Divide and Conquer

Divide and Conquer

- **Divide:** Decompose an instance of a problem into smaller instances of the same problem
- **Conquer:** Solve each subproblem (recursively)
- **Recombine** the subproblems' solutions into a solution to the original problem

Polynomial Multiplication

Problem: Given two polynomials P(x), Q(x) of degree n, compute $R(x) = P(x) \cdot Q(x)$

Instance:

- The coefficients $p_0, p_1, \ldots, p_n \in \mathbb{Z}$ of $P(x) = \sum_{i=0}^n p_i x^i$.
- The coefficients $q_0, q_1, \ldots, q_n \in \mathbb{Z}$ of $Q(x) = \sum_{i=0}^n q_i x^i$.

Solution:

• The coefficients $r_0, r_1, \ldots, r_{2n} \in \mathbb{Z}$ of

$$R(x) = P(x) \cdot Q(x) = \sum_{i=0}^{2n} r_i x^i.$$

(Assume that arithmetic operations can be performed in O(1) time).

Example

$$P(x) = 1 + 2x + 3x^{2}$$
$$Q(x) = 3 + 0x + 5x^{2}$$
$$R(x) = P(x) \cdot Q(x) = 3 + 6x + 14x^{2} + 10x^{3} + 15x^{4}$$

How to compute R(x) efficiently?

Intermission: A More General Problem

Given two binary operations \oplus, \otimes and two functions $f, g: \mathbb{Z} \to \mathbb{R}$, the (\oplus, \otimes) -discrete convolution of f and g is a function $(f * g): \mathbb{Z} \to \mathcal{R}$ defined as:

$$(f * g)(n) = \bigoplus_{m = -\infty}^{+\infty} \left(f(n - m) \otimes g(m) \right)$$

Intermission: A More General Problem

Given two binary operations \oplus, \otimes and two functions $f, g: \mathbb{Z} \to \mathbb{R}$, the (\oplus, \otimes) -discrete convolution of f and g is a function $(f * g): \mathbb{Z} \to \mathcal{R}$ defined as:

$$(f * g)(n) = \bigoplus_{m = -\infty}^{+\infty} \left(f(n - m) \otimes g(m) \right)$$

Consider the arrays P and Q associated with the polynomials P(x) and Q(x). Define $f(n) = p_n$, $g(n) = q_n$ (and 0 elsewhere). The $(+, \cdot)$ convolution of P and Q is:

$$r_n = (f * g)(n) = \sum_{m=0}^n p_{n-m}q_m$$

Back to Polynomials: A Trivial Solution

$$r_i = \sum_{j=0}^i p_{i-j} q_j$$

• For
$$i = 0, ..., 2n$$
:

• $r_i \leftarrow 0$

• For $j = \max\{0, i - n\}, \dots, \min\{i, n\}$:

•
$$r_i \leftarrow r_i + p_{i-j} \cdot q_j$$

Back to Polynomials: A Trivial Solution

$$r_i = \sum_{j=0}^{i} p_{i-j} q_j$$

• For
$$i = 0, ..., 2n$$
:

• $r_i \leftarrow 0$

• For $j = \max\{0, i - n\}, \dots, \min\{i, n\}$:

•
$$r_i \leftarrow r_i + p_{i-j} \cdot q_j$$

Time Complexity: $\Theta(n^2)$

Back to Polynomials: A Trivial Solution

$$r_i = \sum_{j=0}^{i} p_{i-j} q_j$$

• For
$$i = 0, ..., 2n$$
:

• $r_i \leftarrow 0$

• For $j = \max\{0, i - n\}, \dots, \min\{i, n\}$:

•
$$r_i \leftarrow r_i + p_{i-j} \cdot q_j$$

Time Complexity: $\Theta(n^2)$

Can we do better?

• Write P as: $P(x) = P'(x) + P''(x) \cdot x^{\lfloor n/2 \rfloor}$, where:

$$P'(x) = \sum_{i=0}^{\lfloor n/2 \rfloor} p_i x^i \qquad \text{and} \qquad P''(x) = \sum_{i=1+\lfloor n/2 \rfloor}^n p_i x^{i-\lfloor n/2 \rfloor}$$

• Write P as: $P(x) = P'(x) + P''(x) \cdot x^{\lfloor n/2 \rfloor}$, where:

$$P'(x) = \sum_{i=0}^{\lfloor n/2 \rfloor} p_i x^i \qquad \text{and} \qquad P''(x) = \sum_{i=1+\lfloor n/2 \rfloor}^n p_i x^{i-\lfloor n/2 \rfloor}$$

• Similarly, write Q as: $Q(x) = Q'(x) + Q''(x) \cdot x^{\lfloor n/2 \rfloor}$

• Write P as: $P(x) = P'(x) + P''(x) \cdot x^{\lfloor n/2 \rfloor}$, where:

$$P'(x) = \sum_{i=0}^{\lfloor n/2 \rfloor} p_i x^i \qquad \text{and} \qquad P''(x) = \sum_{i=1+\lfloor n/2 \rfloor}^n p_i x^{i-\lfloor n/2 \rfloor}$$

• Similarly, write Q as: $Q(x) = Q'(x) + Q''(x) \cdot x^{\lfloor n/2 \rfloor}$

 $P(x) \cdot Q(x) = (P'(x) + P''(x) \cdot x^{\lfloor n/2 \rfloor}) \cdot (Q'(x) + Q''(x) \cdot x^{\lfloor n/2 \rfloor})$

• Write P as: $P(x) = P'(x) + P''(x) \cdot x^{\lfloor n/2 \rfloor}$, where:

$$P'(x) = \sum_{i=0}^{\lfloor n/2 \rfloor} p_i x^i \qquad \text{and} \qquad P''(x) = \sum_{i=1+\lfloor n/2 \rfloor}^n p_i x^{i-\lfloor n/2 \rfloor}$$

• Similarly, write Q as: $Q(x) = Q'(x) + Q''(x) \cdot x^{\lfloor n/2 \rfloor}$

 $P(x) \cdot Q(x) = (P'(x) + P''(x) \cdot x^{\lfloor n/2 \rfloor}) \cdot (Q'(x) + Q''(x) \cdot x^{\lfloor n/2 \rfloor})$

 $= P'(x)Q'(x) + (P'(x)Q''(x) + P''(x)Q'(x))x^{\lfloor n/2 \rfloor} + P''(X)Q''(x)x^{2\lfloor n/2 \rfloor}$

 $P'(x)Q'(x) + (P'(x)Q''(x) + P''(x)Q'(x))x^{\lfloor n/2 \rfloor} + P''(X)Q''(x)x^{2\lfloor n/2 \rfloor}$

The problem of computing the product of two polynomials of degree n is reduced to that of computing 4 products of polynomials of degree $\approx n/2$.

 $P'(x)Q'(x) + (P'(x)Q''(x) + P''(x)Q'(x))x^{\lfloor n/2 \rfloor} + P''(X)Q''(x)x^{2\lfloor n/2 \rfloor}$

The problem of computing the product of two polynomials of degree n is reduced to that of computing 4 products of polynomials of degree $\approx n/2$.

Recurrence Equation:

$$T(n) = 4T(n/2) + O(n) \blacktriangleleft$$

O(n) time is needed to decompose the polynomials and to recombine the 4 sub-products.

 $P'(x)Q'(x) + (P'(x)Q''(x) + P''(x)Q'(x))x^{\lfloor n/2 \rfloor} + P''(X)Q''(x)x^{2\lfloor n/2 \rfloor}$

The problem of computing the product of two polynomials of degree n is reduced to that of computing 4 products of polynomials of degree $\approx n/2$.

Recurrence Equation:

$$T(n) = 4T(n/2) + O(n) \blacktriangleleft$$

O(n) time is needed to decompose the polynomials and to recombine the 4 sub-products.

Solution:
$$\Theta(n^2)$$

 $P'(x)Q'(x) + (P'(x)Q''(x) + P''(x)Q'(x))x^{\lfloor n/2 \rfloor} + P''(X)Q''(x)x^{2\lfloor n/2 \rfloor}$

The problem of computing the product of two polynomials of degree n is reduced to that of computing 4 products of polynomials of degree $\approx n/2$.

