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Interval Scheduling

You need to compute a non-preemptive schedule on a
supercomputer.

• There are n jobs indexed by 1, . . . , n submitted for
execution.

• Each job i has a desired start time s(i) and a completion
time e(i) > s(i).

• Two jobs i and j are compatible if the intervals [s(i), e(i))
and [s(j), e(j)) are disjoint.

Goal: Find a subset of mutually compatible
jobs of maximum cardinality.
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Greedy template:

• Start with an empty set of jobs R = ∅.

• Examine jobs in some order.

• When job i is examined: add i to R if it is compatible
with all jobs j already in R.

• Finally, return R.



Greedy template:

• Start with an empty set of jobs R = ∅.

• Examine jobs in some order.

• When job i is examined: add i to R if it is compatible
with all jobs j already in R.

• Finally, return R.

Key question:
In what order should we process the jobs?



Some Possibilities:

• Earliest Start Time: Increasing order of s(i).

• Earliest Finish Time: Increasing order of e(i).

• Shortest Interval: Increasing order of e(i)− s(i).

• Fewest Conflicts: Increasing order w.r.t. the number of
conflicting jobs.
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• Earliest Start Time: Increasing order of s(i).

• Earliest Finish Time: Increasing order of e(i).

• Shortest Interval: Increasing order of e(i)− s(i).

• Fewest Conflicts: Increasing order w.r..t. the number of
conflicting jobs.

Some Possibilities:



Earliest Finish Time

• Let J = {1 . . . , n} be the set of jobs in input.

• While J is not empty:

• Find a job i ∈ J minimizing e(i).

• R ← ∅

• Add i to R

• Remove from J all jobs j ∈ J that are not compatible
with i (including i itself).

• Return R

Observation: R is always a set of mutually compatible jobs.



EFT: Proof of Correctness

Let R∗ be an optimal set of jobs.

Let i1, i2, . . . , im (resp. i∗1, i
∗
2, . . . , i

∗
ℓ ) be the indices of the jobs

in R (resp. R∗), sorted w.r.t. e(·).

Claim: For k = 1, . . . , ℓ, index ik exists and e(ik) ≤ e(i∗k).

We want to prove m = |R| ≥ |R∗| = ℓ.



EFT: Proof of Correctness

Let R∗ be an optimal set of jobs.

Let i1, i2, . . . , im (resp. i∗1, i
∗
2, . . . , i

∗
ℓ ) be the indices of the jobs

in R (resp. R∗), sorted w.r.t. e(·).

Claim: For k = 1, . . . , ℓ, index ik exists and e(ik) ≤ e(i∗k).

We want to prove m = |R| ≥ |R∗| = ℓ.

Base case (k = 1):

• Since n ≥ 1, J is not empty before the first iteration, and
i1 exists.

• By the choice of i1: e(i1) ≤ minj=1,...,n e(j) ≤ e(i∗1)



Induction step (k > 1):

EFT: Proof of Correctness

• i∗k is compatible with i∗k−1, thus e(i
∗
k−1) ≤ s(i∗k)

Claim: For k = 1, . . . , ℓ, index ik exists and e(ik) ≤ e(i∗k).
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Induction step (k > 1):

EFT: Proof of Correctness

• i∗k is compatible with i∗k−1, thus e(i
∗
k−1) ≤ s(i∗k)

• by induction hypothesis e(ik−1) ≤ e(i∗k−1)
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Induction step (k > 1):

EFT: Proof of Correctness

• i∗k is compatible with i∗k−1, thus e(i
∗
k−1) ≤ s(i∗k)

• by induction hypothesis e(ik−1) ≤ e(i∗k−1)

• Thefore, at the beginning ot the k-th iteration, i∗k ∈ J
since it is compatible with i1, . . . , ik−1

Claim: For k = 1, . . . , ℓ, index ik exists and e(ik) ≤ e(i∗k).
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• By the greedy choice: e(ik) = minj∈J e(j) ≤ e(i∗k).

