Binary Knapsack

Binary Knapsack

Input

e You are given a collection Z of n items indexed from 1 to n.

e |tem ¢ has a weight w; : N and a value v; € NT.

e You can carry an overall weight of at most W &€ N.

Goal
Find a subset of S C Z such that:

o Its overall weight w(S) = > .. w; is at most W; and

e Its overall value v(S) =) .7 v; is maximized.

— w6:3
U5:1O U6:4

Maximum Weight: 20

A Dynamic Programming Algorithm

Subproblem definition:

OPT|i, x| = Maximum overall value v(.S) among all subsets
S of {1,...,i} such that w(S) < .

Base case:

For any x > 0, OPT|0,z] = 0.

A Dynamic Programming Algorithm

Recursive Formula

e Either we ignore item 1...

OPT|i,x| = OPT]i — 1, x]

A Dynamic Programming Algorithm

Recursive Formula

e Either we ignore item 1...

OPTi,x| = OPT]i — 1, x]

e Or we select item 7 and we can still carry a weight of x — w;

OPTi,z] = v; + OPT[i — 1,2 — w;]

This is only viable if x > w;!

A Dynamic Programming Algorithm

Recursive Formula

e Either we ignore item 1...

OPTi,x| = OPT]i — 1, x]

e Or we select item 7 and we can still carry a weight of x — w;

OPT|i,x]| =v;, + OPT|i — 1,z — w;]
This is only viable if x > w;!

/

OPTVi,x] = « (OPTJi — 1, 1] |
max < , if £ > w;
\ 0i + OPT[i — 1,2 — w]

Time Complexity

©(n - W) subproblems
Optimal solution in OPT |n, W]

Each problem can be solved in constant time

Overall time: O(n - W)

Time Complexity

©(n - W) subproblems
Optimal solution in OPT |n, W]

Each problem can be solved in constant time

Overall time: O(n - W)

Is this a polynomial-time algorithm?

Time Complexity

e O(n - W) subproblems
e Optimal solution in OPT |n, W]

e Each problem can be solved in constant time

e Overall time: O(n - W)

Is this a polynomial-time algorithm?
NO!

The input size is O(n(logW +logV)) where V = max; v;
Choose, e.g., W = 2™,

Small maximum value

Can we do better if W is large (e.g., 2") and V = max; v; is
small?

Small maximum value

Can we do better if W is large (e.g., 2") and V = max; v; is
small?

Subproblem definition (sketch):

OPT|i, x| = Minimim overall weight w(S) among all subsets
S of {1,...,i} such that v(S) > =x.

Base case:
OPT|0,0] = 0.

For any x > 0, OPT|0, z] = +o0.

Small maximum value

Can we do better if W is large (e.g., 2") and V = max; v; is
small?

Subproblem definition (sketch):

OPT|i, x| = Minimim overall weight w(S) among all subsets
S of {1,...,i} such that v(S) > =x.

Base case:
OPT|0,0] = 0.

For any x > 0, OPT[0,x] = +0.

Use “+o0” to encode “not feasible”

Small maximum value

Recursive Formula

e Either we ignore item 1...

OPT|i,x| = OPT]i — 1, x]

Small maximum value

Recursive Formula

e Either we ignore item 1...

OPTi,x| = OPT]i — 1, x]

e Or we select item ¢ and we need to gain an additional
value of x — v;

OPT|i,z] = w; + OPT[i — 1, max{x — v;,0}]

Small maximum value

Recursive Formula

e Either we ignore item 1...

OPTi,x| = OPT]i — 1, x]

e Or we select item ¢ and we need to gain an additional
value of x — v;

OPT|i,z] = w; + OPT[i — 1, max{x — v;,0}]

(OPT[i — 1, 1]

OPT|i, x| = min <
\w; + OPT|t — 1, max{z — v;,0}]

Optimal Solution: V™ = max x
x:OPTn,x]<W

Small maximum value

Optimal Solution: V™ = max x
x:OPTn,x]<W

Note: OPT|n, x| is monotonically non-decreasing w.r.t. x

Small maximum value

Optimal Solution: V™ = max x
x:OPTn,x]<W

Note: OPT|n, x| is monotonically non-decreasing w.r.t. x
Order of subproblems:

For each x =1,2,...

Compute OPT|1,z|,OPT|2,z|,...,OPT|n, x|

Stop computing subproblems as a soon as OPT'|n, x| > W.

Small maximum value

Optimal Solution: V™ = max x
x:OPTn,x]<W

Note: OPT'|n, x| is monotonically non-decreasing w.r.t. x
Order of subproblems:

For each x =1,2,...

Compute OPT|1,z|,OPT|2,z|,...,OPT|n, x|

Stop computing subproblems as a soon as OPT'|n, x| > W.
Time complexity

e O(n-V*) subproblems

e Each problem can be solved in constant time

e Overall time: O(n - V*) = O(n?V) where V' = max; v;

Two Algorithms

e Dynamic programming: parameterize weights, store
values.

O(nW)

e Dynamic programming: parameterize values, store
weights.

O(nV*) = O(n?V)

Two Algorithms

e Dynamic programming: parameterize weights, store
values.

O(nW) Good for W = O(nV)

e Dynamic programming: parameterize values, store
weights.

O(nV*) = O(n?*V) Good for W = Q(nV)

Two Algorithms

e Dynamic programming: parameterize weights, store
values.

O(nW) Good for W = O(nV)

e Dynamic programming: parameterize values, store
weights.

O(nV*) = O(n?*V) Good for W = Q(nV)

Neither algorithm runs in polynomial-time!

Two Algorithms

e Dynamic programming: parameterize weights, store
values.

O(nW) Good for W = O(nV)

e Dynamic programming: parameterize values, store
weights.

O(nV*) = O(n?*V) Good for W = Q(nV)
Neither algorithm runs in polynomial-time!

What if V and IV are large but there
are few items (n is small)?