Solution: $\Theta(n^2)$

We want:

 $P'(x)Q'(x) + (P'(x)Q''(x) + P''(x)Q'(x))x^{\lfloor n/2 \rfloor} + P''(X)Q''(x)x^{2\lfloor n/2 \rfloor}$

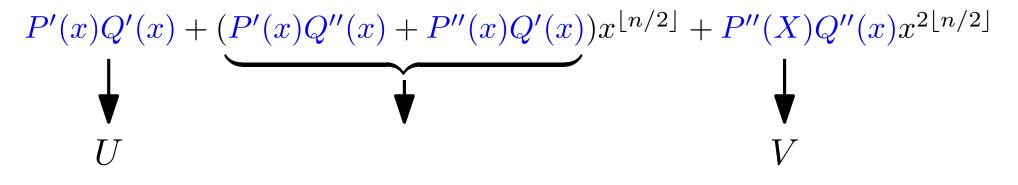
We want:

 $P'(x)Q'(x) + (P'(x)Q''(x) + P''(x)Q'(x))x^{\lfloor n/2 \rfloor} + P''(X)Q''(x)x^{2\lfloor n/2 \rfloor}$

Define:

$$U = P'(x)Q'(x) \qquad V = P''(x)Q''(x)$$
$$W = (P'(x) + P''(x))(Q'(x) + Q''(x))$$

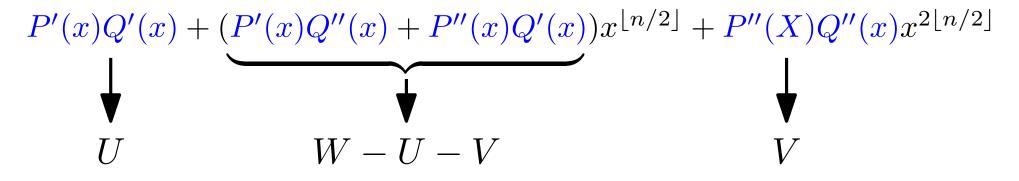
We want:



Define:

$$U = P'(x)Q'(x) \qquad V = P''(x)Q''(x)$$
$$W = (P'(x) + P''(x))(Q'(x) + Q''(x))$$

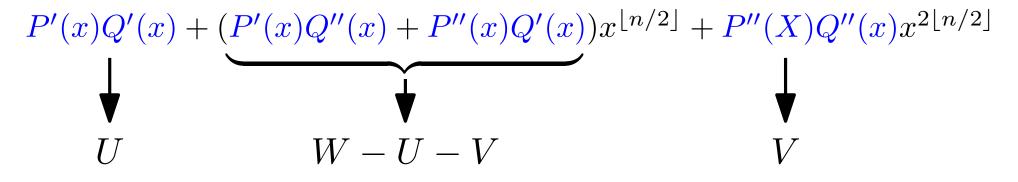
We want:



Define:

$$U = P'(x)Q'(x) \qquad V = P''(x)Q''(x)$$
$$W = (P'(x) + P''(x))(Q'(x) + Q''(x))$$

We want:



Define:

$$U = P'(x)Q'(x) \qquad V = P''(x)Q''(x)$$
$$W = (P'(x) + P''(x))(Q'(x) + Q''(x))$$

Only requires 3 multiplications \implies 3 subproblems of size $\sim n/2$

• Divide:

 $U = P'(x) \cdot Q'(x) \qquad (subproblem 1)$ $V = P''(x) \cdot Q''(x) \qquad (subproblem 2)$ $W = (P'(x) + P''(x)) \cdot (Q'(x) + Q''(x)) \qquad (subproblem 3)$

- **Conquer:** Compute U, V, W recursively
- Recombine: $U + (W U V)x^{\lfloor n/2 \rfloor} + Vx^{2\lfloor n/2 \rfloor}$

• Divide:

 $U = P'(x) \cdot Q'(x) \qquad (subproblem 1)$ $V = P''(x) \cdot Q''(x) \qquad (subproblem 2)$ $W = (P'(x) + P''(x)) \cdot (Q'(x) + Q''(x)) \qquad (subproblem 3)$

- **Conquer:** Compute U, V, W recursively
- Recombine: $U + (W U V)x^{\lfloor n/2 \rfloor} + Vx^{2\lfloor n/2 \rfloor}$

Reurrence Equation: T(n) = 3T(n/2) + O(n)

• Divide:

 $U = P'(x) \cdot Q'(x) \qquad (\text{subproblem 1})$ $V = P''(x) \cdot Q''(x) \qquad (\text{subproblem 2})$ $W = (P'(x) + P''(x)) \cdot (Q'(x) + Q''(x)) \qquad (\text{subproblem 3})$

- **Conquer:** Compute U, V, W recursively
- Recombine: $U + (W U V)x^{\lfloor n/2 \rfloor} + Vx^{2\lfloor n/2 \rfloor}$

Reurrence Equation: T(n) = 3T(n/2) + O(n)

Solution: $O(n^{\log_2 3}) = O(n^{1.585})$

• Divide:

 $U = P'(x) \cdot Q'(x) \qquad (subproblem 1)$ $V = P''(x) \cdot Q''(x) \qquad (subproblem 2)$ $W = (P'(x) + P''(x)) \cdot (Q'(x) + Q''(x)) \qquad (subproblem 3)$

- **Conquer:** Compute *U*, *V*, *W* recursively
- Recombine: $U + (W U V)x^{\lfloor n/2 \rfloor} + Vx^{2\lfloor n/2 \rfloor}$

Trick/Technique: Divide and Conquer

Decompose an instance into smaller instances of the same problem. Solve recursively and recombine the solutions.

