
Divide and Conquer



Divide and Conquer

• Divide: Decompose an instance of a problem into smaller
instances of the same problem

• Conquer: Solve each subproblem (recursively)

• Recombine the subproblems’ solutions into a solution
to the original problem



Polynomial Multiplication

Problem: Given two polynomials P (x), Q(x) of degree n,
compute R(x) = P (x) ·Q(x)

Instance:

• The coefficients p0, p1, . . . , pn ∈ Z of P (x) =
Pn

i=0 pix
i.

• The coefficients q0, q1, . . . , qn ∈ Z of Q(x) =
Pn

i=0 qix
i.

Solution:

• The coefficients r0, r1, . . . , r2n ∈ Z of

R(x) = P (x) ·Q(x) =
P2n

i=0 rix
i.

(Assume that arithmetic operations can be performed in O(1) time).



Example

P (x) = 1 + 2x+ 3x2

Q(x) = 3 + 0x+ 5x2

R(x) = P (x) ·Q(x) = 3 + 6x+ 14x2 + 10x3 + 15x4

How to compute R(x) efficiently?



Intermission: A More General Problem

Given two binary operations ⊕,⊗ and two functions
f, g : Z → R, the (⊕,⊗)-discrete convolution of f and g is a
function (f ∗ g) : Z → R defined as:

(f ∗ g)(n) =
+∞M

m=−∞

�
f(n−m)⊗ g(m)

�



Intermission: A More General Problem

Given two binary operations ⊕,⊗ and two functions
f, g : Z → R, the (⊕,⊗)-discrete convolution of f and g is a
function (f ∗ g) : Z → R defined as:

Consider the arrays P and Q associated with the polynomials
P (x) and Q(x). Define f(n) = pn, g(n) = qn (and 0
elsewhere) . The (+, ·) convolution of P and Q is:

(f ∗ g)(n) =
+∞M

m=−∞

�
f(n−m)⊗ g(m)

�

rn = (f ∗ g)(n) =
nX

m=0

pn−mqm



Back to Polynomials: A Trivial Solution

• For i = 0, . . . , 2n :

• ri ← 0

• For j = max{0, i− n}, . . . ,min{i, n}:
• ri ← ri + pi−j · qj

ri =
iX

j=0

pi−jqj



Back to Polynomials: A Trivial Solution

• For i = 0, . . . , 2n :

• ri ← 0

• For j = max{0, i− n}, . . . ,min{i, n}:
• ri ← ri + pi−j · qj

Time Complexity: Θ(n2)

ri =
iX

j=0

pi−jqj



Back to Polynomials: A Trivial Solution

• For i = 0, . . . , 2n :

• ri ← 0

• For j = max{0, i− n}, . . . ,min{i, n}:
• ri ← ri + pi−j · qj

Time Complexity: Θ(n2)

ri =
iX

j=0

pi−jqj

Can we do better?



Divide and Conquer: First Attempt

P ′(x) =
⌊n/2⌋X

i=0

pix
i P ′′(x) =

nX

i=1+⌊n/2⌋
pix

i−⌊n/2⌋

P (x) = P ′(x) + P ′′(x) · x⌊n/2⌋• Write P as: , where:

and



Divide and Conquer: First Attempt

P ′(x) =
⌊n/2⌋X

i=0

pix
i P ′′(x) =

nX

i=1+⌊n/2⌋
pix

i−⌊n/2⌋

P (x) = P ′(x) + P ′′(x) · x⌊n/2⌋

Q(x) = Q′(x) +Q′′(x) · x⌊n/2⌋

• Write P as: , where:

and

• Similarly, write Q as:



Divide and Conquer: First Attempt

P ′(x) =
⌊n/2⌋X

i=0

pix
i P ′′(x) =

nX

i=1+⌊n/2⌋
pix

i−⌊n/2⌋

P (x) = P ′(x) + P ′′(x) · x⌊n/2⌋

Q(x) = Q′(x) +Q′′(x) · x⌊n/2⌋

• Write P as: , where:

and

• Similarly, write Q as:

P (x) ·Q(x) = (P ′(x) + P ′′(x) · x⌊n/2⌋) · (Q′(x) +Q′′(x) · x⌊n/2⌋)



