Interval Scheduling



Interval Scheduling

You need to compute a non-preemptive schedule on a
supercomputer.

e There are n jobs indexed by 1,...,n submitted for
execution.

e Each job 7 has a desired start time s(z) and a completion
time e(i) > s(2).

e Two jobs ¢ and j are compatible if the intervals [s(7), e(7))
and [s(7),e(y)) are disjoint.

: : 1111
Goal: Find a subset of mutually compatible
jobs of maximum cardinality. D
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Optimal solution: {




Greedy template:

e Start with an empty set of jobs R = (.

e Examine jobs in some order.

e \When job 7 is examined: add 7 to R if it is compatible
with all jobs 5 already in R.

e Finally, return R.



Greedy template:

e Start with an empty set of jobs R = (.

e Examine jobs in some order.

e \When job 7 is examined: add 7 to R if it is compatible
with all jobs 5 already in R.

e Finally, return R.

Key question:
In what order should we process the jobs?



Some Possibilities:

Earliest Start Time: Increasing order of s(7).

Earliest Finish Time: Increasing order of e(i).

Shortest Interval: Increasing order of e(i) — s(%).

Fewest Conflicts: Increasing order w.r.t. the number of
conflicting jobs.
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Some Possibilities:

o Earliest Start Tirmm order of s(1).

e Earliest Finish Time: Increasing order of e(i).

e Shortest Inté fg_order of e(i) — s(¢).

o Fewt pflicts' Increasing ordss=w=r=t=the number of
conflicting-tebs



Earliest Finish Time

o Let 7 ={1...,n} be the set of jobs in input.
e R+ 1)

e While [J is not empty:

e Find a job i € J minimizing e(1).
e Add 7 to R

e Remove from J all jobs 7 € J that are not compatible
with ¢ (including @ itself).

e Return R

Observation: R is always a set of mutually compatible jobs.



EFT: Proof of Correctness

Let R* be an optimal set of jobs.

Let 41, %2,...,%my (resp. i],%5,...,7;) be the indices of the jobs
in R (resp. R*), sorted w.r.t. e(-).

We want to prove m = |R| > |R*| = /.

Claim: For k =1,...,/¢, index i} exists and e(ix) < e(i}).



EFT: Proof of Correctness

Let R* be an optimal set of jobs.

Let 41, %2,...,%my (resp. i],%5,...,7;) be the indices of the jobs
in R (resp. R*), sorted w.r.t. e(-).

We want to prove m = |R| > |R*| = /.
Claim: For k =1,...,/¢, index i} exists and e(ix) < e(i}).

Base case (kK =1):

e Sincen > 1, J is not empty before the first iteration, and
11 exists.

e By the choice of 71: e(i1) < Min,;—1,. . n e(g) < e(e])
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Induction step (k > 1):

e i} is compatible with if_,, thus e(if_,) < s(i})
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EFT: Proof of Correctness

Claim: For k =1,...,/¢, index iy exists and e(ix) < e(i}).
Induction step (k > 1):

e i} is compatible with if_,, thus e(if_,) < s(i})

e by induction hypothesis e(i;_1) < e(i}_;)
e Thefore, at the beginning ot the k-th iteration, i;, € J

since It Is compatible with 21, ...,
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EFT: Proof of Correctness

Claim: For k =1,...,/¢, index iy exists and e(ix) < e(i}).
Induction step (k > 1):
e ¢} is compatible with i; _,, thus e(i;_;) < s(i})

e by induction hypothesis e(i;_1) < e(i}_;)

e Thefore, at the beginning ot the k-th iteration, i;, € J
since It Is compatible with 21, ...,

e By the greedy choice: e(ix) = minese(j) < e(if).
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EFT: Proof of Correctness

Claim: For £k =1,...,¢, index i; exists and e(ix) < e(i}).

Trick/ Technique: Greedy Stays Ahead

At each step, the solution produced by greedy is not
worse than the one produced by any other algorithm.




Implementing EFT

e Naive implementation: O(n?) time.

A better implementation:
® (i1,...,0n) < sort {1,...,n} w.rt. e(-).
e Let R = () be the current (partial) solution.

e Let f = 0 be the current finish time.

e Forj=1,...,n:
o H'-S(Z])Zf
® R%RU{ZJ}

o f < e(ij)

e Return R



Implementing EFT

e Naive implementation: O(n?) time.

A better implementation:
 (i1,...,10,) < sort {1,...,n} w.r.t. e(). O(nlogn)
e Let R = () be the current (partial) solution.

e Let f = 0 be the current finish time.

e Forj=1,...,n: )

o |f S(ij) Z f:
® R%RU{ZJ}
o [ eli;)

e Return R Time complexity: O(nlogn)

> O(n)




Implementing EFT

struct job { int id; int start; int end; };
std: :vector<job> jobs;

//[...] Read jobs

std: :sort(jobs.begin(), jobs.end(), [](const job &jl, const job &j2)
{ return jl.end < j2.end; })

int £ = 0;
std: :vector<int> schedule;
for(const job &j : jobs)

{
if (j.start >= f)
{
schedule.push_back(j.id) ;
f = j.end;
+
}

//schedule contains an optimal set of jobs
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Interval Partitioning

e There are n jobs indexed by 1,.... n.

e Each job ¢ has a start time s(7) and a completion time
e(?) > s(1).

e Two jobs ¢ and j are compatible if the intervals [s(7), e(7))
and [s(7),e(y)) are disjoint.

e All jobs must be executed, but you can use k processors.

e Jobs scheduled on the same processor must be mutually
compatible.

