Segmented Least Squares

Given a collection P of points $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n) \ldots$

Given a collection P of points $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n) \ldots$

... find the "line ℓ of best fit" through the points

 $\ell(x) = a \cdot x + b$

$$\ell(x) = a \cdot x + b \qquad \text{find } a \text{ and } b$$

What does "best" mean? Minimizes some error measure

Residual: difference between the *y*-coordinate of a point and the corresponding value of the fitted line

Residual: difference between the *y*-coordinate of a point and the corresponding value of the fitted line

Error: sum of the **squares** of the residuals

$$\mathsf{Err}(\ell, P) = \sum_{i=1}^{n} \left(\ell(x_i) - y_i \right)^2$$

The parameters of the line $\ell(x) = a \cdot x + b$ of best fit are:

$$a = \frac{n \sum_{i} x_i y_i - \left(\sum_{i} x_i\right) \left(\sum_{i} y_i\right)}{n \sum_{i} x_i^2 - \left(\sum_{i} x_i\right)^2} \qquad b = \frac{\sum_{i} y_i - a \sum_{i} x_i}{n}$$

The parameters of the line $\ell(x) = a \cdot x + b$ of best fit are:

$$a = \frac{n \sum_{i} x_i y_i - (\sum_{i} x_i) (\sum_{i} y_i)}{n \sum_{i} x_i^2 - (\sum_{i} x_i)^2} \qquad b = \frac{\sum_{i} y_i - a \sum_{i} x_i}{n}$$

Can be found in time O(n)

What if the points look like this?

What if the points look like this?

• No single line provides a good fit

What if the points look like this?

- No single line provides a good fit
- We can get a good fit with using **piecewise linear functions** instead of lines

- No single line provides a good fit
- We can get a good fit with using **piecewise linear functions** instead of lines

Problem: if we use piecewise linear functions, then we can trivially fit all points

- No single line provides a good fit
- We can get a good fit with using **piecewise linear functions** instead of lines

Problem: if we use piecewise linear functions, then we can trivially fit all points

Idea: each used segment incurs some $\cot C$

- No single line provides a good fit
- We can get a good fit with using **piecewise linear functions** instead of lines

Problem: if we use piecewise linear functivially fit all points

Idea: each used segment incurs some $\cot C$

Balances the quality of the fit with the # of used segments

The Segmented Least Squares Problem

Input:

- A collection $P = \{p_1 = (x_1, x_2), \dots, p_n = (x_n, y_n)\}$ of points with $x_1 < x_2 < \dots < x_n$
- A cost $C \in \mathbb{R}^+$

The Segmented Least Squares Problem

Input:

- A collection $P = \{p_1 = (x_1, x_2), \dots, p_n = (x_n, y_n)\}$ of points with $x_1 < x_2 < \dots < x_n$
- A cost $C \in \mathbb{R}^+$

Output:

- A partition of P into some number k of segments S_1, \ldots, S_k
- where a segment is a subset of P containing a contiguous interval of points, i.e., $\{p_i, p_{i+1}, \ldots, p_j\}$ for some $i \leq j$,
- that minimizes the *total penalty* $C \cdot k + \sum_{i=1}^{k} \text{Err}(\ell_i, S_i)$, where ℓ_i is the best fit line for S_i

The Segmented Least Squares Problem

Input:

- A collection $P = \{p_1 = (x_1, x_2), \dots, p_n = (x_n, y_n)\}$ of points with $x_1 < x_2 < \dots < x_n$
- A cost $C \in \mathbb{R}^+$

Output:

- A partition of P into some number k of segments S_1, \ldots, S_k
- where a segment is a subset of P containing a contiguous interval of points, i.e., $\{p_i, p_{i+1}, \ldots, p_j\}$ for some $i \leq j$,
- that minimizes the *total penalty* $C \cdot k + \sum_{i=1}^{k} \text{Err}(\ell_i, S_i)$, where ℓ_i is the best fit line for S_i $\text{Err}(S_i)$