Divide and Conquer: First Attempt

P ′(x) =
⌊n/2⌋X

i=0

pix
i P ′′(x) =

nX

i=1+⌊n/2⌋
pix

i−⌊n/2⌋

P (x) = P ′(x) + P ′′(x) · x⌊n/2⌋

Q(x) = Q′(x) +Q′′(x) · x⌊n/2⌋

• Write P as: , where:

and

• Similarly, write Q as:

P (x) ·Q(x) = (P ′(x) + P ′′(x) · x⌊n/2⌋) · (Q′(x) +Q′′(x) · x⌊n/2⌋)

= P ′(x)Q′(x) + (P ′(x)Q′′(x) + P ′′(x)Q′(x))x⌊n/2⌋ + P ′′(X)Q′′(x)x2⌊n/2⌋



Divide and Conquer: First Attempt

The problem of computing the product of two polynomials of
degree n is reduced to that of computing 4 products of
polynomials of degree ≈ n/2.

P ′(x)Q′(x) + (P ′(x)Q′′(x) + P ′′(x)Q′(x))x⌊n/2⌋ + P ′′(X)Q′′(x)x2⌊n/2⌋



Divide and Conquer: First Attempt

The problem of computing the product of two polynomials of
degree n is reduced to that of computing 4 products of
polynomials of degree ≈ n/2.

T (n) = 4T (n/2) +O(n)

O(n) time is needed to decompose the polynomials and to
recombine the 4 sub-products.

Recurrence Equation:

P ′(x)Q′(x) + (P ′(x)Q′′(x) + P ′′(x)Q′(x))x⌊n/2⌋ + P ′′(X)Q′′(x)x2⌊n/2⌋



Divide and Conquer: First Attempt

The problem of computing the product of two polynomials of
degree n is reduced to that of computing 4 products of
polynomials of degree ≈ n/2.

T (n) = 4T (n/2) +O(n)

O(n) time is needed to decompose the polynomials and to
recombine the 4 sub-products.

Recurrence Equation:

Solution: Θ(n2)

P ′(x)Q′(x) + (P ′(x)Q′′(x) + P ′′(x)Q′(x))x⌊n/2⌋ + P ′′(X)Q′′(x)x2⌊n/2⌋



Divide and Conquer: First Attempt

The problem of computing the product of two polynomials of
degree n is reduced to that of computing 4 products of
polynomials of degree ≈ n/2.

Solution: Θ(n2)

Still Θ(n2)

P ′(x)Q′(x) + (P ′(x)Q′′(x) + P ′′(x)Q′(x))x⌊n/2⌋ + P ′′(X)Q′′(x)x2⌊n/2⌋



Divide and Conquer: Second Attempt

P ′(x)Q′(x) + (P ′(x)Q′′(x) + P ′′(x)Q′(x))x⌊n/2⌋ + P ′′(X)Q′′(x)x2⌊n/2⌋

We want:



Divide and Conquer: Second Attempt

U = P ′(x)Q′(x)

Define:

V = P ′′(x)Q′′(x)

P ′(x)Q′(x) + (P ′(x)Q′′(x) + P ′′(x)Q′(x))x⌊n/2⌋ + P ′′(X)Q′′(x)x2⌊n/2⌋

We want:

W = (P ′(x) + P ′′(x))(Q′(x) +Q′′(x))



Divide and Conquer: Second Attempt

U = P ′(x)Q′(x)

Define:

V = P ′′(x)Q′′(x)

P ′(x)Q′(x) + (P ′(x)Q′′(x) + P ′′(x)Q′(x))x⌊n/2⌋ + P ′′(X)Q′′(x)x2⌊n/2⌋

We want:

W = (P ′(x) + P ′′(x))(Q′(x) +Q′′(x))

U V

| {z }



Divide and Conquer: Second Attempt

U = P ′(x)Q′(x)

Define:

V = P ′′(x)Q′′(x)

P ′(x)Q′(x) + (P ′(x)Q′′(x) + P ′′(x)Q′(x))x⌊n/2⌋ + P ′′(X)Q′′(x)x2⌊n/2⌋

We want:

