the
maximum number of intervals [s(¢),e(2)) that contain any
single point.

Is kK = 3 optimal?

e Observation: There are 3 jobs that must be executed
simultaneously.

e 3 is a lower bound to the optimal solution £*.

e Definition: The depth D of a set of intervals is the
maximum number of intervals [s(¢),e(2)) that contain any
single point.

e Observation: t* > D.

Is kK = 3 optimal?

e Observation: There are 3 jobs that must be executed
simultaneously.

e 3 is a lower bound to the optimal solution £*.

e Definition: The depth D of a set of intervals is the
maximum number of intervals [s(¢),e(2)) that contain any
single point.

e Observation: t* > D. s k* < D7

A greedy algorithm
Assume that 7 = {1,...,n} is sorted w.r.t. s(-).

Each job j € J will get a label /(j) € NT.

For =1 ...,n:
o (; < set of jobsin1,...,57—1 that conflict with j.

o /(j) < smallest positive integer not in {{(i) : i € C}}

Return a solution on k processors. The jobs assigned to the
h-th processor are those in {7 : ¢(7) = h}.

A greedy algorithm

A greedy algorithm

A greedy algorithm

2|

| | —

A greedy algorithm

2|

11

| | —

A greedy algorithm

2|

11

| | —

2|

A greedy algorithm

2|

11

11

| | —

2|

A greedy algorithm

2|

11

11

| | —

3l

2|

A greedy algorithm

2|

11

11

| | —

3l

2|

11

A greedy algorithm

2|

11

11

| | —

2]

3l

2|

11

Analysis

e Observation: No pair of overlapping intervals can get the
same label = all schedules consist of mutually
compatible jobs.

Analysis

e Observation: No pair of overlapping intervals can get the
same label = all schedules consist of mutually
compatible jobs.

o Claim: £k < D.
e Let 5 be a job for which /(j) = k.
e By the choice of 4(j): 1,...,k—1e€{l(:i):2€C,}
o Forallie Cj, e(i) > s(9), i.e., s(j) € [s(i),e(z)).

e s(j) belongs to at least k intervals =— D >k

Analysis

e Observation: No pair of overlapping intervals can get the
same label = all schedules consist of mutually
compatible jobs.

o Claim: £k < D.
e Let 5 be a job for which /(j) = k.
e By the choice of 4(j): 1,...,k—1e€{l(:i):2€C,}
o Forallie Cj, e(i) > s(9), i.e., s(j) € [s(i),e(z)).

e s(j) belongs to at least k intervals =— D >k

E*< k<D

Analysis

e Observation: No pair of overlapping intervals can get the
same label = all schedules consist of mutually
compatible jobs.

o Claim: £k < D.
e Let 5 be a job for which /(j) = k.
e By the choice of 4(j): 1,...,k—1e€{l(:i):2€C,}
o Forallie Cj, e(i) > s(9), i.e., s(j) € [s(i),e(z)).

e s(j) belongs to at least k intervals =— D >k

Analysis

e Observation: No pair of overlapping intervals can get the
same label = all schedules consist of mutually

compatible jobs.

o Claim: £k < D.

e Let 5 be a job for which /(j) = k.
e By the choice of 4(j): 1,...,k—1e€{l(:i):2€C,}
o Forallie Cj, e(i) > s(9), i.e., s(j) € [s(i),e(z)).

e s(j) belongs to at least k intervals =— D >k

» —> k=k"=D

Analysis

e Observation: t* > D.

o Claim: £k < D.

Trick/Technique: Finding Structural Properties

Find a structural property that implies optimality. (e.g.,

a lower bound to the measure of an optimal solution).
Prove that greedy returns a solution with that property.

A possible implementation

Every starting time s(j) or finish time e(j) of a job 7 is an

event (s(j),j) or (e(j),J)-
Create a sorted list of events.

k <+ 0

Mantain a min-heap H.

O(nlogn)

(break ties in favor of ending events)
(number distinct labels)

(stores unused labels in {1,...,k})

A possible implementation

Every starting time s(j) or finish time e(j) of a job 7 is an

event (s(j), j) or (e(j),).

O(nlogn)

Create a sorted list of events. (break ties in favor of ending events)

k <+ 0

(number distinct labels)

Mantain a min—heap H. (stores unused labels in {1,...,k})

For each event (¢, j):

o If t =s5(y)

O(n)

e If H is empty, increment k and set /(j) < k

e Otherwise ¢(j) < pop from H
e Otherwise (t =e(j)):
e Push /(j) into H.

