
Divide and Conquer



Divide and Conquer

• Divide: Decompose an instance of a problem into smaller
instances of the same problem

• Conquer: Solve each subproblem (recursively)

• Recombine the subproblems’ solutions into a solution
to the original problem



Polynomial Multiplication

Problem: Given two polynomials P (x), Q(x) of degree n,
compute R(x) = P (x) ·Q(x)

Instance:

• The coefficients p0, p1, . . . , pn ∈ Z of P (x) =
Pn

i=0 pix
i.

• The coefficients q0, q1, . . . , qn ∈ Z of Q(x) =
Pn

i=0 qix
i.

Solution:

• The coefficients r0, r1, . . . , r2n ∈ Z of

R(x) = P (x) ·Q(x) =
P2n

i=0 rix
i.

(Assume that arithmetic operations can be performed in O(1) time).



Example

P (x) = 1 + 2x+ 3x2

Q(x) = 3 + 0x+ 5x2

R(x) = P (x) ·Q(x) = 3 + 6x+ 14x2 + 10x3 + 15x4

How to compute R(x) efficiently?



Intermission: A More General Problem

Given two binary operations ⊕,⊗ and two functions
f, g : Z → R, the (⊕,⊗)-discrete convolution of f and g is a
function (f ∗ g) : Z → R defined as:

(f ∗ g)(n) =
+∞M

m=−∞

�
f(n−m)⊗ g(m)

�



Intermission: A More General Problem

Given two binary operations ⊕,⊗ and two functions
f, g : Z → R, the (⊕,⊗)-discrete convolution of f and g is a
function (f ∗ g) : Z → R defined as:

Consider the arrays P and Q associated with the polynomials
P (x) and Q(x). Define f(n) = pn, g(n) = qn (and 0
elsewhere) . The (+, ·) convolution of P and Q is:

(f ∗ g)(n) =
+∞M

m=−∞

�
f(n−m)⊗ g(m)

�

rn = (f ∗ g)(n) =
nX

m=0

pn−mqm



Back to Polynomials: A Trivial Solution

• For i = 0, . . . , 2n :

• ri ← 0

• For j = max{0, i− n}, . . . ,min{i, n}:
• ri ← ri + pi−j · qj

ri =
iX

j=0

pi−jqj



Back to Polynomials: A Trivial Solution

• For i = 0, . . . , 2n :

• ri ← 0

• For j = max{0, i− n}, . . . ,min{i, n}:
• ri ← ri + pi−j · qj

Time Complexity: Θ(n2)

ri =
iX

j=0

pi−jqj



Back to Polynomials: A Trivial Solution

• For i = 0, . . . , 2n :

• ri ← 0

• For j = max{0, i− n}, . . . ,min{i, n}:
• ri ← ri + pi−j · qj

Time Complexity: Θ(n2)

ri =
iX

j=0

pi−jqj

Can we do better?



Divide and Conquer: First Attempt

P ′(x) =
⌊n/2⌋X

i=0

pix
i P ′′(x) =

nX

i=1+⌊n/2⌋
pix

i−⌊n/2⌋

P (x) = P ′(x) + P ′′(x) · x⌊n/2⌋• Write P as: , where:

and
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and

• Similarly, write Q as:

P (x) ·Q(x) = (P ′(x) + P ′′(x) · x⌊n/2⌋) · (Q′(x) +Q′′(x) · x⌊n/2⌋)



Divide and Conquer: First Attempt

P ′(x) =
⌊n/2⌋X

i=0

pix
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Q(x) = Q′(x) +Q′′(x) · x⌊n/2⌋

• Write P as: , where:

and

• Similarly, write Q as:

P (x) ·Q(x) = (P ′(x) + P ′′(x) · x⌊n/2⌋) · (Q′(x) +Q′′(x) · x⌊n/2⌋)

= P ′(x)Q′(x) + (P ′(x)Q′′(x) + P ′′(x)Q′(x))x⌊n/2⌋ + P ′′(X)Q′′(x)x2⌊n/2⌋



Divide and Conquer: First Attempt

The problem of computing the product of two polynomials of
degree n is reduced to that of computing 4 products of
polynomials of degree ≈ n/2.