W = (P ′(x) + P ′′(x))(Q′(x) +Q′′(x))

U VW − U − V

| {z }



Divide and Conquer: Second Attempt

U = P ′(x)Q′(x)

Define:

V = P ′′(x)Q′′(x)

P ′(x)Q′(x) + (P ′(x)Q′′(x) + P ′′(x)Q′(x))x⌊n/2⌋ + P ′′(X)Q′′(x)x2⌊n/2⌋

We want:

W = (P ′(x) + P ′′(x))(Q′(x) +Q′′(x))

U VW − U − V

Only requires 3 multiplications =⇒ 3 subproblems of size ∼ n/2

| {z }



Divide and Conquer: Second Attempt

U + (W − U − V )x⌊n/2⌋ + V x2⌊n/2⌋

U = P ′(x) ·Q′(x)

V = P ′′(x) ·Q′′(x)

W = (P ′(x) + P ′′(x)) · (Q′(x) +Q′′(x))

• Divide:

• Conquer: Compute U, V,W recursively

• Recombine:

(subproblem 1)

(subproblem 2)

(subproblem 3)



Divide and Conquer: Second Attempt

U + (W − U − V )x⌊n/2⌋ + V x2⌊n/2⌋

U = P ′(x) ·Q′(x)

V = P ′′(x) ·Q′′(x)

W = (P ′(x) + P ′′(x)) · (Q′(x) +Q′′(x))

T (n) = 3T (n/2) +O(n)

• Divide:

• Conquer: Compute U, V,W recursively

• Recombine:

Reurrence Equation:

(subproblem 1)

(subproblem 2)

(subproblem 3)



Divide and Conquer: Second Attempt

O(nlog2 3) = O(n1.585)

U + (W − U − V )x⌊n/2⌋ + V x2⌊n/2⌋

U = P ′(x) ·Q′(x)

V = P ′′(x) ·Q′′(x)

W = (P ′(x) + P ′′(x)) · (Q′(x) +Q′′(x))

T (n) = 3T (n/2) +O(n)

• Divide:

• Conquer: Compute U, V,W recursively

• Recombine:

Reurrence Equation:

Solution:

(subproblem 1)

(subproblem 2)

(subproblem 3)



Divide and Conquer: Second Attempt

U + (W − U − V )x⌊n/2⌋ + V x2⌊n/2⌋

U = P ′(x) ·Q′(x)

V = P ′′(x) ·Q′′(x)

W = (P ′(x) + P ′′(x)) · (Q′(x) +Q′′(x))

• Divide:

• Conquer: Compute U, V,W recursively

• Recombine:

Trick/Technique: Divide and Conquer

Decompose an instance into smaller instances of the
same problem.
Solve recursively and recombine the solutions.

(subproblem 1)

(subproblem 2)

(subproblem 3)



Recursion & Memoization



Fibonacci Numbers

Definition: F0 = 0, F1 = 1, and Fi = Fi−1 + Fi−2 for i > 1

Problem: Given n ∈ N, compute Fn

A trivial recursive solution:
int fibonacci(int n)

{

if(n<=1)

return n;

return fibonacci(n-1) + fibonacci(n-2);

}

Computational complexity?



Fibonacci Numbers: Time Complexity

f(5) f(4)

f(6)

f(2)

f(4) f(2)

f(3) f(1)

f(1) f(0)

f(1)

f(0)f(2)

f(1) f(0)

f(1)f(2)

f(3) f(3)

f(2)

f(1) f(0) f(0)

f(1)

f(1)



Fibonacci Numbers: Time Complexity

f(5) f(4)

f(6)

f(2)

f(4) f(2)

f(3) f(1)

f(1) f(0)

f(1)

f(0)f(2)

f(1) f(0)

f(1)f(2)

f(3) f(3)

f(2)

f(1) f(0) f(0)

f(1)

f(1)



Fibonacci Numbers: Time Complexity

f(5) f(4)

f(6)

Time = Θ(1) · #Nodes = Θ(#Leaves) = Θ(Fn)

f(2)

f(4) f(2)

f(3) f(1)

f(1) f(0)

f(1)

f(0)f(2)

f(1) f(0)

f(1)f(2)

f(3) f(3)

f(2)

f(1) f(0) f(0)

f(1)

f(1)