Recursion & Memoization

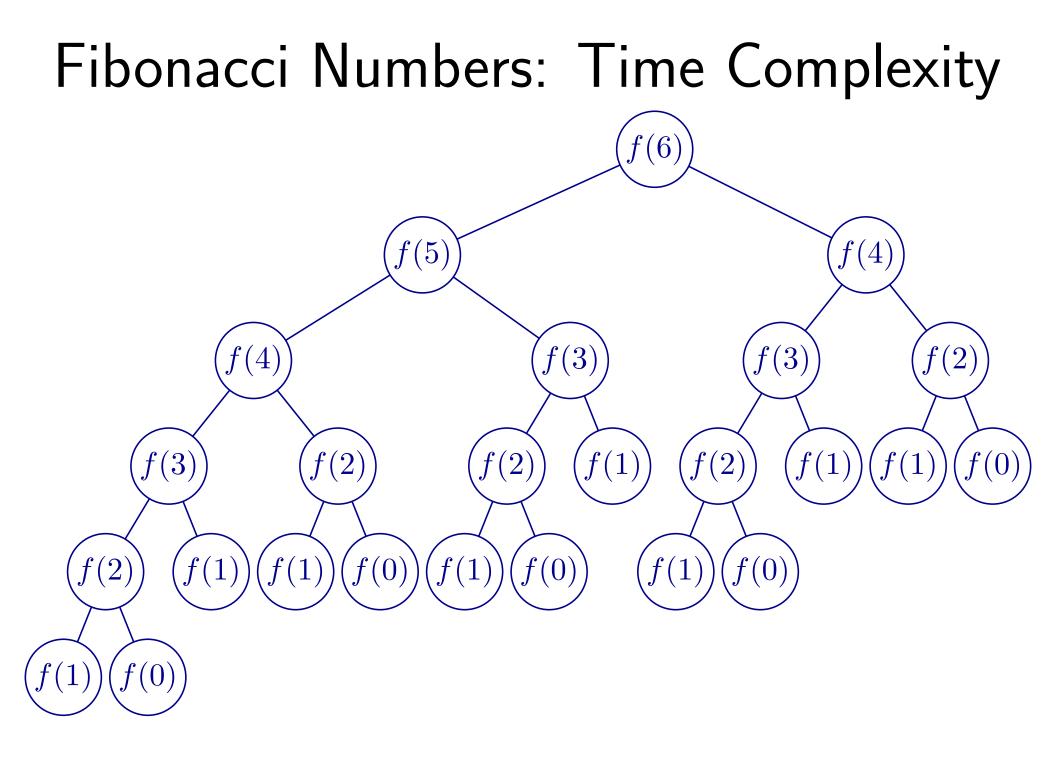
Fibonacci Numbers

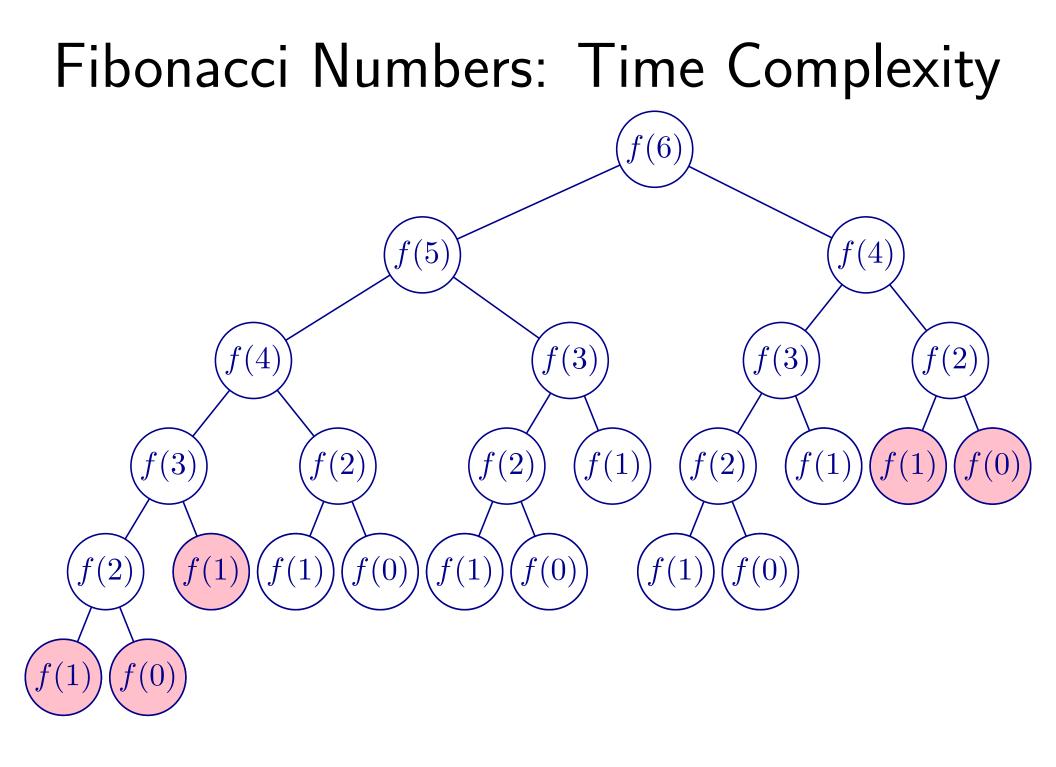
Definition: $F_0 = 0$, $F_1 = 1$, and $F_i = F_{i-1} + F_{i-2}$ for i > 1

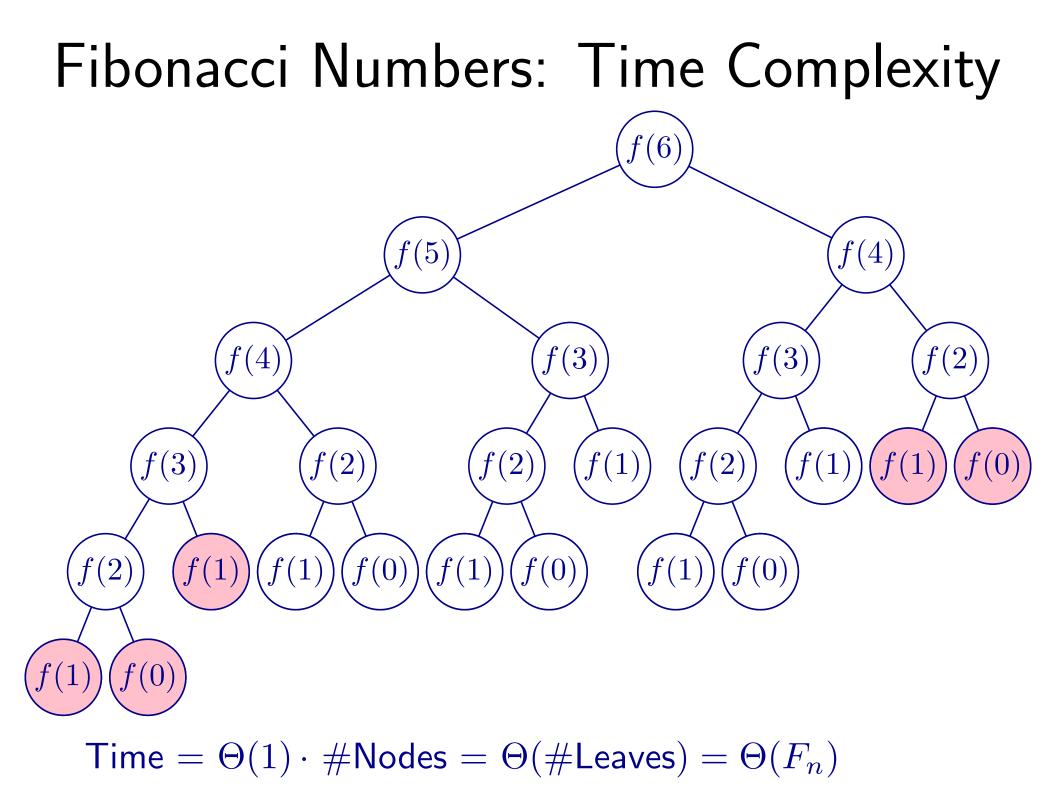
Problem: Given $n \in \mathbb{N}$, compute F_n

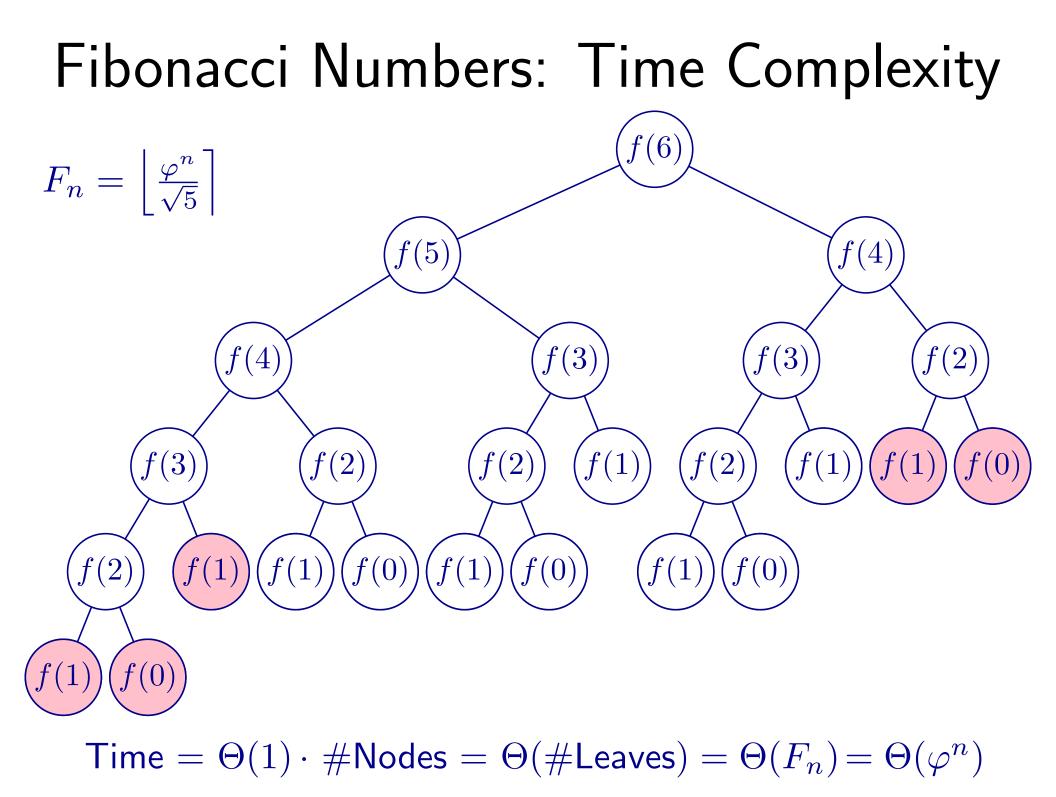
```
A trivial recursive solution:
int fibonacci(int n)
{
    if(n<=1)
        return n;
    return fibonacci(n-1) + fibonacci(n-2);
```