P ′(x)Q′(x) + (P ′(x)Q′′(x) + P ′′(x)Q′(x))x⌊n/2⌋ + P ′′(X)Q′′(x)x2⌊n/2⌋



Divide and Conquer: First Attempt

The problem of computing the product of two polynomials of
degree n is reduced to that of computing 4 products of
polynomials of degree ≈ n/2.

T (n) = 4T (n/2) +O(n)

O(n) time is needed to decompose the polynomials and to
recombine the 4 sub-products.

Recurrence Equation:

P ′(x)Q′(x) + (P ′(x)Q′′(x) + P ′′(x)Q′(x))x⌊n/2⌋ + P ′′(X)Q′′(x)x2⌊n/2⌋
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Divide and Conquer: First Attempt

The problem of computing the product of two polynomials of
degree n is reduced to that of computing 4 products of
polynomials of degree ≈ n/2.

Solution: Θ(n2)

Still Θ(n2)

P ′(x)Q′(x) + (P ′(x)Q′′(x) + P ′′(x)Q′(x))x⌊n/2⌋ + P ′′(X)Q′′(x)x2⌊n/2⌋



Divide and Conquer: Second Attempt

P ′(x)Q′(x) + (P ′(x)Q′′(x) + P ′′(x)Q′(x))x⌊n/2⌋ + P ′′(X)Q′′(x)x2⌊n/2⌋

We want:
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Define:

V = P ′′(x)Q′′(x)
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Divide and Conquer: Second Attempt

U = P ′(x)Q′(x)

Define:

V = P ′′(x)Q′′(x)

P ′(x)Q′(x) + (P ′(x)Q′′(x) + P ′′(x)Q′(x))x⌊n/2⌋ + P ′′(X)Q′′(x)x2⌊n/2⌋

We want:

W = (P ′(x) + P ′′(x))(Q′(x) +Q′′(x))

U VW − U − V

Only requires 3 multiplications =⇒ 3 subproblems of size ∼ n/2

| {z }



Divide and Conquer: Second Attempt

U + (W − U − V )x⌊n/2⌋ + V x2⌊n/2⌋
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• Divide:

• Conquer: Compute U, V,W recursively

• Recombine:

(subproblem 1)

(subproblem 2)

(subproblem 3)
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Divide and Conquer: Second Attempt

O(nlog2 3) = O(n1.585)
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Divide and Conquer: Second Attempt

U + (W − U − V )x⌊n/2⌋ + V x2⌊n/2⌋

U = P ′(x) ·Q′(x)

V = P ′′(x) ·Q′′(x)

W = (P ′(x) + P ′′(x)) · (Q′(x) +Q′′(x))

• Divide:

• Conquer: Compute U, V,W recursively

• Recombine:

Trick/Technique: Divide and Conquer

Decompose an instance into smaller instances of the
same problem.
Solve recursively and recombine the solutions.

(subproblem 1)

(subproblem 2)

(subproblem 3)



Recursion & Memoization



Fibonacci Numbers

Definition: F0 = 0, F1 = 1, and Fi = Fi−1 + Fi−2 for i > 1

Problem: Given n ∈ N, compute Fn

A trivial recursive solution:
int fibonacci(int n)

{

if(n<=1)

return n;

return fibonacci(n-1) + fibonacci(n-2);

}

Computational complexity?



Fibonacci Numbers: Time Complexity
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Fibonacci Numbers: Memoization

Idea: Do not recompute duplicate values:

• Store values in memory

• If value is in memory, recall it

• Otherwise, compute and store it



Fibonacci Numbers: Memoization

Idea: Do not recompute duplicate values:

• Store values in memory

• If value is in memory, recall it

• Otherwise, compute and store it

std::vector<int> memo(n+1, 0);

int fibonacci(int n)

{

if(n<=1) return n;

if(memo[n]) return memo[n];

memo[n] = fibonacci(n-1) + fibonacci(n-2);

return memo[n];

}



Time Complexity with Memoization
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• Design a recursive algorithm for the problem

• Add memoization

(hard)

(easy)



The Memoization Recipe

• Design a recursive algorithm for the problem

• Add memoization

• Bound the computational complexity

• How many subproblems (possible recursive calls)?