Example (qualitative)

C = 5

Example (qualitative)

One segment: Total penalty: $1 \cdot 5 + 200 = 205$

One segment: Total penalty: $1 \cdot 5 + 200 = 205$ **Two segments:** Total penalty: $2 \cdot 5 + 50 = 60$

Example (qualitative) ℓ_3 C=5

One segment: Total penalty: $1 \cdot 5 + 200 = 205$ **Two segments:** Total penalty: $2 \cdot 5 + 50 = 60$ **Three segments:** Total penalty: $3 \cdot 5 + 40 = 55$

One segment: Total penalty: $1 \cdot 5 + 200 = 205$ Two segments: Total penalty: $2 \cdot 5 + 50 = 60$ Three segments: Total penalty: $3 \cdot 5 + 40 = 55$ Four segments: Total penalty: $4 \cdot 5 + 37 = 57$

Example (qualitative)

One segment: Total penalty: $1 \cdot 5 + 200 = 205$ Two segments: Total penalty: $2 \cdot 5 + 50 = 60$ Three segments: Total penalty: $3 \cdot 5 + 40 = 55$ Four segments: Total penalty: $4 \cdot 5 + 37 = 57$

Let OPT(i) denote the penalty incurred by an optimal solution for the instance that only considers the points in $\{p_1, p_2, \ldots, p_i\}$

Let OPT(i) denote the penalty incurred by an optimal solution for the instance that only considers the points in $\{p_1, p_2, \ldots, p_i\}$

If we know that the last segment in an optimal solution is p_j, \ldots, p_n , then the value of the optimal solution is

 $\mathsf{OPT}(n) = C + \mathsf{Err}(\{p_j, \dots, p_n\}) + \mathsf{OPT}(j-1).$

Let OPT(i) denote the penalty incurred by an optimal solution for the instance that only considers the points in $\{p_1, p_2, \ldots, p_i\}$

If we know that the last segment in an optimal solution is p_j, \ldots, p_n , then the value of the optimal solution is

 $\mathsf{OPT}(n) = C + \mathsf{Err}(\{p_j, \dots, p_n\}) + \mathsf{OPT}(j-1).$

Let OPT(i) denote the penalty incurred by an optimal solution for the instance that only considers the points in $\{p_1, p_2, \ldots, p_i\}$

If we know that the last segment in an optimal solution is p_j, \ldots, p_n , then the value of the optimal solution is

 $\mathsf{OPT}(n) = C + \mathsf{Err}(\{p_j, \dots, p_n\}) + \mathsf{OPT}(j-1).$

Let OPT(i) denote the penalty incurred by an optimal solution for the instance that only considers the points in $\{p_1, p_2, \ldots, p_i\}$

If we know that the last segment in an optimal solution is p_j, \ldots, p_n , then the value of the optimal solution is

 $\mathsf{OPT}(n) = C + \mathsf{Err}(\{p_j, \dots, p_n\}) + \mathsf{OPT}(j-1).$

Let OPT(i) denote the penalty incurred by an optimal solution for the instance that only considers the points in $\{p_1, p_2, \ldots, p_i\}$

If we know that the last segment in an optimal solution is p_j, \ldots, p_n , then the value of the optimal solution is

 $\mathsf{OPT}(n) = C + \mathsf{Err}(\{p_j, \dots, p_n\}) + \mathsf{OPT}(j-1).$

Let OPT(i) denote the penalty incurred by an optimal solution for the instance that only considers the points in $\{p_1, p_2, \ldots, p_i\}$

If we know that the last segment in an optimal solution is p_j, \ldots, p_n , then the value of the optimal solution is

 $\mathsf{OPT}(n) = C + \mathsf{Err}(\{p_j, \dots, p_n\}) + \mathsf{OPT}(j-1).$

Let OPT(i) denote the penalty incurred by an optimal solution for the instance that only considers the points in $\{p_1, p_2, \ldots, p_i\}$