Goal: Minimize k. L 1L IIIT

(and return the k£ corresponding schedules) D D D






Example
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e Observation: There are 3 jobs that must be executed
simultaneously.

e 3 is a lower bound to the optimal solution £*.
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maximum number of intervals [s(¢),e(2)) that contain any
single point.
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Is kK = 3 optimal?

e Observation: There are 3 jobs that must be executed
simultaneously.

e 3 is a lower bound to the optimal solution £*.

e Definition: The depth D of a set of intervals is the
maximum number of intervals [s(¢),e(2)) that contain any
single point.

e Observation: t* > D. s k* < D7



A greedy algorithm
Assume that 7 = {1,...,n} is sorted w.r.t. s(-).

Each job j € J will get a label /(j) € NT.

For =1 ...,n:
o (; < set of jobsin1,...,57—1 that conflict with j.

o /(j) < smallest positive integer not in {{(i) : i € C}}

Return a solution on k processors. The jobs assigned to the
h-th processor are those in {7 : ¢(7) = h}.
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Analysis

e Observation: No pair of overlapping intervals can get the
same label = all schedules consist of mutually
compatible jobs.
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e Observation: No pair of overlapping intervals can get the
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o Claim: £k < D.
e Let 5 be a job for which /(j) = k.
e By the choice of 4(j): 1,...,k—1e€{l(:i):2€C,}
o Forallie Cj, e(i) > s(9), i.e., s(j) € [s(i),e(z)).

e s(j) belongs to at least k intervals =— D >k
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e By the choice of 4(j): 1,...,k—1e€{l(:i):2€C,}
o Forallie Cj, e(i) > s(9), i.e., s(j) € [s(i),e(z)).

e s(j) belongs to at least k intervals =— D >k



Analysis

e Observation: No pair of overlapping intervals can get the
same label = all schedules consist of mutually

compatible jobs.

o Claim: £k < D.

e Let 5 be a job for which /(j) = k.
e By the choice of 4(j): 1,...,k—1e€{l(:i):2€C,}
o Forallie Cj, e(i) > s(9), i.e., s(j) € [s(i),e(z)).

e s(j) belongs to at least k intervals =— D >k

» —> k=k"=D




Analysis

e Observation: t* > D.

o Claim: £k < D.

Trick/Technique: Finding Structural Properties

Find a structural property that implies optimality. (e.g.,

a lower bound to the measure of an optimal solution).
Prove that greedy returns a solution with that property.




A possible implementation

Every starting time s(j) or finish time e(j) of a job 7 is an

event (s(j),j) or (e(j),J)-
Create a sorted list of events.

k <+ 0

Mantain a min-heap H.

O(nlogn)

(break ties in favor of ending events)
(number distinct labels)

(stores unused labels in {1,...,k})



A possible implementation

Every starting time s(j) or finish time e(j) of a job 7 is an

event (s(j), j) or (e(j), ).

O(nlogn)

Create a sorted list of events.  (break ties in favor of ending events)

k <+ 0

(number distinct labels)

Mantain a min—heap H. (stores unused labels in {1,...,k})

For each event (¢, j):

o If t =s5(y)

O(n)

e If H is empty, increment k and set /(j) < k

e Otherwise ¢(j) < pop from H
e Otherwise (t =e(j)):
e Push /(j) into H.

O(log k)

O(log k)



A possible implementation

struct job { int id; int start; int end; };
std: :vector<job> jobs;

//[...] Read jobs

std::vector<std::tuple<int, bool, int>> events;
for(const job &j : jobs)

{
//Use second entry for tie breaking (false<true)
events.push_back( std::make_tuple(j.start, true, j.id) );
events.push_back( std::make_tuple(j.end, false, j.id) );
}

std: :sort(events.begin(), events.end());



A possible implementation

int k=0;

std: :vector<int> H; //A min-heap of available labels

std: :vector<int> labels(jobs.size()); //Labels assigned to jobs
for(const auto &event : events)

{
if (std::get<1>(event)) //Start event
{
if (H.empty())
labels[std: :get<2>(event)] = ++k;
else
{
std: :pop_heap(H.begin(), H.end(), std::greater<int>());
labels[std::get<2>(event)] = H.back();
H.pop_back() ;
+
}
else //End event
{
H.push_back(labels[std::get<2>(event)]);
std: :push_heap(H.begin(), H.end(), std::greater<int>());
}
}

//labels[i] contains the label of job i



Minimizing Lateness



Minimizing Lateness

e There are n jobs indexed by 1,... . n.

e Each job i has a length ¢(7) and a distinct deadline d(3).

e All jobs have to be scheduled on a single processor (one at
a time).

e If job i completes by time f; < d(7) its lateness ¢; is O.
Otherwise ¢; = f; — d(1).