• How long does a call take?

(hard)

(easy)



Trick/Technique: Memoization

Avoid recomputing solutions to duplicate subproblems
by storing results in memory.

The Memoization Recipe

• Design a recursive algorithm for the problem

• Add memoization

• Bound the computational complexity

• How many subproblems (possible recursive calls)?

• How long does a call take?

(hard)

(easy)



Memoization: Pitfalls

Let G−1= G0 = 1, and Gi =

(
2Gi−1 if i is even

Gi−2 + 3 if i is odd
, for i ≥ 1.

std::vector<int> memo(n+1, 0);

int g(int n)

{

if(memo[n]) return memo[n];

if(n<=0) return 1;

memo[n] = (i%2)?(g(n-2)+3):(2*g(n-1));

return memo[n];

}

Does this code work?
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Memoization: Pitfalls

Let G−1= G0 = 1, and Gi =

(
2Gi−1 if i is even

Gi−2 + 3 if i is odd
, for i ≥ 1.

std::vector<int> memo(n+1, 0);

int g(int n)

{

if(memo[n]) return memo[n];

if(n<=0) return 1;

memo[n] = (i%2)?(g(n-2)+3):(2*g(n-1));

return memo[n];

}

Solution: check base cases before the memo table.

Does this code work? No! n can be −1!



Memoization: Pitfalls

std::vector<int> memo(n+1, 0);

int g(int n)

{

if(n<=1) return n;

if(memo[n]) return memo[n];

memo[n] = (g(n-1) + g(n-2) + 1) % 2;

return memo[n];

}

Too slow! Why?

G0 = 0, G1 = 1, and Gi = (Gi−1 +Gi−2 +1) mod 2, for i ≥ 1.
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Memoization: Pitfalls

std::vector<int> memo(n+1, 0);

int g(int n)

{

if(n<=1) return n;

if(memo[n]) return memo[n];

memo[n] = (g(n-1) + g(n-2) + 1) % 2;

return memo[n];

}

Too slow! Why?

G0 = 0, G1 = 1, and Gi = (Gi−1 +Gi−2 +1) mod 2, for i ≥ 1.

0 is a possible value of Gi !



Memoization: Pitfalls
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Dynamic Programming



I spent the Fall quarter (of 1950) at RAND. [...] We had a
very interesting gentleman in Washington named Wilson. He
was Secretary of Defense, and he actually had a pathological
fear and hatred of the word research. [...] he would get
violent if people used the term research in his presence. [...]
The RAND Corporation was employed by the Air Force, and
the Air Force had Wilson as its boss, essentially. Hence, I
felt I had to do something to shield Wilson and the Air Force
from the fact that I was really doing mathematics inside the
RAND Corporation. [...] I decided therefore to use the word
“programming”. I wanted to get across the idea that this
was dynamic, this was multistage, this was time-varying. [...]
Let’s take a word that has an absolutely precise meaning,
namely dynamic, in the classical physical sense. It also has a
very interesting property as an adjective, and that is it’s
impossible to use the word dynamic in a pejorative sense.
[...] Thus, I thought dynamic programming was a good
name. It was something not even a Congressman could
object to.

Richard E. Bellman,
Eye of the Hurricane: An Autobiography

Dynamic Programming



Dynamic Programming: Idea

• Decompose a problem into a series of “overlapping”
subproblems

• The optimal solution to a subproblem can be reconstructed
from the optimal solutions of “smaller” subproblems

• Systematically solve subproblems in a suitable order
(from the “smaller” to the “larger” ones)

• Eventually, either the solution to the original problem is
explicitly computed or it can be reconstructed from the
subproblems’ solutions

• The solutions to the “smallest” subproblems are trivially
known
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subproblems’ solutions

• The solutions to the “smallest” subproblems are trivially
known
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Fibonacci, Revisited

• i-th subproblem: Compute the value of Fi

• Compute Fi in increasing order of i:

• Base cases: i = 0, i = 1.