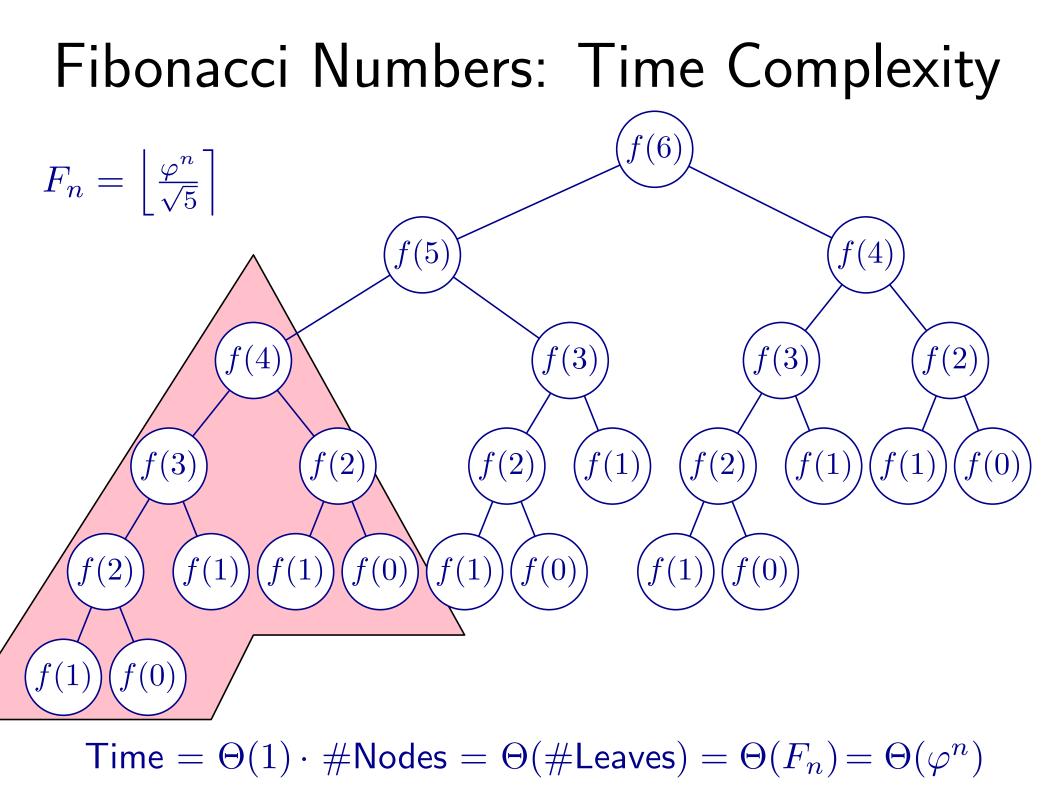
Computational complexity?

