Binary Knapsack

Binary Knapsack

Input

- You are given a collection \mathcal{I} of n items indexed from 1 to n.
- Item i has a weight $w_i : \mathbb{N}^+$ and a value $v_i \in \mathbb{N}^+$.
- You can carry an overall weight of at most $W \in \mathbb{N}$.

Goal

Find a subset of $S \subset \mathcal{I}$ such that:

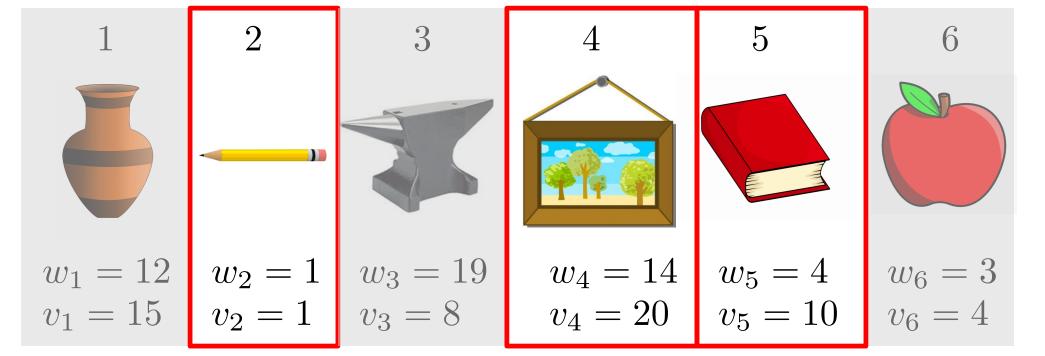
- Its overall weight $w(S) = \sum_{i \in \mathcal{I}} w_i$ is at most W; and
- Its overall value $v(S) = \sum_{i \in \mathcal{I}} v_i$ is maximized.

Example

$$w_1 = 12$$
 $w_2 = 1$ $w_3 = 19$ $w_4 = 14$ $w_5 = 4$ $w_6 = 3$ $v_1 = 15$ $v_2 = 1$ $v_3 = 8$ $v_4 = 20$ $v_5 = 10$ $v_6 = 4$

Maximum Weight: 20

Example



Maximum Weight: 20

$$w(S) = 19$$

$$v(S) = 31$$

Subproblem definition:

OPT[i,x] =Maximum overall value v(S) among all subsets S of $\{1,\ldots,i\}$ such that $w(S) \leq x$.

Base case:

For any $x \geq 0$, OPT[0, x] = 0.

Recursive Formula

• Either we ignore item i...

$$OPT[i, x] = OPT[i - 1, x]$$

Recursive Formula

• Either we ignore item i...

$$OPT[i, x] = OPT[i - 1, x]$$

ullet Or we select item i and we can still carry a weight of $x-w_i$

$$OPT[i, x] = v_i + OPT[i - 1, x - w_i]$$

This is only viable if $x \geq w_i!$

Recursive Formula

• Either we ignore item i...

$$OPT[i, x] = OPT[i - 1, x]$$

ullet Or we select item i and we can still carry a weight of $x-w_i$

$$OPT[i, x] = v_i + OPT[i - 1, x - w_i]$$

This is only viable if $x \geq w_i!$

$$OPT[i, x] = \begin{cases} OPT[i - 1, x] & \text{if } x < w_i \\ \max \begin{cases} OPT[i - 1, x] \\ v_i + OPT[i - 1, x - w_i] \end{cases} & \text{if } x \ge w_i \end{cases}$$

Time Complexity

- $\Theta(n \cdot W)$ subproblems
- Optimal solution in OPT[n, W]
- Each problem can be solved in constant time
- Overall time: $\Theta(n \cdot W)$

Time Complexity

- $\bullet \ \Theta(n \cdot W)$ subproblems
- Optimal solution in OPT[n, W]
- Each problem can be solved in constant time
- Overall time: $\Theta(n \cdot W)$

Is this a polynomial-time algorithm?

Time Complexity

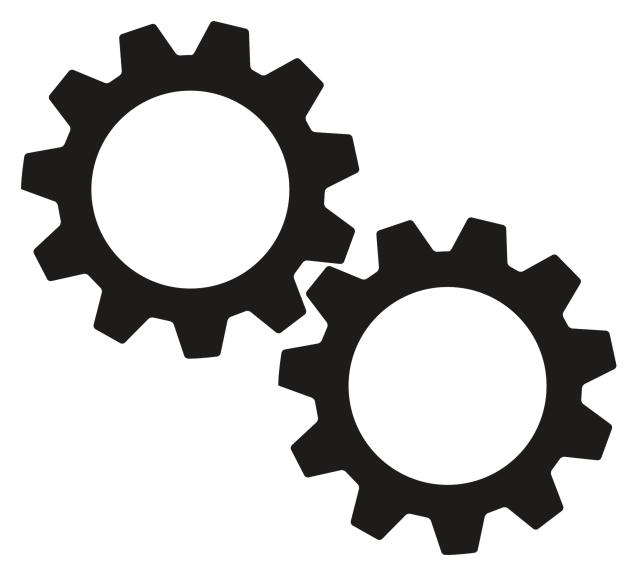
- $\bullet \ \Theta(n \cdot W)$ subproblems
- Optimal solution in OPT[n, W]
- Each problem can be solved in constant time
- Overall time: $\Theta(n \cdot W)$

Is this a polynomial-time algorithm?