O(log k)

O(log k)

A possible implementation

struct job { int id; int start; int end; };
std: :vector<job> jobs;

//[...] Read jobs

std::vector<std::tuple<int, bool, int>> events;
for(const job &j : jobs)

{
//Use second entry for tie breaking (false<true)
events.push_back(std::make_tuple(j.start, true, j.id));
events.push_back(std::make_tuple(j.end, false, j.id));
}

std: :sort(events.begin(), events.end());

A possible implementation

int k=0;

std: :vector<int> H; //A min-heap of available labels

std: :vector<int> labels(jobs.size()); //Labels assigned to jobs
for(const auto &event : events)

{
if (std::get<1>(event)) //Start event
{
if (H.empty())
labels[std: :get<2>(event)] = ++k;
else
{
std: :pop_heap(H.begin(), H.end(), std::greater<int>());
labels[std::get<2>(event)] = H.back();
H.pop_back() ;
+
}
else //End event
{
H.push_back(labels[std::get<2>(event)]);
std: :push_heap(H.begin(), H.end(), std::greater<int>());
}
}

//labels[i] contains the label of job i

Minimizing Lateness

Minimizing Lateness

e There are n jobs indexed by 1,... . n.

e Each job i has a length ¢(7) and a distinct deadline d(3).

e All jobs have to be scheduled on a single processor (one at
a time).

e If job i completes by time f; < d(7) its lateness ¢; is O.
Otherwise ¢; = f; — d(1).

Goal: Find a schedule S minimizing the maximum lateness
L(S) = max max{0, f; — d(7)}.

1=1,...,n

Example

D O Oy WO

— N & <A
ol e A o N -

ob 1
ob 2
Job 3:
ob 4

Example

D O Oy WO

— N & <A
ol e A o N -

ob 1
ob 2
Job 3:
ob 4

Example

D O Oy WO

— N & <A
ol e A o N -

ob 1
ob 2
Job 3:
ob 4

Example
© O O O O

D O Oy WO

— N & <A
ol e A o N -

ob 1
ob 2
Job 3:
ob 4

| I
| ——t——t——t—>
Maximum Lateness: 5
Job1l: m—— d(1) =3
Job 2: | | d(2) =6
Job 3:] d(3) =9
Job 4: | d(4) =5

Which order for the jobs?

e Shortest Job First: Increasing order of (7).
e Shortest Slack Time First: Increasing order of d(i) —t(i).

e Earliest Deadline First: Increasing order of d().

Shortest Job First

Shortest Job First

Shortest Job First

Shortest Slack Time First

Shortest Slack Time First

Shortest Slack Time First

Which order for the jobs?

e Shortest Job Fi mreorder of £(2).
e Shortest Slack Ti ' [E_order of d(¢) —t(i).

e Earliest Deadline First: Increasing order of d().

Earliest Deadline First

The algorithm:
® (j1,...,Jn) < sort jobs w.r.t. d(-).

e Fori=1...,n

e Schedule j; at time 22;11 t(k)

Earliest Deadline First

The algorithm:
® (j1,...,Jn) < sort jobs w.r.t. d(-).
e Fori=1...,n

e Schedule j; at time 22;11 t(k)

Proof of correctness:

e Observation: The greedy schedule has no idle time.

Earliest Deadline First

The algorithm:
® (j1,...,Jn) < sort jobs w.r.t. d(-).
e Fori=1...,n

e Schedule j; at time 22;11 t(k)

Proof of correctness:

e Observation: The greedy schedule has no idle time.

e Definition: An inversion of a schedule S is a pair of jobs
(4, 7) such that job ¢ is scheduled before job j but

d(i) > d(j).

e Observation: The greedy schedule has no inversion.

EDF - Proof of Correctness

e Observation: The greedy schedule has no idle time and no
Inversions.

e Claim: All schedules with no idle time and no inversions
are identical.

EDF - Proof of Correctness

e Observation: The greedy schedule has no idle time and no
Inversions.

e Claim: All schedules with no idle time and no inversions
are identical.

o It suffices to show: There exists an optimal schedule with
no idle time and no inversions.

EDF - Proof of Correctness

Claim: For every optimal schedule S* there is an optimal
schedule S with no idle time and the same number of
Inversions as S*.