Induction step (k > 1):

EFT: Proof of Correctness

• i∗k is compatible with i∗k−1, thus e(i
∗
k−1) ≤ s(i∗k)

• by induction hypothesis e(ik−1) ≤ e(i∗k−1)

• Thefore, at the beginning ot the k-th iteration, i∗k ∈ J
since it is compatible with i1, . . . , ik−1

• J ̸= ∅ =⇒ ∃ik

Claim: For k = 1, . . . , ℓ, index ik exists and e(ik) ≤ e(i∗k).

i∗ki∗k−1

ik−1ik−2i1

. . . J



Trick/Technique: Greedy Stays Ahead

At each step, the solution produced by greedy is not
worse than the one produced by any other algorithm.

Claim: For k = 1, . . . , ℓ, index ik exists and e(ik) ≤ e(i∗k).

EFT: Proof of Correctness



Implementing EFT

• Naive implementation: O(n2) time.

A better implementation:

• ⟨i1, . . . , in⟩ ← sort {1, . . . , n} w.r.t. e(·).

• For j = 1, . . . , n:

• Let R = ∅ be the current (partial) solution.

• Let f = 0 be the current finish time.

• If s(ij) ≥ f :

• f ← e(ij)

• R ← R ∪ {ij}

• Return R



Implementing EFT

• Naive implementation: O(n2) time.

A better implementation:

• ⟨i1, . . . , in⟩ ← sort {1, . . . , n} w.r.t. e(·).

• For j = 1, . . . , n:

• Let R = ∅ be the current (partial) solution.

• Let f = 0 be the current finish time.

• If s(ij) ≥ f :

• f ← e(ij)

• R ← R ∪ {ij}

• Return R





O(n)

O(n log n)

Time complexity: O(n log n)



Implementing EFT
struct job { int id; int start; int end; };
std::vector<job> jobs;

//[...] Read jobs

std::sort(jobs.begin(), jobs.end(), [](const job &j1, const job &j2)
{ return j1.end < j2.end; })

int f = 0;
std::vector<int> schedule;
for(const job &j : jobs)
{

if(j.start >= f)
{

schedule.push_back(j.id);
f = j.end;

}
}

//schedule contains an optimal set of jobs



Interval Partitioning



Interval Partitioning

• There are n jobs indexed by 1, . . . , n.

• Each job i has a start time s(i) and a completion time
e(i) > s(i).

• Two jobs i and j are compatible if the intervals [s(i), e(i))
and [s(j), e(j)) are disjoint.

• All jobs must be executed, but you can use k processors.

• Jobs scheduled on the same processor must be mutually
compatible.

Goal: Minimize k.
(and return the k corresponding schedules)
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• Observation: There are 3 jobs that must be executed
simultaneously.

• 3 is a lower bound to the optimal solution k∗.
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• Definition: The depth D of a set of intervals is the
maximum number of intervals [s(i), e(i)) that contain any
single point.
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Is k = 3 optimal?

• Observation: There are 3 jobs that must be executed
simultaneously.

• 3 is a lower bound to the optimal solution k∗.

• Definition: The depth D of a set of intervals is the
maximum number of intervals [s(i), e(i)) that contain any
single point.

• Observation: k∗ ≥ D. Is k∗ ≤ D?



A greedy algorithm

• Each job j ∈ J will get a label ℓ(j) ∈ N+.

• For j = 1 . . . , n:

• Assume that J = {1, . . . , n} is sorted w.r.t. s(·).

• ℓ(j) ← smallest positive integer not in {ℓ(i) : i ∈ Cj}

• k ← maxj=1,...,n ℓ(j).

• Return a solution on k processors. The jobs assigned to the
h-th processor are those in {i : ℓ(i) = h}.

• Cj ← set of jobs in 1, . . . , j − 1 that conflict with j.
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Analysis

• Observation: No pair of overlapping intervals can get the
same label =⇒ all schedules consist of mutually
compatible jobs.
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• s(j) belongs to at least k intervals =⇒ D ≥ k
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Analysis

• Claim: k ≤ D.

• Observation: No pair of overlapping intervals can get the
same label =⇒ all schedules consist of mutually
compatible jobs.

• Let j be a job for which ℓ(j) = k.