Fibonacci Numbers: Time Complexity

f(5) f(4)

f(6)

Time = Θ(1) · #Nodes = Θ(#Leaves) = Θ(Fn)

f(2)

f(4) f(2)

f(3) f(1)

f(1) f(0)

f(1)

f(0)

Fn =
j
φn

√
5

m

= Θ(φn)

f(2)

f(1) f(0)

f(1)f(2)

f(3) f(3)

f(2)

f(1) f(0) f(0)

f(1)

f(1)



Fibonacci Numbers: Time Complexity

f(5) f(4)

f(6)

Time = Θ(1) · #Nodes = Θ(#Leaves) = Θ(Fn)

f(2)

f(4) f(2)

f(3) f(1)

f(1) f(0)

f(1)

f(0)

Fn =
j
φn

√
5

m

= Θ(φn)

f(2)

f(1) f(0)

f(1)f(2)

f(3) f(3)

f(2)

f(1) f(0) f(0)

f(1)

f(1)



Fibonacci Numbers: Time Complexity

f(5) f(4)

f(6)

Time = Θ(1) · #Nodes = Θ(#Leaves) = Θ(Fn)

f(2)

f(4) f(2)

f(3) f(1)

f(1) f(0)

f(1)

f(0)

Fn =
j
φn

√
5

m

= Θ(φn)

f(2)

f(1) f(0)

f(1)f(2)

f(3) f(3)

f(2)

f(1) f(0) f(0)

f(1)

f(1)



Fibonacci Numbers: Time Complexity

f(5) f(4)

f(6)

Time = Θ(1) · #Nodes = Θ(#Leaves) = Θ(Fn)

f(2)

f(4) f(2)

f(3) f(1)

f(1) f(0)

f(1)

f(0)

Fn =
j
φn

√
5

m

= Θ(φn)

f(2)

f(1) f(0)

f(1)f(2)

f(3) f(3)

f(2)

f(1) f(0) f(0)

f(1)

f(1)



Fibonacci Numbers: Time Complexity

f(5) f(4)

f(6)

Time = Θ(1) · #Nodes = Θ(#Leaves) = Θ(Fn)

f(2)

f(4) f(2)

f(3) f(1)

f(1) f(0)

f(1)

f(0)

Fn =
j
φn

√
5

m

= Θ(φn)

f(2)

f(1) f(0)

f(1)f(2)

f(3) f(3)

f(2)

f(1) f(0) f(0)

f(1)

f(1)



Fibonacci Numbers: Memoization

Idea: Do not recompute duplicate values:

• Store values in memory

• If value is in memory, recall it

• Otherwise, compute and store it



Fibonacci Numbers: Memoization

Idea: Do not recompute duplicate values:

• Store values in memory

• If value is in memory, recall it

• Otherwise, compute and store it

std::vector<int> memo(n+1, 0);

int fibonacci(int n)

{

if(n<=1) return n;

if(memo[n]) return memo[n];

memo[n] = fibonacci(n-1) + fibonacci(n-2);

return memo[n];

}



Time Complexity with Memoization

f(1) f(0)

f(2)

f(1) f(0)

f(1) f(2)

f(1) f(0)

f(1)

f(3) f(2)

f(1) f(0)

f(0)f(1)

f(2)

f(3)

f(4)

f(5)

f(6)

f(4)

f(3)

f(2)

f(1)



Time Complexity with Memoization

f(1) f(0)

f(2)

f(1) f(0)

f(1) f(2)

f(1) f(0)

f(1)

f(3) f(2)

f(1) f(0)

Time = Θ(1) · #Green Nodes = Θ(n)

f(0)f(1)

f(2)

f(3)

f(4)

f(5)

f(6)

f(4)

f(3)

f(2)

f(1)



The Memoization Recipe

• Design a recursive algorithm for the problem

• Add memoization

(hard)

(easy)



The Memoization Recipe

• Design a recursive algorithm for the problem

• Add memoization

• Bound the computational complexity

• How many subproblems (possible recursive calls)?

• How long does a call take?