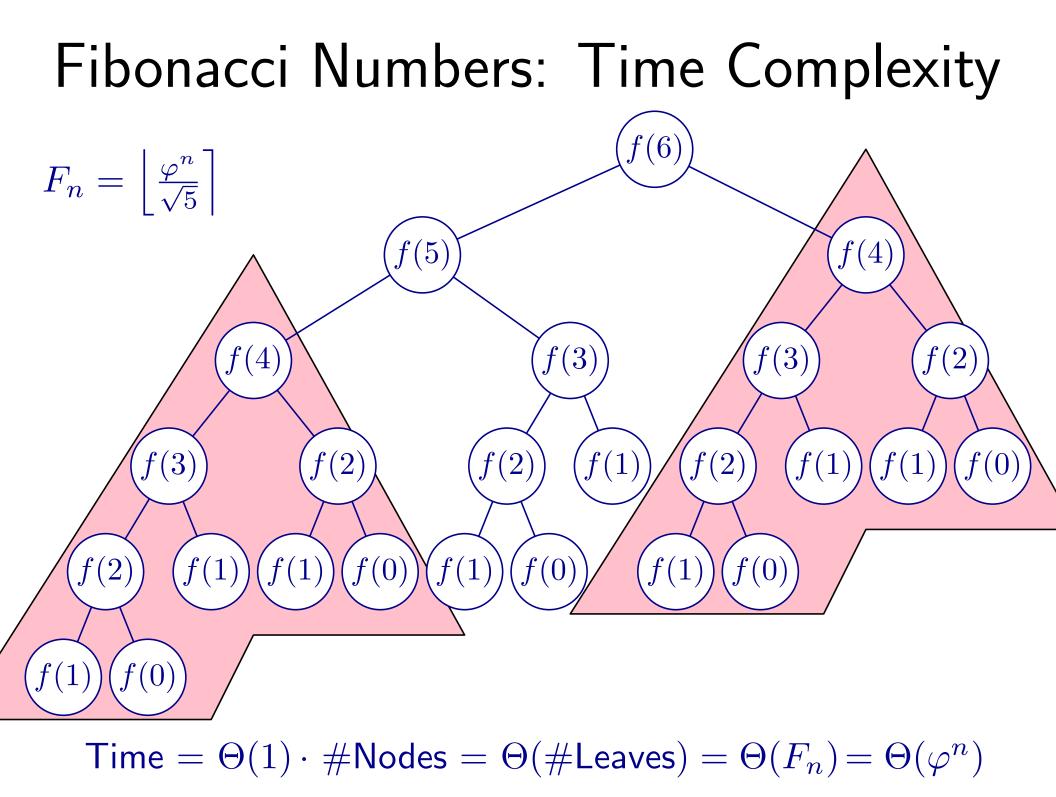


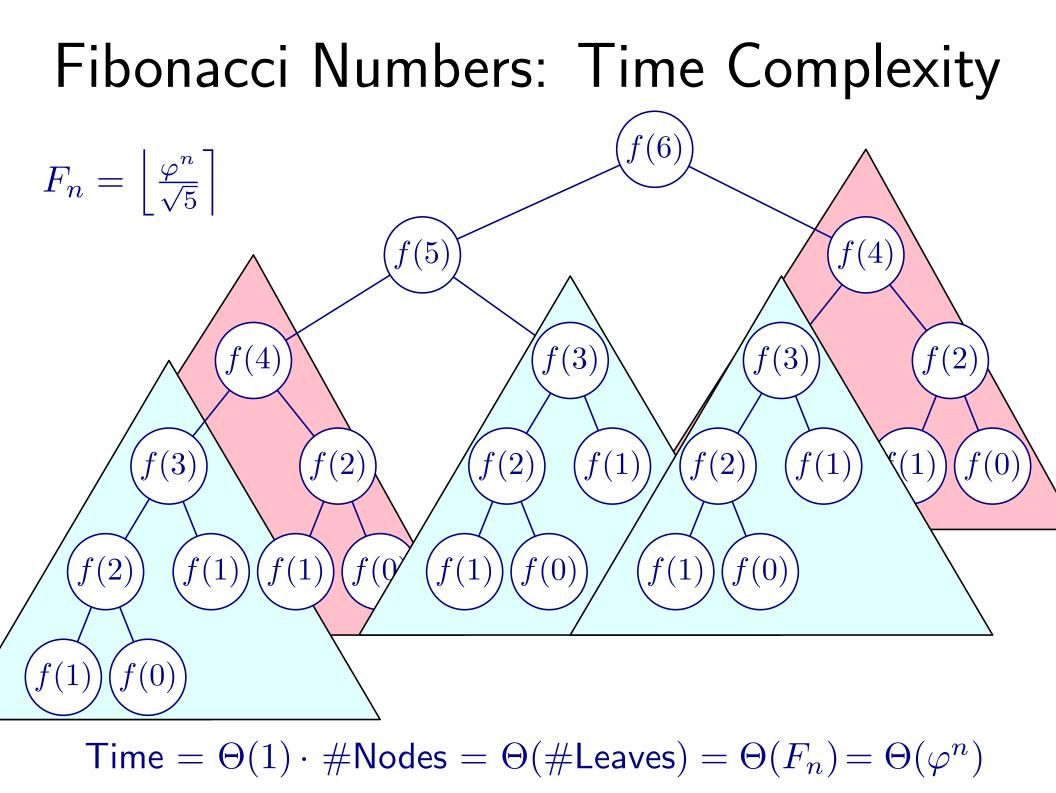


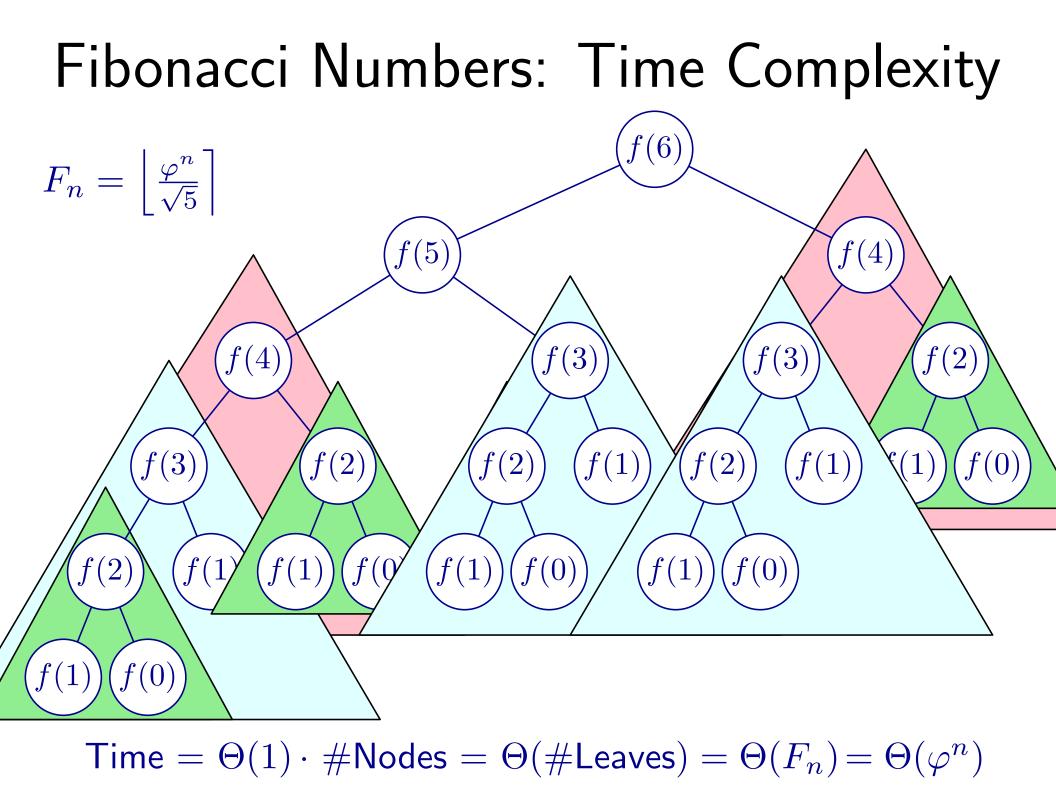












Fibonacci Numbers: Memoization

Idea: Do not recompute duplicate values:

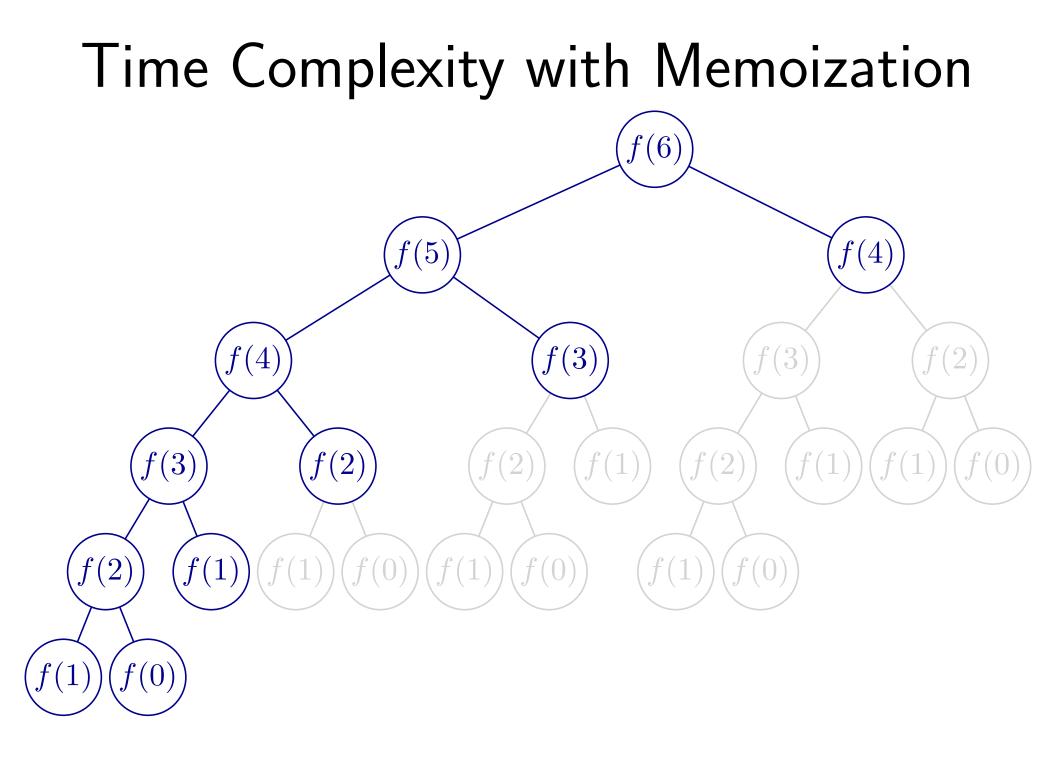
- Store values in memory
- If value is in memory, recall it
- Otherwise, compute and store it

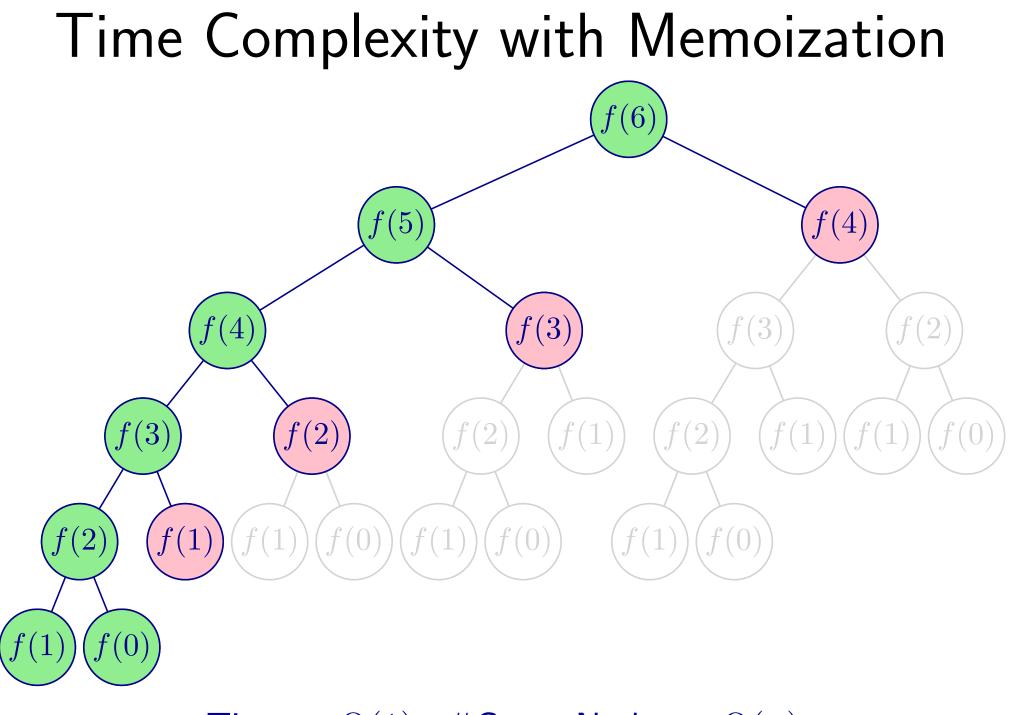
Fibonacci Numbers: Memoization

Idea: Do not recompute duplicate values:

- Store values in memory
- If value is in memory, recall it
- Otherwise, compute and store it

```
std::vector<int> memo(n+1, 0);
int fibonacci(int n)
{
    if(n<=1) return n;
    if(memo[n]) return memo[n];
    memo[n] = fibonacci(n-1) + fibonacci(n-2);
    return memo[n];
```





Time = $\Theta(1) \cdot \#$ Green Nodes = $\Theta(n)$

The Memoization Recipe

(hard)

- Design a recursive algorithm for the problem
- Add memoization (easy)

The Memoization Recipe

(hard)

- Design a recursive algorithm for the problem
- Add memoization (easy)
- Bound the computational complexity
 - How many subproblems (possible recursive calls)?
 - How long does a call take?