If we know that the last segment in an optimal solution is p_j, \ldots, p_n , then the value of the optimal solution is

 $\mathsf{OPT}(n) = C + \mathsf{Err}(\{p_j, \dots, p_n\}) + \mathsf{OPT}(j-1).$

Let OPT(i) denote the penalty incurred by an optimal solution for the instance that only considers the points in $\{p_1, p_2, \ldots, p_i\}$

If we know that the last segment in an optimal solution is p_j, \ldots, p_n , then the value of the optimal solution is

 $\mathsf{OPT}(n) = C + \mathsf{Err}(\{p_j, \dots, p_n\}) + \mathsf{OPT}(j-1).$

Let OPT(i) denote the penalty incurred by an optimal solution for the instance that only considers the points in $\{p_1, p_2, \ldots, p_i\}$

If we know that the last segment in an optimal solution is p_j, \ldots, p_n , then the value of the optimal solution is

 $\mathsf{OPT}(n) = C + \mathsf{Err}(\{p_j, \dots, p_n\}) + \mathsf{OPT}(j-1).$

A Dynamic Programming Algorithm

Subproblem definition:

 $OPT(i) = penalty incurred by an optimal solution for the instance that only considers the points in <math>\{p_1, p_2, \dots, p_i\}$ Base case: OPT(0) = 0

Recursive formula:

```
(for i \geq 1)
```

$$\mathsf{OPT}(i) = \min_{j=1,...,i} \left\{ C + \mathsf{Err}(\{p_j,\ldots,p_n\}) + \mathsf{OPT}(j-1) \right\}.$$

Order of subproblems: OPT(1), OPT(2), ..., OPT(n)

Solution: OPT(n)

How many subproblems?

How many subproblems?

How many subproblems?

How much time per subproblem?

- We need to test O(n) choices of j.
- How much time per choice of *j*?

How many subproblems?

How much time per subproblem?

- We need to test O(n) choices of j.
- How much time per choice of j?
 - Need to find the best fit line ℓ for $\{p_j, \ldots, p_i\}$ O(n)
 - Need to find the error $\operatorname{Err}(\ell, \{p_j, \ldots, p_i\})$ O(n)

O(n)

How many subproblems?

How much time per subproblem? $O(n^2)$

- We need to test O(n) choices of j.
- How much time per choice of j?
 - Need to find the best fit line ℓ for $\{p_j, \ldots, p_i\}$ O(n)
 - Need to find the error $\operatorname{Err}(\ell, \{p_j, \ldots, p_i\})$ O(n)

Overall time: $O(n^3)$

O(n)

How many subproblems?

How much time per subproblem? $O(n^2)$

- We need to test O(n) choices of j.
- How much time per choice of j?
 - Need to find the best fit line ℓ for $\{p_j, \ldots, p_i\}$ O(n)
 - Need to find the error $\operatorname{Err}(\ell, \{p_j, \ldots, p_i\})$ O(n)

Overall time: $O(n^3)$

Can we do better?

Improving the Time Complexity

Goal: find the best fit line $\ell(x) = a \cdot x + b$, and the error **Err** $(\ell, \{p_j, \dots, p_i\})$ **quickly**

$$a = \frac{n \sum_{h=j}^{i} x_h y_h - \left(\sum_{h=j}^{i} x_h\right) \left(\sum_{h=j}^{i} y_h\right)}{n \sum_{h=j}^{i} x_h^2 - \left(\sum_{h=j}^{i} x_h\right)^2}$$

$$b = \frac{\sum_{h=j}^{i} y_h - a \sum_{h=j}^{i} x_h}{n}$$

$$\mathsf{Err}(\ell, \{p_j, \dots, p_i\}) = \sum_{h=j}^i \left(\ell(x_h) - y_h \right)^2$$

Can we find this quantity quickly?