(hard)

(easy)



Trick/Technique: Memoization

Avoid recomputing solutions to duplicate subproblems
by storing results in memory.

The Memoization Recipe

• Design a recursive algorithm for the problem

• Add memoization

• Bound the computational complexity

• How many subproblems (possible recursive calls)?

• How long does a call take?

(hard)

(easy)



Memoization: Pitfalls

Let G−1= G0 = 1, and Gi =

(
2Gi−1 if i is even

Gi−2 + 3 if i is odd
, for i ≥ 1.

std::vector<int> memo(n+1, 0);

int g(int n)

{

if(memo[n]) return memo[n];

if(n<=0) return 1;

memo[n] = (i%2)?(g(n-2)+3):(2*g(n-1));

return memo[n];

}

Does this code work?



Memoization: Pitfalls

Let G−1= G0 = 1, and Gi =

(
2Gi−1 if i is even

Gi−2 + 3 if i is odd
, for i ≥ 1.

std::vector<int> memo(n+1, 0);

int g(int n)

{

if(memo[n]) return memo[n];

if(n<=0) return 1;

memo[n] = (i%2)?(g(n-2)+3):(2*g(n-1));

return memo[n];

}

Does this code work?



Memoization: Pitfalls

Let G−1= G0 = 1, and Gi =

(
2Gi−1 if i is even

Gi−2 + 3 if i is odd
, for i ≥ 1.

std::vector<int> memo(n+1, 0);

int g(int n)

{

if(memo[n]) return memo[n];

if(n<=0) return 1;

memo[n] = (i%2)?(g(n-2)+3):(2*g(n-1));

return memo[n];

}

Does this code work? No! n can be −1!



Memoization: Pitfalls

Let G−1= G0 = 1, and Gi =

(
2Gi−1 if i is even

Gi−2 + 3 if i is odd
, for i ≥ 1.

std::vector<int> memo(n+1, 0);

int g(int n)

{

if(memo[n]) return memo[n];

if(n<=0) return 1;

memo[n] = (i%2)?(g(n-2)+3):(2*g(n-1));

return memo[n];

}

Solution: check base cases before the memo table.

Does this code work? No! n can be −1!



Memoization: Pitfalls

std::vector<int> memo(n+1, 0);

int g(int n)

{

if(n<=1) return n;

if(memo[n]) return memo[n];

memo[n] = (g(n-1) + g(n-2) + 1) % 2;

return memo[n];

}

Too slow! Why?

G0 = 0, G1 = 1, and Gi = (Gi−1 +Gi−2 +1) mod 2, for i ≥ 1.



Memoization: Pitfalls

std::vector<int> memo(n+1, 0);

int g(int n)

{

if(n<=1) return n;

if(memo[n]) return memo[n];

memo[n] = (g(n-1) + g(n-2) + 1) % 2;

return memo[n];

}

Too slow! Why?

G0 = 0, G1 = 1, and Gi = (Gi−1 +Gi−2 +1) mod 2, for i ≥ 1.



Memoization: Pitfalls

std::vector<int> memo(n+1, 0);

int g(int n)

{

if(n<=1) return n;

if(memo[n]) return memo[n];

memo[n] = (g(n-1) + g(n-2) + 1) % 2;

return memo[n];

}

Too slow! Why?

G0 = 0, G1 = 1, and Gi = (Gi−1 +Gi−2 +1) mod 2, for i ≥ 1.

0 is a possible value of Gi !



Memoization: Pitfalls

g(2)

g(1) g(0)

g(1)

g(3)

g(4)

g(5) g(4)

g(6)

n = 7

01

0

0

1

0

0

0

1

0

g(7)1

0

g(1) g(0)

g(2) g(1)

g(4) g(3)

g(2) g(1)

g(2)

g(3)

g(5)



Memoization: Pitfalls

g(2)

g(1) g(0)

g(1)

g(3)

g(4)

g(5) g(4)

g(6)

n = 7

01

0

0

1

0

0

0

1

0

g(7)1

0

g(1) g(0)

g(2) g(1)

g(4) g(3)

g(2) g(1)

g(2)

g(3)

g(5)