• By the choice of ℓ(j): 1, . . . , k − 1 ∈ {ℓ(i) : i ∈ Cj}
• For all i ∈ Cj , e(i) > s(j), i.e., s(j) ∈ [s(i), e(i)).

• s(j) belongs to at least k intervals =⇒ D ≥ k

k∗ ≤ k ≤ D

D ≤ k∗
=⇒ k = k∗ = D

)



Trick/Technique: Finding Structural Properties

Find a structural property that implies optimality. (e.g.,
a lower bound to the measure of an optimal solution).
Prove that greedy returns a solution with that property.

Analysis

• Observation: k∗ ≥ D.

• Claim: k ≤ D.



A possible implementation
• Every starting time s(j) or finish time e(j) of a job j is an
event ⟨s(j), j⟩ or ⟨e(j), j⟩.

• Create a sorted list of events. (break ties in favor of ending events)

• Mantain a min-heap H. (stores unused labels in {1, . . . , k})

• k ← 0 (number distinct labels)

O(n log n)



A possible implementation
• Every starting time s(j) or finish time e(j) of a job j is an
event ⟨s(j), j⟩ or ⟨e(j), j⟩.

• Create a sorted list of events. (break ties in favor of ending events)

• For each event ⟨t, j⟩:
• If t = s(j)

• Mantain a min-heap H. (stores unused labels in {1, . . . , k})

• If H is empty, increment k and set ℓ(j) ← k

• Otherwise ℓ(j) ← pop from H

• Otherwise (t = e(j)):

• Push ℓ(j) into H.

• k ← 0 (number distinct labels)

O(n)

O(log k)

O(log k)

O(n log n)



A possible implementation

struct job { int id; int start; int end; };
std::vector<job> jobs;

//[...] Read jobs

std::vector<std::tuple<int, bool, int>> events;
for(const job &j : jobs)
{

//Use second entry for tie breaking (false<true)
events.push_back( std::make_tuple(j.start, true, j.id) );
events.push_back( std::make_tuple(j.end, false, j.id) );

}

std::sort(events.begin(), events.end());



A possible implementation
int k=0;
std::vector<int> H; //A min-heap of available labels
std::vector<int> labels(jobs.size()); //Labels assigned to jobs
for(const auto &event : events)
{

if(std::get<1>(event)) //Start event
{

if(H.empty())
labels[std::get<2>(event)] = ++k;

else
{

std::pop_heap(H.begin(), H.end(), std::greater<int>());
labels[std::get<2>(event)] = H.back();
H.pop_back();

}
}
else //End event
{

H.push_back(labels[std::get<2>(event)]);
std::push_heap(H.begin(), H.end(), std::greater<int>());

}
}
//labels[i] contains the label of job i



Minimizing Lateness



Minimizing Lateness

• There are n jobs indexed by 1, . . . , n.

• Each job i has a length t(i) and a distinct deadline d(i).

• All jobs have to be scheduled on a single processor (one at
a time).

Goal: Find a schedule S minimizing the maximum lateness

L(S) = max
i=1,...,n

max{0, fi − d(i)}.

• If job i completes by time fi ≤ d(i) its lateness ℓi is 0.
Otherwise ℓi = fi − d(i).
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Example

d(1) = 3Job 1:

Job 2:

Job 3:

Job 4:

d(2) = 6

d(4) = 5

d(3) = 9

Maximum Lateness: 5



Which order for the jobs?

• Shortest Job First: Increasing order of t(i).

• Shortest Slack Time First: Increasing order of d(i)− t(i).

• Earliest Deadline First: Increasing order of d(i).
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Which order for the jobs?
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Earliest Deadline First

• ⟨j1, . . . , jn⟩ ← sort jobs w.r.t. d(·).
The algorithm:

• For i = 1 . . . , n

• Schedule ji at time
Pi−1

k=1 t(k)



Earliest Deadline First

• ⟨j1, . . . , jn⟩ ← sort jobs w.r.t. d(·).

Proof of correctness:

The algorithm:

• For i = 1 . . . , n

• Schedule ji at time
Pi−1

k=1 t(k)

• Observation: The greedy schedule has no idle time.