Can we find this quantity quickly?

Can we find this quantity quickly?

$$b = \frac{\sum_{h=j}^{i} y_h}{n} - a \sum_{h=j}^{i} x_h}{n}$$

Can we find this quantity quickly?

What about this one?

s one?

$$n\sum_{h=j}^{i} x_{h}y_{h} - \left(\sum_{h=j}^{i} x_{h}\right) \left(\sum_{h=j}^{i} y_{h}\right)$$
What about

$$a = \frac{1}{n\sum_{h=j}^{i} x_{h}^{2}} - \left(\sum_{h=j}^{i} x_{h}\right)^{2}$$
What about
this one?

$$b = \frac{\sum_{h=j}^{i} y_h - a \sum_{h=j}^{i} x_h}{n}$$

Can we find this quantity quickly?

What about this one?

s one?

$$n \sum_{h=j}^{i} x_{h} y_{h} - \left(\sum_{h=j}^{i} x_{h}\right) \left(\sum_{h=j}^{i} y_{h}\right) \text{What about this one?}$$

$$a = \frac{n \sum_{h=j}^{i} x_{h}^{2} - \left(\sum_{h=j}^{i} x_{h}\right)^{2}}{n \sum_{h=j}^{i} x_{h}^{2} - \left(\sum_{h=j}^{i} x_{h}\right)^{2}}$$
What about this one?

$$b = \frac{\sum_{h=j}^{i} y_{h} - a \sum_{h=j}^{i} x_{h}}{n}$$

All the marked quantities can be found in **constant time** after a linear-time preprocessing using **prefix sums**.

$$\mathsf{Err}(\ell, \{p_j, \dots, p_i\}) = \sum_{h=j}^{i} \left(\ell(x_h) - y_h\right)^2 \qquad \ell(x) = a \cdot x + b$$

$$\mathsf{Err}(\ell, \{p_j, \dots, p_i\}) = \sum_{h=j}^{i} \left(\ell(x_h) - y_h\right)^2 \qquad \ell(x) = a \cdot x + b$$

$$= \sum_{h=j}^{i} \left(\ell(x_h)^2 + y_h^2 - 2\ell(x_h)y_h \right)$$

$$\mathsf{Err}(\ell, \{p_j, \dots, p_i\}) = \sum_{h=j}^{i} \left(\ell(x_h) - y_h\right)^2 \qquad \qquad \ell(x) = a \cdot x + b$$

$$=\sum_{h=j}^{i} \left(a^2 x_h^2 + b^2 + 2ax_h b + y_h^2 - 2ax_h y_h - 2by_h \right)$$

$$\mathsf{Err}(\ell, \{p_j, \dots, p_i\}) = \sum_{h=j}^{i} \left(\ell(x_h) - y_h\right)^2 \qquad \qquad \ell(x) = a \cdot x + b$$

$$=a^{2}\sum_{h=j}^{i}x_{h}^{2}+(j-i+1)b^{2}+2ab\sum_{h=j}^{i}x_{h}+\sum_{h=j}^{i}y_{h}^{2}$$
$$-2a\sum_{h=j}^{i}x_{h}y_{h}-2b\sum_{h=j}^{i}y_{h}$$

$$\mathsf{Err}(\ell, \{p_j, \dots, p_i\}) = \sum_{h=j}^{i} \left(\ell(x_h) - y_h\right)^2 \qquad \qquad \ell(x) = a \cdot x + b$$

$$=a^{2}\sum_{h=j}^{i}x_{h}^{2}+(j-i+1)b^{2}+2ab\sum_{h=j}^{i}x_{h}+\sum_{h=j}^{i}y_{h}^{2}$$
$$-2a\sum_{h=j}^{i}x_{h}y_{h}-2b\sum_{h=j}^{i}y_{h}$$