Dynamic Programming



I spent the Fall quarter (of 1950) at RAND. [...] We had a
very interesting gentleman in Washington named Wilson. He
was Secretary of Defense, and he actually had a pathological
fear and hatred of the word research. [...] he would get
violent if people used the term research in his presence. [...]
The RAND Corporation was employed by the Air Force, and
the Air Force had Wilson as its boss, essentially. Hence, I
felt I had to do something to shield Wilson and the Air Force
from the fact that I was really doing mathematics inside the
RAND Corporation. [...] I decided therefore to use the word
“programming”. I wanted to get across the idea that this
was dynamic, this was multistage, this was time-varying. [...]
Let’s take a word that has an absolutely precise meaning,
namely dynamic, in the classical physical sense. It also has a
very interesting property as an adjective, and that is it’s
impossible to use the word dynamic in a pejorative sense.
[...] Thus, I thought dynamic programming was a good
name. It was something not even a Congressman could
object to.

Richard E. Bellman,
Eye of the Hurricane: An Autobiography

Dynamic Programming



Dynamic Programming: Idea

• Decompose a problem into a series of “overlapping”
subproblems

• The optimal solution to a subproblem can be reconstructed
from the optimal solutions of “smaller” subproblems

• Systematically solve subproblems in a suitable order
(from the “smaller” to the “larger” ones)

• Eventually, either the solution to the original problem is
explicitly computed or it can be reconstructed from the
subproblems’ solutions

• The solutions to the “smallest” subproblems are trivially
known



Dynamic Programming: Idea

• Decompose a problem into a series of “overlapping”
subproblems

• The optimal solution to a subproblem can be reconstructed
from the optimal solutions of “smaller” subproblems

• Systematically solve subproblems in a suitable order
(from the “smaller” to the “larger” ones)

• Eventually, either the solution to the original problem is
explicitly computed or it can be reconstructed from the
subproblems’ solutions

• The solutions to the “smallest” subproblems are trivially
known

(hard)

(easy)

(hard)

(easy)

(easy)



Fibonacci, Revisited

• i-th subproblem: Compute the value of Fi

• Compute Fi in increasing order of i:

• Base cases: i = 0, i = 1.

Fi = Fi−1 + Fi−2

• Both Fi−1 and Fi−2 are already known when Fi is
considered.

std::vector<int> F(n+1);

F[0]=0; F[1]=1;

for(int i=2; i<=n; i++)

F[i] = F[i-1] + F[i-2];

return F[n];

• Solution: Fn



Fibonacci, Revisited

Trick to reduce space:

• Once we compute Fi, the values F0, . . . , Fi−2 will not be
used anymore.

• Keep track of just two values x0, x1.

int x[2] = {0, 1};

for(int i=2; i<=n; i++)

x[i%2] = x[(i-1)%2] + x[(i-2)%2];

return x[n%2];

• At the end of iteration i, Fi = xi mod 2 and
Fi−1 = x(i−1) mod 2.



Fibonacci, Revisited

Trick to reduce space:

• Once we compute Fi, the values F0, . . . , Fi−2 will not be
used anymore.

• Keep track of just two values x0, x1.

int x[2] = {0, 1};

for(int i=2; i<=n; i++)

x[i%2] = x[(i-1)%2] + x[(i-2)%2];

return x[n%2];

• At the end of iteration i, Fi = xi mod 2 and
Fi−1 = x(i−1) mod 2.

Fi−2Fi−1

Fi



Drink as much as possible

Robert wants to drink as much a possible.

• Robert walks through the streets of King’s Landing and
encounters n taverns t1, t2, . . . , tn, in order

• The wine served in tavern ti has strength si ∈ N
(the higher, the stronger)

• The strength of robert’s drinks must increase
over time

• Goal: Compute the maximum number of
drinking stops of Robert

• When Robert encounters a tavern ti, he can either stop for
a drink or continue walking



Example

4 1 8 3 4 8 2 7 5 6 9 88S



Example

4 1 8 3 4 8 2 7 5 6 9 88

Solution: 6

S



Example

4 1 8 3 4 8 2 7 5 6 9 88

Solution: 6

This is a classic problem known as:
Longest Increasing Subsequence (LIS)