NO!

```
The input size is O(n(\log W + \log V)) where V = \max_i v_i
Choose, e.g., W = 2^n.
```

Can we do better if W is large (e.g., 2^n) and $V = \max_i v_i$ is small?



Can we do better if W is large (e.g., 2^n) and $V = \max_i v_i$ is small?

Subproblem definition (sketch):

 $OPT[i,x] = \text{Minimim overall weight } w(S) \text{ among all subsets } S \text{ of } \{1,\ldots,i\} \text{ such that } v(S) \geq x.$

Base case:

$$OPT[0,0] = 0.$$

For any x > 0, $OPT[0, x] = +\infty$.

Can we do better if W is large (e.g., 2^n) and $V = \max_i v_i$ is small?

Subproblem definition (sketch):

 $OPT[i,x] = \text{Minimim overall weight } w(S) \text{ among all subsets } S \text{ of } \{1,\ldots,i\} \text{ such that } v(S) \geq x.$

Base case:

$$OPT[0,0] = 0.$$

For any
$$x > 0$$
, $OPT[0, x] = +\infty$.

Use " $+\infty$ " to encode "not feasible"

Recursive Formula

• Either we ignore item i...

$$OPT[i, x] = OPT[i - 1, x]$$

Recursive Formula

• Either we ignore item i...

$$OPT[i, x] = OPT[i - 1, x]$$

ullet Or we select item i and we need to gain an additional value of $x-v_i$

$$OPT[i, x] = w_i + OPT[i - 1, \max\{x - v_i, 0\}]$$

Recursive Formula

• Either we ignore item i...

$$OPT[i, x] = OPT[i - 1, x]$$

ullet Or we select item i and we need to gain an additional value of $x-v_i$

$$OPT[i, x] = w_i + OPT[i - 1, \max\{x - v_i, 0\}]$$

$$OPT[i, x] = \min \begin{cases} OPT[i - 1, x] \\ w_i + OPT[i - 1, \max\{x - v_i, 0\}] \end{cases}$$

Optimal Solution:
$$V^* = \max_{x:OPT[n,x] \le W} x$$

Optimal Solution: $V^* = \max_{x:OPT[n,x] \le W} x$

Note: OPT[n, x] is monotonically non-decreasing w.r.t. x

Optimal Solution:
$$V^* = \max_{x:OPT[n,x] \le W} x$$

Note: OPT[n,x] is monotonically non-decreasing w.r.t. x

Order of subproblems:

For each $x = 1, 2, \ldots$

Compute $OPT[1, x], OPT[2, x], \dots, OPT[n, x]$

Stop computing subproblems as a soon as OPT[n, x] > W.

Optimal Solution:
$$V^* = \max_{x:OPT[n,x] \le W} x$$

Note: OPT[n,x] is monotonically non-decreasing w.r.t. x

Order of subproblems:

For each $x = 1, 2, \ldots$

Compute
$$OPT[1, x], OPT[2, x], \dots, OPT[n, x]$$

Stop computing subproblems as a soon as OPT[n, x] > W.

Time complexity

- $\Theta(n \cdot V^*)$ subproblems
- Each problem can be solved in constant time

• Overall time:
$$\Theta(n \cdot V^*) = O(n^2V)$$
 where $V = \max_i v_i$

• **Dynamic programming:** parameterize weights, store values.

• **Dynamic programming:** parameterize values, store weights.

$$O(nV^*) = O(n^2V)$$

• **Dynamic programming:** parameterize weights, store values.

$$O(nW)$$
 Good for $W = O(nV)$

• **Dynamic programming:** parameterize values, store weights.

$$O(nV^*) = O(n^2V)$$
 Good for $W = \Omega(nV)$

• **Dynamic programming:** parameterize weights, store values.

$$O(nW)$$
 Good for $W = O(nV)$

• **Dynamic programming:** parameterize values, store weights.

$$O(nV^*) = O(n^2V)$$
 Good for $W = \Omega(nV)$

Neither algorithm runs in polynomial-time!

• **Dynamic programming:** parameterize weights, store values.

$$O(nW)$$
 Good for $W = O(nV)$

• **Dynamic programming:** parameterize values, store weights.

$$O(nV^*) = O(n^2V)$$
 Good for $W = \Omega(nV)$

Neither algorithm runs in polynomial-time!

What if V and W are large but there are few items (n is small)?