The Memoization Recipe

(hard)

- Design a recursive algorithm for the problem
- Add memoization (easy)
- Bound the computational complexity
 - How many subproblems (possible recursive calls)?
 - How long does a call take?

Trick/Technique: Memoization

Avoid recomputing solutions to duplicate subproblems by storing results in memory.

Let
$$G_{-1} = G_0 = 1$$
, and $G_i = \begin{cases} 2G_{i-1} & \text{if } i \text{ is even} \\ G_{i-2} + 3 & \text{if } i \text{ is odd} \end{cases}$, for $i \ge 1$.

```
std::vector<int> memo(n+1, 0);
int g(int n)
{
    if(memo[n]) return memo[n];
    if(n<=0) return 1;
    memo[n] = (i%2)?(g(n-2)+3):(2*g(n-1));
    return memo[n];
}
```

Does this code work?

Let
$$G_{-1} = G_0 = 1$$
, and $G_i = \begin{cases} 2G_{i-1} & \text{if } i \text{ is even} \\ G_{i-2} + 3 & \text{if } i \text{ is odd} \end{cases}$, for $i \ge 1$.

```
std::vector<int> memo(n+1, 0);
int g(int n)
{
    if(memo[n]) return memo[n];
    if(n<=0) return 1;
    memo[n] = (i%2)?(g(n-2)+3):(2*g(n-1));
    return memo[n];
```

Does this code work?

Let
$$G_{-1} = G_0 = 1$$
, and $G_i = \begin{cases} 2G_{i-1} & \text{if } i \text{ is even} \\ G_{i-2} + 3 & \text{if } i \text{ is odd} \end{cases}$, for $i \ge 1$.

```
std::vector<int> memo(n+1, 0);
int g(int n)
{
    if(memo[n]) return memo[n];
    if(n<=0) return 1;
    memo[n] = (i%2)?(g(n-2)+3):(2*g(n-1));
    return memo[n];
```

} Does this code work? No! n can be -1!

Let
$$G_{-1} = G_0 = 1$$
, and $G_i = \begin{cases} 2G_{i-1} & \text{if } i \text{ is even} \\ G_{i-2} + 3 & \text{if } i \text{ is odd} \end{cases}$, for $i \ge 1$.

```
std::vector<int> memo(n+1, 0);
int g(int n)
{
    if(memo[n]) return memo[n];
    if(n<=0) return 1;
    memo[n] = (i%2)?(g(n-2)+3):(2*g(n-1));
    return memo[n];
```

Does this code work? No! n can be -1!

Solution: check base cases before the memo table.

```
G_0 = 0, G_1 = 1, and G_i = (G_{i-1} + G_{i-2} + 1) \mod 2, for i \ge 1.
```

```
std::vector<int> memo(n+1, 0);
int g(int n)
{
    if(n<=1) return n;
    if(memo[n]) return memo[n];
    memo[n] = (g(n-1) + g(n-2) + 1) % 2;
    return memo[n];
```

Too slow! Why?

```
G_0 = 0, G_1 = 1, and G_i = (G_{i-1} + G_{i-2} + 1) \mod 2, for i \ge 1.
```

```
std::vector<int> memo(n+1, 0);
int g(int n)
{
    if(n<=1) return n;
    if(memo[n]) return memo[n];
    memo[n] = (g(n-1) + g(n-2) + 1) % 2;
    return memo[n];
```

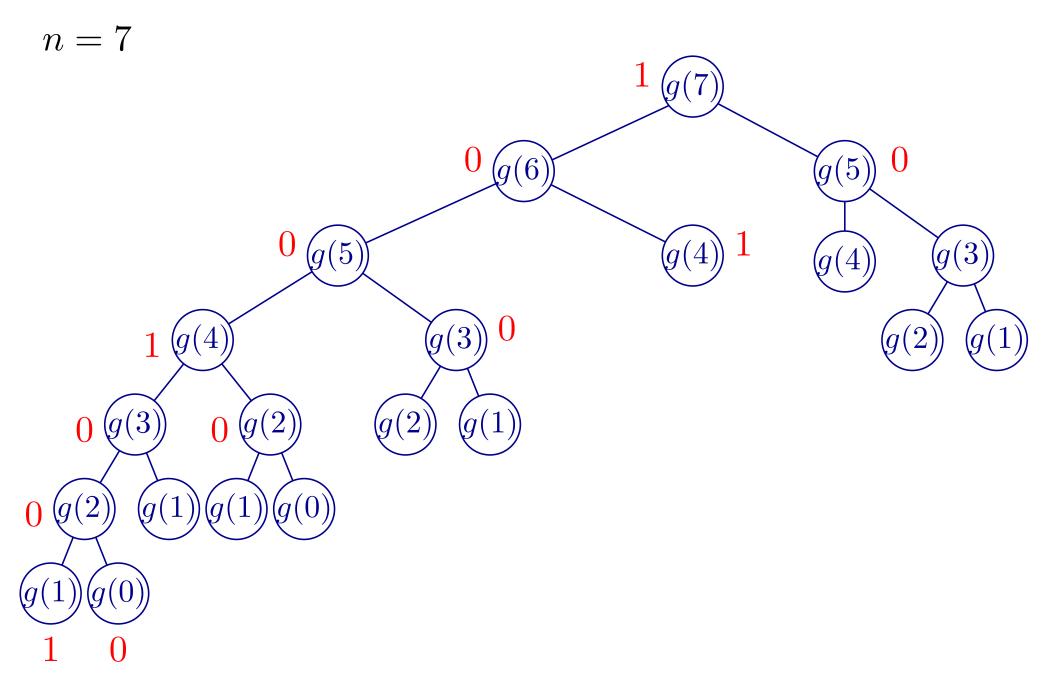
Too slow! Why?

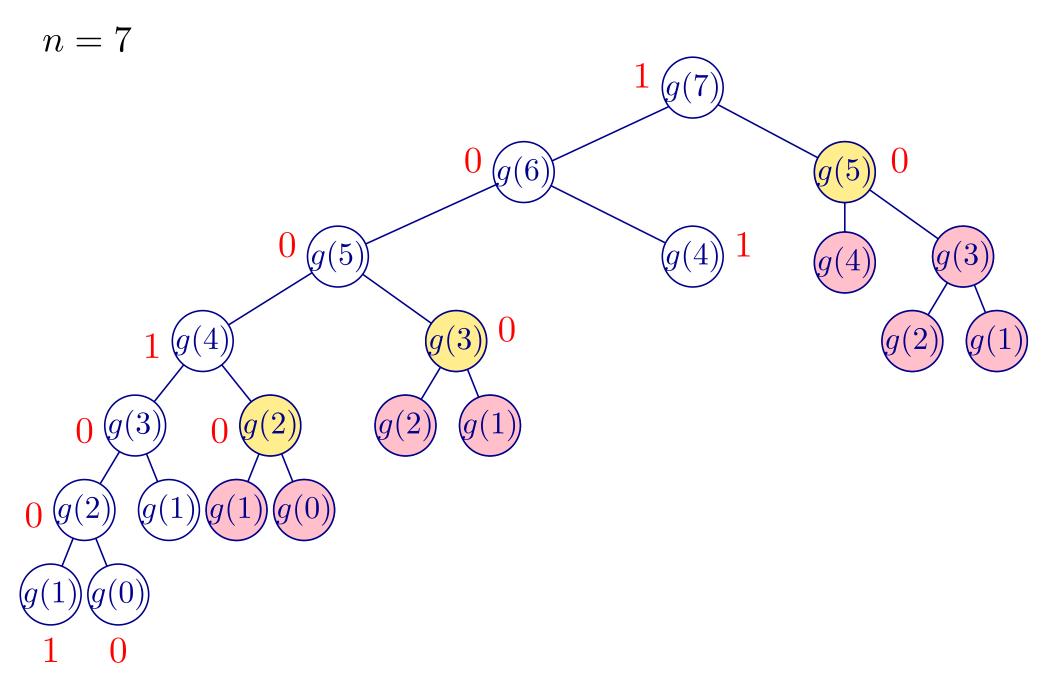
```
G_0 = 0, G_1 = 1, and G_i = (G_{i-1} + G_{i-2} + 1) \mod 2, for i \ge 1.
```

```
std::vector<int> memo(n+1, 0);
int g(int n)
{
    if(n<=1) return n;
    if(memo[n]) return memo[n];
    memo[n] = (g(n-1) + g(n-2) + 1) % 2;
    return memo[n];
```

Too slow! Why? 0 is a possib

0 is a possible value of G_i !