EDF - Proof of Correctness

Claim: For every optimal schedule S* there is an optimal
schedule S with no idle time and the same number of
Inversions as S*.

Proof: Let j1,..., 7, be the sequence of jobs of S*. Let f,
and ¢, be the finish time and lateness of job k according to
S*, respectively.

Consider the schedule S that excecutes ji,...,J, (in order)
with no idle time.

Notice that f; = 2221 t(jx) < f¥ and hence ¢; < 07,

S is feasible and has the same inversions as S*.

| | L 1] | | |

Shbe—m,——t—t————————+——+—»

EDF - Proof of Correctness

Claim: For every optimal schedule S* there is an optimal
schedule S with no idle time and the same number of
Inversions as S*.

Proof: Let j1,..., 7, be the sequence of jobs of S*. Let f,
and ¢, be the finish time and lateness of job k according to
S*, respectively.

Consider the schedule S that excecutes ji,...,J, (in order)
with no idle time.

Notice that f; = 2221 t(jx) < f¥ and hence ¢; < 07,

S is feasible and has the same inversions as S*.

EDF - Proof of Correctness

e Observation: The greedy schedule has no idle time and no
Inversions.

e Claim: All schedules with no idle time and no inversions
are identical.

o It suffices to show: There exists an optimal schedule with
no idle time and no inversions.

DONE

EDF - Proof of Correctness

Claim: Let S* be an optimal schedule with no idle time and at
least 1 inversion. There is an optimal schedule S with no idle
time and less inversions than S™.

EDF - Proof of Correctness

Claim: Let S* be an optimal schedule with no idle time and at
least 1 inversion. There is an optimal schedule S with no idle
time and less inversions than S™.

Proof (sketch): S* must also contain an inversion (¢, 7) such
that no job is scheduled between 7 and j.

EDF - Proof of Correctness

Claim: Let S* be an optimal schedule with no idle time and at
least 1 inversion. There is an optimal schedule S with no idle
time and less inversions than S™.

Proof (sketch): S* must also contain an inversion (¢, 7) such
that no job is scheduled between 7 and j.

Consider the schedule S obtained by swapping job ¢ with job j.

S*I l |Z| |-]| l l l l >

S I | | |] | | Z | | | | >

fi < f; <d(@)+ £ fi= 17 < dG)+ 6 < d(i) + £

EDF - Proof of Correctness

Claim: Let S* be an optimal schedule with no idle time and at
least 1 inversion. There is an optimal schedule S with no idle
time and less inversions than S™.

e Pick any optimal schedule S§*

e Initially S* can have at most (7,) inversions.

o lteratively apply the claim until no inversions are left.

e \We have obtained an optimal schedule with no idle time
and no inversions.

EDF - Proof of Correctness

Claim: Let S* be an optimal schedule with no idle time and at
least 1 inversion. There is an optimal schedule S with no idle
time and less inversions than S™.

e Pick any optimal schedule S§*

e Initially S* can have at most (7,) inversions.

o lteratively apply the claim until no inversions are left.

e \We have obtained an optimal schedule with no idle time

and no inversions.
\ This is exactly the

greedy schedule!

EDF - Proof of Correctness

Claim: Let S* be an optimal schedule with no idle time and at
least 1 inversion. There is an optimal schedule S with no idle
time and less inversions than S™.

e Pick any optimal schedule S*

e Initially S* can have at most (Z) Inversions.

o lteratively apply the claim until no inversions are left.

Trick/ Technique: Exchange Argument

lteratively transform the optimal solution into the greedy
solution without worsening its quality.

Recap

Trick/ Technique: Greedy Stays Ahead

At each step, the solution produced by greedy is not
worse than the one produced by any other algorithm.

Trick/ Technique: Greedy Stays Ahead

At each step, the solution produced by greedy is not
worse than the one produced by any other algorithm.

Trick/Technique: Finding Structural Properties

Find a structural property that implies optimality. (e.g.,
a lower bound to the measure of an optimal solution).
Prove that greedy returns a solution with that property.

Trick/ Technique: Greedy Stays Ahead

At each step, the solution produced by greedy is not
worse than the one produced by any other algorithm.

Trick/Technique: Finding Structural Properties

Find a structural property that implies optimality. (e.g.,

a lower bound to the measure of an optimal solution).
Prove that greedy returns a solution with that property.

Trick/ Technique: Exchange Argument

lteratively transform the optimal solution into the greedy
solution without worsening its quality.