S



A DP Algorithm: First Attempt

• Subproblem definition

OPT [i] = Length of the LIS in S[1], . . . , S[i]



A DP Algorithm: First Attempt

• Subproblem definition

OPT [i] = Length of the LIS in S[1], . . . , S[i]

• Base cases

OPT [1] = 1



A DP Algorithm: First Attempt

• Subproblem definition

OPT [i] = Length of the LIS in S[1], . . . , S[i]

• Base cases

OPT [1] = 1

• Solution:

OPT [n]



A DP Algorithm: First Attempt

• Subproblem definition

OPT [i] = Length of the LIS in S[1], . . . , S[i]

• Base cases

OPT [1] = 1

• Recursive formula

• Solution:

OPT [n]



A DP Algorithm: Second Attempt

Tip: Sometimes adding constraints to subproblems helps!



A DP Algorithm: Second Attempt

Tip: Sometimes adding constraints to subproblems helps!

OPT [i] = Length of the LIS that ends with S[i]



4 1 8 3 4 8 2 7 5 6 9 88S

A DP Algorithm: Second Attempt

Tip: Sometimes adding constraints to subproblems helps!

OPT [i] = Length of the LIS that ends with S[i]

OPT 1 1 2 2 3 4 2 4

1 2 3 4 5 6 7 8 9 10 11 12



4 1 8 3 4 8 2 7 5 6 9 88S

A DP Algorithm: Second Attempt

Tip: Sometimes adding constraints to subproblems helps!

OPT [i] = Length of the LIS that ends with S[i]

OPT 1 1 2 2 3 4 2 4

1 2 3 4 5 6 7 8 9 10 11 12



4 1 8 3 4 8 2 7 5 6 9 88S

A DP Algorithm: Second Attempt

Tip: Sometimes adding constraints to subproblems helps!

OPT [i] = Length of the LIS that ends with S[i]

OPT 1 1 2 2 3 4 2 4

1 2 3 4 5 6 7 8 9 10 11 12



4 1 8 3 4 8 2 7 5 6 9 88S

A DP Algorithm: Second Attempt

Tip: Sometimes adding constraints to subproblems helps!

OPT [i] = Length of the LIS that ends with S[i]

OPT 1 1 2 2 3 4 2 4

Possible lengths: 3

1 2 3 4 5 6 7 8 9 10 11 12



4 1 8 3 4 8 2 7 5 6 9 88S

A DP Algorithm: Second Attempt

Tip: Sometimes adding constraints to subproblems helps!

OPT [i] = Length of the LIS that ends with S[i]

OPT 1 1 2 2 3 4 2 4

Possible lengths: 3

1 2 3 4 5 6 7 8 9 10 11 12



4 1 8 3 4 8 2 7 5 6 9 88S

A DP Algorithm: Second Attempt

Tip: Sometimes adding constraints to subproblems helps!

OPT [i] = Length of the LIS that ends with S[i]

OPT 1 1 2 2 3 4 2 4

Possible lengths: 3 4

1 2 3 4 5 6 7 8 9 10 11 12



4 1 8 3 4 8 2 7 5 6 9 88S

A DP Algorithm: Second Attempt

Tip: Sometimes adding constraints to subproblems helps!

OPT [i] = Length of the LIS that ends with S[i]

OPT 1 1 2 2 3 4 2 4

Possible lengths: 3 4 3

1 2 3 4 5 6 7 8 9 10 11 12



4 1 8 3 4 8 2 7 5 6 9 88S

A DP Algorithm: Second Attempt

Tip: Sometimes adding constraints to subproblems helps!

OPT [i] = Length of the LIS that ends with S[i]

OPT 1 1 2 2 3 4 2 4

Possible lengths: 3 4 3 2 2

. . .

1 2 3 4 5 6 7 8 9 10 11 12



4 1 8 3 4 8 2 7 5 6 9 88S

A DP Algorithm: Second Attempt

Tip: Sometimes adding constraints to subproblems helps!

OPT [i] = Length of the LIS that ends with S[i]

OPT 1 1 2 2 3 4 2 4

Possible lengths: 3 4 3 2 2

. . .