Fi = Fi−1 + Fi−2

• Both Fi−1 and Fi−2 are already known when Fi is
considered.

std::vector<int> F(n+1);

F[0]=0; F[1]=1;

for(int i=2; i<=n; i++)

F[i] = F[i-1] + F[i-2];

return F[n];

• Solution: Fn



Fibonacci, Revisited

Trick to reduce space:

• Once we compute Fi, the values F0, . . . , Fi−2 will not be
used anymore.

• Keep track of just two values x0, x1.

int x[2] = {0, 1};

for(int i=2; i<=n; i++)

x[i%2] = x[(i-1)%2] + x[(i-2)%2];

return x[n%2];

• At the end of iteration i, Fi = xi mod 2 and
Fi−1 = x(i−1) mod 2.
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Drink as much as possible

Robert wants to drink as much a possible.

• Robert walks through the streets of King’s Landing and
encounters n taverns t1, t2, . . . , tn, in order

• The wine served in tavern ti has strength si ∈ N
(the higher, the stronger)

• The strength of robert’s drinks must increase
over time

• Goal: Compute the maximum number of
drinking stops of Robert

• When Robert encounters a tavern ti, he can either stop for
a drink or continue walking
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Example

4 1 8 3 4 8 2 7 5 6 9 88

Solution: 6

This is a classic problem known as:
Longest Increasing Subsequence (LIS)
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A DP Algorithm: Second Attempt

Tip: Sometimes adding constraints to subproblems helps!

OPT [i] = Length of the LIS that ends with S[i]

OPT 1 1 2 2 3 4 2 4

Possible lengths: 3 4 3 2 2

. . .

OPT [9] = 4

4

1 2 3 4 5 6 7 8 9 10 11 12

1

Sequence containing only S[i]



The Dynamic Proramming Algorithm
• Subproblem definition

OPT [i] = Length of the LIS that ends with S[i]

• Base cases

OPT [1] = 1

• Recursive formula (for i ≥ 2)

OPT [i] = max

�
1, 1 + max

j=1,...,i−1
S[j]<S[i]

OPT [j]

�

• Subproblems’ order

OPT [1], OPT [2], . . . , OPT [n]

• Solution:
maxi=1,...,n OPT [i]



Time Complexity
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There is also another dynamic-programming algorithm for the
LIS problem running in time O(n log n) [Fredman, 1985]



std::vector<int> OPT(n+1);

OPT[1]=1;

for(int i=2; i<=n; i++)

{

OPT[i]=1;

for(int j=1; j<i; j++)

if(S[j] < S[i])

OPT[i] = std::max(OPT[i], 1+OPT[j]);

}

return std::max_element(OPT.begin()+1, OPT.end());

A possible implementation (DP)



A possible implementation (Memo)
std::vector<int> memo(n+1, 0);

int LIS(std::vector &S, int i)

{

if(i==1) return 1;

if(memo[i]) return memo[i];

int r=1;

for(int j=1; j<i; j++)

if(S[j]<S[i])

r=std::max(r, 1+LIS(S, j));

return memo[i]=r;

}



Memoization vs. DP

✓ Top-Down approach
(more intuitive)

✓ Easier to index
subproblems by other objects
(e.g., sets).

✓ Only computes necessary
subproblems

✗ Function calls overhead

✗ Time complexity is harder
to analyze

✗ Call stack (recusion depth)
is bounded

✗ Need to index subproblems
with integers

✗ Always computes all
subproblems

✓ Time complexity analysis is
easy(/ier)

✓ Short and clean code

✓ No recursion. Less overhead.
More cache efficient.

✗ Bottom-Up approach
(harder to grasp)

✗ Always computes all
subproblems



Recap
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Trick/Technique: Divide and Conquer

Decompose an instance into smaller instances of the
same problem.
Solve recursively and recombine the solutions.

Trick/Technique: Memoization

Avoid recomputing solutions to duplicate subproblems
by storing results in memory.

Trick/Technique: Dynamic Programming

Define overlapping subproblems (possibly w/additional con-
straints). Systematically solve subproblems using an order that
allows previous solutions to be recombined. Compute solution to
the original problem from the subproblems’ solutions.