Dynamic Programming

Dynamic Programming

I spent the Fall quarter (of 1950) at RAND. [...] We had a very interesting gentleman in Washington named Wilson. He was Secretary of Defense, and he actually had a pathological fear and hatred of the word research. [...] he would get violent if people used the term research in his presence. [...] The RAND Corporation was employed by the Air Force, and the Air Force had Wilson as its boss, essentially. Hence, I felt I had to do something to shield Wilson and the Air Force from the fact that I was really doing mathematics inside the RAND Corporation. [...] I decided therefore to use the word "programming". I wanted to get across the idea that this was dynamic, this was multistage, this was time-varying. [...] Let's take a word that has an absolutely precise meaning, namely dynamic, in the classical physical sense. It also has a very interesting property as an adjective, and that is it's impossible to use the word dynamic in a pejorative sense. [...] Thus, I thought dynamic programming was a good name. It was something not even a Congressman could object to.

Richard E. Bellman, Eye of the Hurricane: An Autobiography

Dynamic Programming: Idea

- Decompose a problem into a series of "overlapping" subproblems
- The solutions to the "smallest" subproblems are trivially known
- The optimal solution to a subproblem can be reconstructed from the optimal solutions of "smaller" subproblems
- Systematically solve subproblems in a suitable order (from the "smaller" to the "larger" ones)
- Eventually, either the solution to the original problem is explicitly computed or it can be reconstructed from the subproblems' solutions

Dynamic Programming: Idea

- Decompose a problem into a series of "overlapping" subproblems (hard)
- The solutions to the "smallest" subproblems are trivially known (easy)
- The optimal solution to a subproblem can be reconstructed from the optimal solutions of "smaller" subproblems (hard)
- Systematically solve subproblems in a suitable order (from the "smaller" to the "larger" ones) (easy)
- Eventually, either the solution to the original problem is explicitly computed or it can be reconstructed from the subproblems' solutions (easy)

Fibonacci, Revisited

• *i*-th subproblem: Compute the value of F_i

- Compute F_i in increasing order of i: $F_i = F_{i-1} + F_{i-2}$
- Both F_{i-1} and F_{i-2} are already known when F_i is considered.
- Solution: F_n

```
std::vector<int> F(n+1);
F[0]=0; F[1]=1;
for(int i=2; i<=n; i++)
        F[i] = F[i-1] + F[i-2];</pre>
```

Fibonacci, Revisited

Trick to reduce space:

- Once we compute F_i , the values F_0, \ldots, F_{i-2} will not be used anymore.
- Keep track of just two values x_0 , x_1 .
- At the end of iteration i, $F_i = x_{i \mod 2}$ and $F_{i-1} = x_{(i-1) \mod 2}$.

int x[2] = {0, 1};

```
for(int i=2; i<=n; i++)
    x[i%2] = x[(i-1)%2] + x[(i-2)%2];</pre>
```

return x[n%2];

Fibonacci, Revisited

Trick to reduce space:

- Once we compute F_i , the values F_0, \ldots, F_{i-2} will not be used anymore.
- Keep track of just two values x_0 , x_1 .
- At the end of iteration i, $F_i = x_{i \mod 2}$ and $F_{i-1} = x_{(i-1) \mod 2}$.

int x[2] = {0, 1}; for(int 1=2; i<=n; i++) x[i%2] = x[(i-1)%2] + x[(i-2)%2]; return x[n%2]; F_{i-1} F_{i-2}

Drink as much as possible

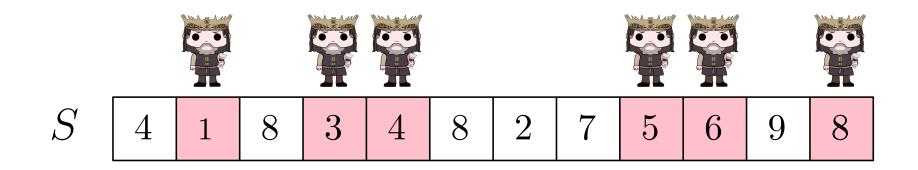
Robert wants to drink as much a possible.

- Robert walks through the streets of King's Landing and encounters n taverns t_1, t_2, \ldots, t_n , in order
- When Robert encounters a tavern t_i , he can either stop for a drink or continue walking
- The wine served in tavern t_i has strength $s_i \in \mathbb{N}$ (the higher, the stronger)
- The strength of robert's drinks must increase over time
- **Goal:** Compute the maximum number of drinking stops of Robert

Example

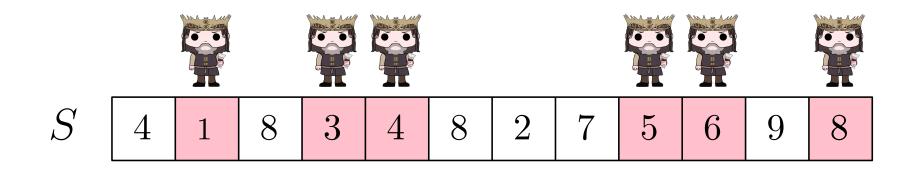


Example



Solution: 6

Example



Solution: 6

This is a classic problem known as: Longest Increasing Subsequence (LIS)

• Subproblem definition

 $OPT[i] = Length of the LIS in S[1], \dots, S[i]$

• Subproblem definition

 $OPT[i] = Length of the LIS in S[1], \dots, S[i]$

• Base cases

OPT[1] = 1

• Subproblem definition

 $OPT[i] = Length of the LIS in S[1], \dots, S[i]$

- Base cases
 - OPT[1] = 1
- Solution:

OPT[n]

• Subproblem definition

 $OPT[i] = Length of the LIS in S[1], \dots, S[i]$

- Base cases
 - OPT[1] = 1
- Solution:

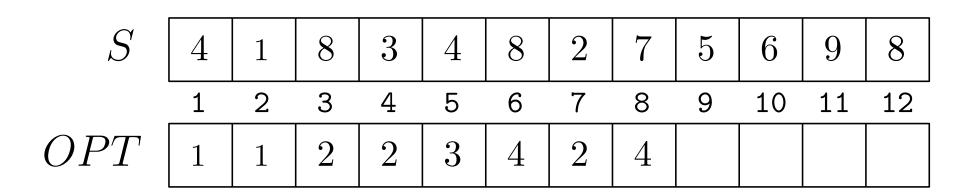
OPT[n]

• Recursive formula

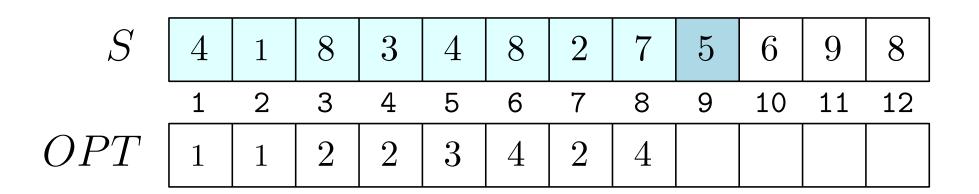
Tip: Sometimes adding constraints to subproblems helps!

Tip: Sometimes adding constraints to subproblems helps!

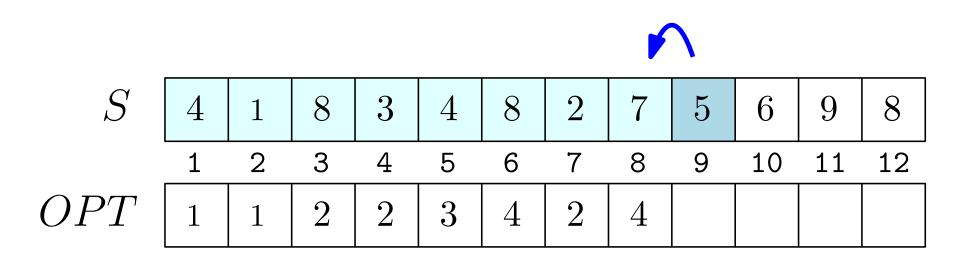
Tip: Sometimes adding constraints to subproblems helps!



Tip: Sometimes adding constraints to subproblems helps!

