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Linear Regression

Given a collection P of points (x1, y1), (x2, y2), . . . , (xn, yn) . . .

. . . find the “line ℓ of best fit” through the points

Minimizes some error measure

ℓ(x) = a ·x+ b
Need to

find a and b

What does “best” mean?
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Least Squares Regression

Residual: difference between the y-coordinate of a point and
the corresponding value of the fitted line



Least Squares Regression

Error: sum of the squares of the residuals

Err(ℓ, P ) =
nX

i=1

�
ℓ(xi)− yi

�2

Residual: difference between the y-coordinate of a point and
the corresponding value of the fitted line



Least Squares Regression

The parameters of the line ℓ(x) = a · x+ b of best fit are:
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Least Squares Regression

The parameters of the line ℓ(x) = a · x+ b of best fit are:
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Can be found in time O(n)
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Segmented Least Squares Regression
What if the points look like this?

• No single line provides a good fit

• We can get a good fit with using piecewise linear
functions instead of lines

Problem: if we use piecewise linear functions, then we can
trivially fit all points

Idea: each used segment incurs some cost C

Balances the quality
of the fit with the #
of used segments
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A Key Observation

If we know that the last segment in an optimal solution is
pj , . . . .pn, then the value of the optimal solution is

OPT(n) = C + Err({pj , . . . , pn}) + OPT(j − 1).

Let OPT(i) denote the penalty incurred by an optimal solution
for the instance that only considers the points in
{p1, p2, . . . , pi}

Idea: try all the possible choices for the last segment
j. . .



A Dynamic Programming Algorithm

Subproblem definition:

Base case:

OPT(i) = penalty incurred by an optimal solution for the
instance that only considers the points in {p1, p2, . . . , pi}

OPT(0) = 0

Recursive formula:

Order of subproblems: OPT(1), OPT(2), . . . , OPT(n)

Solution: OPT(n)

OPT(i) = min
j=1,...,i

�
C + Err({pj , . . . , pn}) + OPT(j − 1)

�
.

(for i ≥ 1)
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Time Complexity

How many subproblems?

How much time per subproblem?

• We need to test O(n) choices of j.

• How much time per choice of j?

— Need to find the best fit line ℓ for {pj , . . . , pi}
— Need to find the error Err(ℓ, {pj , . . . , pi})

O(n)

O(n2)

O(n)

O(n)

Overall time: O(n3)

Can we do better?



Err(ℓ, {pj , . . . , pi}) =
iX

h=j

�
ℓ(xh)− yh

�2

Goal: find the best fit line ℓ(x) = a · x+ b, and the error
Err(ℓ, {pj , . . . , pi}) quickly

Improving the Time Complexity

a =
n
Pi

h=j xhyh −
�Pi

h=j xh

��Pi
h=j yh

�

n
Pi

h=j x
2
h −

�Pi
h=j xh

�2

b =

Pi
h=j yh − a

Pi
h=j xh

n
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All the marked quantities can be found in constant time after
a linear-time preprocessing using prefix sums.
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