Earliest Deadline First

• ⟨j1, . . . , jn⟩ ← sort jobs w.r.t. d(·).

Proof of correctness:

The algorithm:

• For i = 1 . . . , n

• Schedule ji at time
Pi−1

k=1 t(k)

• Observation: The greedy schedule has no idle time.

• Definition: An inversion of a schedule S is a pair of jobs
(i, j) such that job i is scheduled before job j but
d(i) > d(j).

• Observation: The greedy schedule has no inversion.



EDF - Proof of Correctness

• Claim: All schedules with no idle time and no inversions
are identical.

• Observation: The greedy schedule has no idle time and no
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EDF - Proof of Correctness

• Claim: All schedules with no idle time and no inversions
are identical.

• It suffices to show: There exists an optimal schedule with
no idle time and no inversions.

• Observation: The greedy schedule has no idle time and no
inversions.
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schedule S with no idle time and the same number of
inversions as S∗.
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Claim: For every optimal schedule S∗ there is an optimal
schedule S with no idle time and the same number of
inversions as S∗.

Proof: Let j1, . . . , jn be the sequence of jobs of S∗. Let f∗
k

and ℓ∗k be the finish time and lateness of job k according to
S∗, respectively.

Consider the schedule S that excecutes j1, . . . , jn (in order)
with no idle time.

Notice that fi =
Pi

k=1 t(jk) ≤ f∗
i and hence ℓi ≤ ℓ∗i .

S is feasible and has the same inversions as S∗.
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EDF - Proof of Correctness

• Claim: All schedules with no idle time and no inversions
are identical.

• It suffices to show: There exists an optimal schedule with
no idle time and no inversions.

• Observation: The greedy schedule has no idle time and no
inversions.

DONE



Claim: Let S∗ be an optimal schedule with no idle time and at
least 1 inversion. There is an optimal schedule S with no idle
time and less inversions than S∗.
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Claim: Let S∗ be an optimal schedule with no idle time and at
least 1 inversion. There is an optimal schedule S with no idle
time and less inversions than S∗.

EDF - Proof of Correctness

Proof (sketch): S∗ must also contain an inversion (i, j) such
that no job is scheduled between i and j.

S∗ i j



Claim: Let S∗ be an optimal schedule with no idle time and at
least 1 inversion. There is an optimal schedule S with no idle
time and less inversions than S∗.

EDF - Proof of Correctness

Proof (sketch): S∗ must also contain an inversion (i, j) such
that no job is scheduled between i and j.

S∗

S

fj < f∗
j ≤ d(j) + ℓ∗j fi = f∗

j ≤ d(j) + ℓ∗j < d(i) + ℓ∗j

i j

j i

Consider the schedule S obtained by swapping job i with job j.



EDF - Proof of Correctness

• Initially S∗ can have at most

n
2

�
inversions.

• Iteratively apply the claim until no inversions are left.

Claim: Let S∗ be an optimal schedule with no idle time and at
least 1 inversion. There is an optimal schedule S with no idle
time and less inversions than S∗.

• Pick any optimal schedule S∗

• We have obtained an optimal schedule with no idle time
and no inversions.
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• Iteratively apply the claim until no inversions are left.

Claim: Let S∗ be an optimal schedule with no idle time and at
least 1 inversion. There is an optimal schedule S with no idle
time and less inversions than S∗.

• Pick any optimal schedule S∗

• We have obtained an optimal schedule with no idle time
and no inversions.

This is exactly the
greedy schedule!



EDF - Proof of Correctness

• Initially S∗ can have at most

n
2

�
inversions.

• Iteratively apply the claim until no inversions are left.

Claim: Let S∗ be an optimal schedule with no idle time and at
least 1 inversion. There is an optimal schedule S with no idle
time and less inversions than S∗.

• Pick any optimal schedule S∗

• We have obtained an optimal schedule with no idle time
and no inversions.
Trick/Technique: Exchange Argument

Iteratively transform the optimal solution into the greedy
solution without worsening its quality.
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solution without worsening its quality.