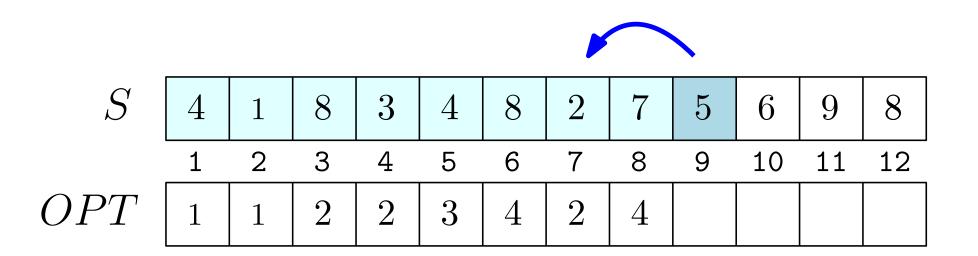


Tip: Sometimes adding constraints to subproblems helps!



Tip: Sometimes adding constraints to subproblems helps!

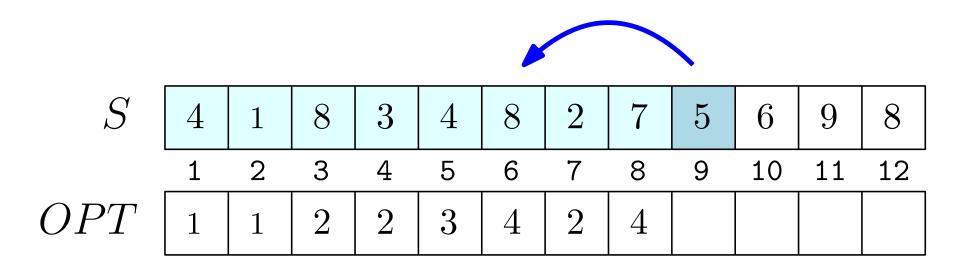
OPT[i] = Length of the LIS that ends with S[i]



Possible lengths: 3

Tip: Sometimes adding constraints to subproblems helps!

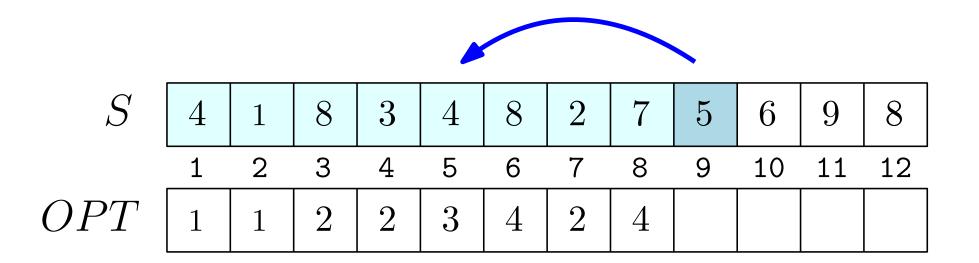
OPT[i] = Length of the LIS that ends with S[i]



Possible lengths: 3

Tip: Sometimes adding constraints to subproblems helps!

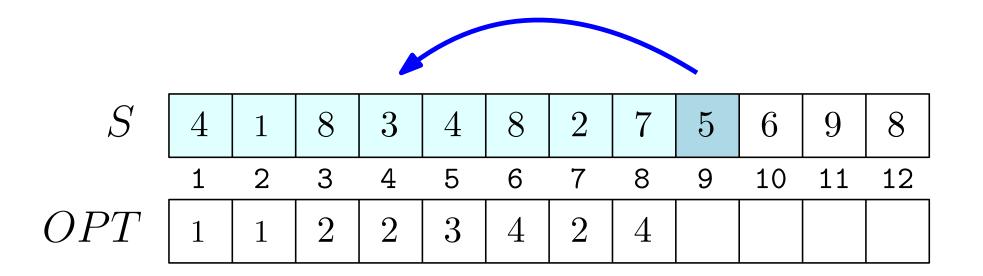
OPT[i] = Length of the LIS that ends with S[i]



Possible lengths: 3 4

Tip: Sometimes adding constraints to subproblems helps!

OPT[i] = Length of the LIS that ends with S[i]



Possible lengths: 3 4 3

Tip: Sometimes adding constraints to subproblems helps!

OPT[i] = Length of the LIS that ends with S[i]SOPT

Possible lengths: 3 4 3 2 2

Tip: Sometimes adding constraints to subproblems helps!

OPT[i] = Length of the LIS that ends with S[i]SOPT $\mathbf{2}$

Possible lengths: 3 4 3 2 2 1Sequence containing only S[i]

Tip: Sometimes adding constraints to subproblems helps!

OPT[i] = Length of the LIS that ends with S[i]SOPT $\mathbf{2}$ $\mathbf{2}$

Possible lengths: 4 3 2 2 1 OPT[9] = 4Sequence containing only S[i]

The Dynamic Proramming Algorithm

• Subproblem definition

OPT[i] = Length of the LIS that ends with S[i]

• Base cases

OPT[1] = 1

- Recursive formula (for $i \ge 2$) $OPT[i] = \max \left\{ 1, 1 + \max_{\substack{j=1,\dots,i-1\\S[j] < S[i]}} OPT[j] \right\}$
- Subproblems' order

 $OPT[1], OPT[2], \dots, OPT[n]$

• Solution:

 $\max_{i=1,\ldots,n} OPT[i]$

Time Complexity

- O(n) subproblems
- Base cases are handled in constant time
- OPT[i] is computed in time $\Theta(i)$

$$OPT[i] = \max\left\{1, 1 + \max_{\substack{j=1,...,i-1\\S[j] < S[i]}} OPT[j]\right\}$$

Time Complexity

- O(n) subproblems
- Base cases are handled in constant time
- OPT[i] is computed in time $\Theta(i)$

$$OPT[i] = \max\left\{1, 1 + \max_{\substack{j=1,...,i-1\\S[j] < S[i]}} OPT[j]\right\}$$

Overall time: $O\left(\sum_{i=1}^{n} i\right) = O(n^2).$

Time Complexity

- O(n) subproblems
- Base cases are handled in constant time
- OPT[i] is computed in time $\Theta(i)$

$$OPT[i] = \max\left\{1, 1 + \max_{\substack{j=1,...,i-1\\S[j] < S[i]}} OPT[j]\right\}$$

Overall time: $O\left(\sum_{i=1}^{n} i\right) = O(n^2).$

There is also another dynamic-programming algorithm for the LIS problem running in time $O(n \log n)$ [Fredman, 1985]

A possible implementation (DP)

```
std::vector<int> OPT(n+1);
OPT[1]=1;
for(int i=2; i<=n; i++)</pre>
    OPT[i]=1;
   for(int j=1; j<i; j++)</pre>
       if(S[j] < S[i])
           OPT[i] = std::max(OPT[i], 1+OPT[j]);
return std::max_element(OPT.begin()+1, OPT.end());
```

A possible implementation (Memo)

```
std::vector<int> memo(n+1, 0);
```

```
int LIS(std::vector &S, int i)
{
   if(i==1) return 1;
   if(memo[i]) return memo[i];
   int r=1;
   for(int j=1; j<i; j++)</pre>
       if(S[j]<S[i])
           r=std::max(r, 1+LIS(S, j));
```

return memo[i]=r;

Memoization vs. DP

- ✓ Top-Down approach (more intuitive)
- ✓ Easier to index
 subproblems by other objects
 (e.g., sets).
- ✓ Only computes necessary subproblems
- **X** Function calls overhead
- ✗ Call stack (recusion depth) is bounded
- **X** Time complexity is harder to analyze

- X Bottom-Up approach
 (harder to grasp)
- X Need to index subproblems with integers
- X Always computes all subproblems
- ✓ No recursion. Less overhead.
 More cache efficient.
- \checkmark Short and clean code
- ✓ Time complexity analysis is easy(/ier)

Trick/Technique: Divide and **Conquer**

Decompose an instance into smaller instances of the same problem.

Solve recursively and recombine the solutions.

Trick/Technique: Divide and Conquer

Decompose an instance into smaller instances of the same problem. Solve recursively and recombine the solutions.

Trick/Technique: Memoization

Avoid recomputing solutions to duplicate subproblems by storing results in memory.

Trick/Technique: Divide and Conquer

Decompose an instance into smaller instances of the same problem. Solve recursively and recombine the solutions.

Trick/Technique: Memoization

Avoid recomputing solutions to duplicate subproblems by storing results in memory.

Trick/Technique: Dynamic Programming

Define overlapping subproblems (possibly w/additional constraints). Systematically solve subproblems using an order that allows previous solutions to be recombined. Compute solution to the original problem from the subproblems' solutions.