1 2 3 4 5 6 7 8 9 10 11 12

1

Sequence containing only S[i]



4 1 8 3 4 8 2 7 5 6 9 88S

A DP Algorithm: Second Attempt

Tip: Sometimes adding constraints to subproblems helps!

OPT [i] = Length of the LIS that ends with S[i]

OPT 1 1 2 2 3 4 2 4

Possible lengths: 3 4 3 2 2

. . .

OPT [9] = 4

4

1 2 3 4 5 6 7 8 9 10 11 12

1

Sequence containing only S[i]



The Dynamic Proramming Algorithm
• Subproblem definition

OPT [i] = Length of the LIS that ends with S[i]

• Base cases

OPT [1] = 1

• Recursive formula (for i ≥ 2)

OPT [i] = max

�
1, 1 + max

j=1,...,i−1
S[j]<S[i]

OPT [j]

�

• Subproblems’ order

OPT [1], OPT [2], . . . , OPT [n]

• Solution:
maxi=1,...,n OPT [i]



Time Complexity

• O(n) subproblems

• OPT [i] is computed in time Θ(i)

• Base cases are handled in constant time

OPT [i] = max

�
1, 1 + max

j=1,...,i−1
S[j]<S[i]

OPT [j]

�



Time Complexity

• O(n) subproblems

• OPT [i] is computed in time Θ(i)

• Base cases are handled in constant time

Overall time: O (
Pn

i=1 i) = O(n2).

OPT [i] = max

�
1, 1 + max

j=1,...,i−1
S[j]<S[i]

OPT [j]

�



Time Complexity

• O(n) subproblems

• OPT [i] is computed in time Θ(i)

• Base cases are handled in constant time

Overall time: O (
Pn

i=1 i) = O(n2).

OPT [i] = max

�
1, 1 + max

j=1,...,i−1
S[j]<S[i]

OPT [j]

�

There is also another dynamic-programming algorithm for the
LIS problem running in time O(n log n) [Fredman, 1985]



std::vector<int> OPT(n+1);

OPT[1]=1;

for(int i=2; i<=n; i++)

{

OPT[i]=1;

for(int j=1; j<i; j++)

if(S[j] < S[i])

OPT[i] = std::max(OPT[i], 1+OPT[j]);

}

return std::max_element(OPT.begin()+1, OPT.end());

A possible implementation (DP)



A possible implementation (Memo)
std::vector<int> memo(n+1, 0);

int LIS(std::vector &S, int i)

{

if(i==1) return 1;

if(memo[i]) return memo[i];

int r=1;

for(int j=1; j<i; j++)

if(S[j]<S[i])

r=std::max(r, 1+LIS(S, j));

return memo[i]=r;

}



Memoization vs. DP

✓ Top-Down approach
(more intuitive)

✓ Easier to index
subproblems by other objects
(e.g., sets).

✓ Only computes necessary
subproblems

✗ Function calls overhead

✗ Time complexity is harder
to analyze

✗ Call stack (recusion depth)
is bounded

✗ Need to index subproblems
with integers

✗ Always computes all
subproblems

✓ Time complexity analysis is
easy(/ier)

✓ Short and clean code

✓ No recursion. Less overhead.
More cache efficient.

✗ Bottom-Up approach
(harder to grasp)

✗ Always computes all
subproblems



Recap



Trick/Technique: Divide and Conquer

Decompose an instance into smaller instances of the
same problem.
Solve recursively and recombine the solutions.



Trick/Technique: Divide and Conquer

Decompose an instance into smaller instances of the
same problem.
Solve recursively and recombine the solutions.

Trick/Technique: Memoization

Avoid recomputing solutions to duplicate subproblems
by storing results in memory.



Trick/Technique: Divide and Conquer

Decompose an instance into smaller instances of the
same problem.
Solve recursively and recombine the solutions.

Trick/Technique: Memoization

Avoid recomputing solutions to duplicate subproblems
by storing results in memory.

Trick/Technique: Dynamic Programming

Define overlapping subproblems (possibly w/additional con-
straints). Systematically solve subproblems using an order that
allows previous solutions to be recombined. Compute solution to
the original problem from the subproblems’ solutions.