$$\mathsf{Err}(\ell, \{p_j, \dots, p_i\}) = \sum_{h=j}^{i} \left(\ell(x_h) - y_h\right)^2 \qquad \qquad \ell(x) = a \cdot x + b$$

$$=a^{2}\sum_{h=j}^{i}x_{h}^{2}+(j-i+1)b^{2}+2ab\sum_{h=j}^{i}x_{h}+\sum_{h=j}^{i}y_{h}^{2}$$
$$-2a\sum_{h=j}^{i}x_{h}y_{h}-2b\sum_{h=j}^{i}y_{h}$$

$$\mathsf{Err}(\ell, \{p_j, \dots, p_i\}) = \sum_{h=j}^{i} \left(\ell(x_h) - y_h\right)^2 \qquad \qquad \ell(x) = a \cdot x + b$$

$$=a^{2}\sum_{h=j}^{i}x_{h}^{2} + (j-i+1)b^{2} + 2ab\sum_{h=j}^{i}x_{h} + \sum_{h=j}^{i}y_{h}^{2}$$
$$-2a\sum_{h=j}^{i}x_{h}y_{h} - 2b\sum_{h=j}^{i}y_{h}$$

Finding $\operatorname{Err}(\cdot, \cdot)$ quickly

$$\mathsf{Err}(\ell, \{p_j, \dots, p_i\}) = \sum_{h=j}^{i} \left(\ell(x_h) - y_h\right)^2 \qquad \qquad \ell(x) = a \cdot x + b$$

$$=a^{2}\sum_{h=j}^{i}x_{h}^{2} + (j-i+1)b^{2} + 2ab\sum_{h=j}^{i}x_{h} + \sum_{h=j}^{i}y_{h}^{2}$$
$$-2a\sum_{h=j}^{i}x_{h}y_{h} - 2b\sum_{h=j}^{i}y_{h}$$

$$\mathsf{Err}(\ell, \{p_j, \dots, p_i\}) = \sum_{h=j}^{i} \left(\ell(x_h) - y_h\right)^2 \qquad \qquad \ell(x) = a \cdot x + b$$

$$= a^{2} \sum_{h=j}^{i} x_{h}^{2} + (j - i + 1)b^{2} + 2ab \sum_{h=j}^{i} x_{h} + \sum_{h=j}^{i} y_{h}^{2}$$
$$- 2a \sum_{h=j}^{i} x_{h}y_{h} - 2b \sum_{h=j}^{i} y_{h}$$

All the marked quantities can be found in **constant time** after a linear-time preprocessing using **prefix sums**.

O(n)

How many subproblems?

How much time per subproblem? $O(n^2)$

- We need to test O(n) choices of j.
- How much time per choice of *j*?
 - Need to find the best fit line ℓ for $\{p_j, \ldots, p_i\}$ O(n)

- Need to find the error $Err(\ell, \{p_j, \ldots, p_i\})$ O(n)

How many subproblems?

How much time per subproblem?

 $O(n) \mathcal{O}$

O(n)

- We need to test O(n) choices of j.
- How much time per choice of *j*?
 - Need to find the best fit line ℓ for $\{p_j, \ldots, p_i\}$
 - Need to find the error $Err(\ell, \{p_j, \ldots, p_i\})$

How many subproblems?

How much time per subproblem?

O(n)

O(n)

- We need to test O(n) choices of j.
- How much time per choice of *j*?
 - Need to find the best fit line ℓ for $\{p_j, \ldots, p_i\}$
 - Need to find the error $Err(\ell, \{p_j, \ldots, p_i\})$

+O(n)-time preprocessing (one-time only)

O(n)

O(n)

How many subproblems?

How much time per subproblem?

- We need to test O(n) choices of j.
- How much time per choice of *j*?
 - Need to find the best fit line ℓ for $\{p_j, \ldots, p_i\}$
 - Need to find the error $Err(\ell, \{p_j, \ldots, p_i\})$

+O(n)-time preprocessing (one-time only)

Overall time: $O(n^2)$