Goal: Find a schedule S minimizing the maximum lateness
L(S) = max max{0, f; — d(7)}.

1=1,...,n
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Job 3: ] d(3) =9
Job 4: | d(4) =5




Which order for the jobs?

e Shortest Job First: Increasing order of (7).
e Shortest Slack Time First: Increasing order of d(i) —t(i).

e Earliest Deadline First: Increasing order of d().
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Which order for the jobs?

e Shortest Job Fi mreorder of £(2).
e Shortest Slack Ti ' [E_order of d(¢) —t(i).

e Earliest Deadline First: Increasing order of d().



Earliest Deadline First

The algorithm:
® (j1,...,Jn) < sort jobs w.r.t. d(-).

e Fori=1...,n

e Schedule j; at time 22;11 t(k)
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Earliest Deadline First

The algorithm:
® (j1,...,Jn) < sort jobs w.r.t. d(-).
e Fori=1...,n

e Schedule j; at time 22;11 t(k)

Proof of correctness:

e Observation: The greedy schedule has no idle time.

e Definition: An inversion of a schedule S is a pair of jobs
(4, 7) such that job ¢ is scheduled before job j but

d(i) > d(j).

e Observation: The greedy schedule has no inversion.



EDF - Proof of Correctness

e Observation: The greedy schedule has no idle time and no
Inversions.

e Claim: All schedules with no idle time and no inversions
are identical.
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EDF - Proof of Correctness

Claim: For every optimal schedule S* there is an optimal
schedule S with no idle time and the same number of
Inversions as S*.

Proof: Let j1,..., 7, be the sequence of jobs of S*. Let f,
and ¢, be the finish time and lateness of job k according to
S*, respectively.

Consider the schedule S that excecutes ji,...,J, (in order)
with no idle time.

Notice that f; = 2221 t(jx) < f¥ and hence ¢; < 07,

S is feasible and has the same inversions as S*.
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EDF - Proof of Correctness

Claim: For every optimal schedule S* there is an optimal
schedule S with no idle time and the same number of
Inversions as S*.

Proof: Let j1,..., 7, be the sequence of jobs of S*. Let f,
and ¢, be the finish time and lateness of job k according to
S*, respectively.

Consider the schedule S that excecutes ji,...,J, (in order)
with no idle time.

Notice that f; = 2221 t(jx) < f¥ and hence ¢; < 07,

S is feasible and has the same inversions as S*.




EDF - Proof of Correctness

e Observation: The greedy schedule has no idle time and no
Inversions.

e Claim: All schedules with no idle time and no inversions
are identical.

o It suffices to show: There exists an optimal schedule with
no idle time and no inversions.

DONE



EDF - Proof of Correctness

Claim: Let S* be an optimal schedule with no idle time and at
least 1 inversion. There is an optimal schedule S with no idle
time and less inversions than S™.
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Proof (sketch): S* must also contain an inversion (¢, 7) such
that no job is scheduled between 7 and j.




EDF - Proof of Correctness

Claim: Let S* be an optimal schedule with no idle time and at
least 1 inversion. There is an optimal schedule S with no idle
time and less inversions than S™.

Proof (sketch): S* must also contain an inversion (¢, 7) such
that no job is scheduled between 7 and j.

Consider the schedule S obtained by swapping job ¢ with job j.

S*I l |Z| |-]| l l l l >

S I | | | ] | | Z | | | | >

fi < f; <d(@)+ £ fi= 17 < dG)+ 6 < d(i) + £




EDF - Proof of Correctness

Claim: Let S* be an optimal schedule with no idle time and at
least 1 inversion. There is an optimal schedule S with no idle
time and less inversions than S™.

e Pick any optimal schedule S§*

e Initially S* can have at most (7,) inversions.

o lteratively apply the claim until no inversions are left.

e \We have obtained an optimal schedule with no idle time
and no inversions.



EDF - Proof of Correctness

Claim: Let S* be an optimal schedule with no idle time and at
least 1 inversion. There is an optimal schedule S with no idle
time and less inversions than S™.

e Pick any optimal schedule S§*

e Initially S* can have at most (7,) inversions.

o lteratively apply the claim until no inversions are left.

e \We have obtained an optimal schedule with no idle time

and no inversions.
\ This is exactly the

greedy schedule!



EDF - Proof of Correctness

Claim: Let S* be an optimal schedule with no idle time and at
least 1 inversion. There is an optimal schedule S with no idle
time and less inversions than S™.

e Pick any optimal schedule S*

e Initially S* can have at most (Z) Inversions.

o lteratively apply the claim until no inversions are left.

Trick/ Technique: Exchange Argument

lteratively transform the optimal solution into the greedy
solution without worsening its quality.
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At each step, the solution produced by greedy is not
worse than the one produced by any other algorithm.
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