2-SAT

2-SAT

Input: A formula ϕ consisting of

- A set of n boolean variables x_1, \ldots, x_n
- A conjuction of m clauses C_1, \ldots, C_m , i.e., disjunctions of 2 literals $C_j = (c_j^{(1)} \vee c_j^{(2)})$, where a literal is either a variable or its negation.

A truth assignment is a function $\tau:\{x_1,\ldots,x_n\}\to\{\top,\bot\}$

- A clause $C_j=(c_j^{(1)}\vee c_j^{(2)})$ is satisfied by τ according to the rules of boolean algebra.
- \bullet ϕ is satisfied iff all m clauses C_1, \ldots, C_m are satisfied.

Question: Is there a truth assignment that satisfies ϕ ?

Formula

$$\phi = (x_1 \vee \overline{x_2}) \wedge (x_2 \vee x_4) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_3 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_4})$$

Formula

$$\phi = (x_1 \vee \overline{x_2}) \wedge (x_2 \vee x_4) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_3 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_4})$$

Satisfying assignment:

$$x_1 = \bot$$
 $x_2 = \bot$ $x_3 = \top$ $x_4 = \top$

Formula

$$\phi = (x_1 \vee \overline{x_2}) \wedge (x_2 \vee x_4) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_3 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_4})$$

Satisfying assignment:

$$x_1 = \bot$$
 $x_2 = \bot$ $x_3 = \top$ $x_4 = \top$

Trivial solution $O^*(2^n)$

An Observation

- ullet A clause of the form $(\neg x_i \lor x_j)$ corresponds to $x_i \implies x_j$
- ullet If $x_i=ot$ then, in any satisfying assignment, $x_j=ot$
- We say that x_i is **implied**.

- ullet The same holds for any clause $C_j = (c_j^{(1)} \lor c_j^{(2)})$
- ullet If $c_j^{(1)} = ot$, then $c_j^{(2)} = ot$
- We say that the variable x_k corresponding to $c_j^{(2)}$ implied.
- If $c_j^{(2)}=x_k$, then $x_k=\top$. If $c_j^{(2)}=\overline{x_k}$, then $x_k=\bot$.

$$\phi = (x_1 \vee \overline{x_2}) \wedge (x_2 \vee x_4) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_3 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_4})$$

$$\phi = (x_1 \vee \overline{x_2}) \wedge (x_2 \vee x_4) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_3 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_4})$$

Assume that $x_1 = \top$

$$\phi = (x_1 \vee \overline{x_2}) \wedge (x_2 \vee x_4) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_3 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_4})$$

Assume that $x_1 = \top$

 x_3 and x_4 are implied. $x_3 = \bot$ and $x_4 = \bot$

$$\phi = (x_1 \vee \overline{x_2}) \wedge (x_2 \vee x_4) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_3 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_4})$$

Assume that $x_1 = \top$

 x_3 and x_4 are implied. $x_3 = \bot$ and $x_4 = \bot$

 $x_2 = \top$ is implied

$$\phi = (x_1 \vee \overline{x_2}) \wedge (x_2 \vee x_4) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_3 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_4})$$

Assume that $x_1 = \top$

 x_3 and x_4 are implied. $x_3 = \bot$ and $x_4 = \bot$

 $x_2 = \top$ is implied

 $x_2 = \bot$ is implied, a contradiction!

$$\phi = (x_1 \vee \overline{x_2}) \wedge (x_2 \vee x_4) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_3 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_4})$$

Assume that $x_1 = \bot$

$$\phi = (x_1 \vee \overline{x_2}) \wedge (x_2 \vee x_4) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_3 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_4})$$

Assume that $x_1 = \bot$

 $x_2 = \bot$ is implied.

$$\phi = (x_1 \vee \overline{x_2}) \wedge (x_2 \vee x_4) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_3 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_4})$$

Assume that $x_1 = \bot$

 $x_2 = \bot$ is implied.

 $x_4 = \top$ is implied.

$$\phi = (x_1 \vee \overline{x_2}) \wedge (x_2 \vee x_4) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_3 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_4})$$

Assume that $x_1 = \bot$

 $x_2 = \bot$ is implied.

 $x_4 = \top$ is implied.

We found a satisfying assignment.

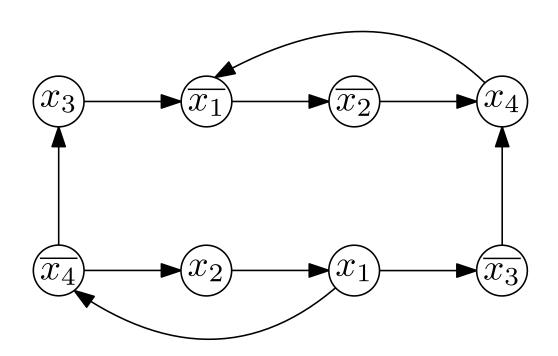
The Implication Graph

Given ϕ we construct a directed graph $G_{\phi} = (V, E)$ where:

- The vertices of G are all possible literals of ϕ , i.e., for each variable x_i we add both x_i and $\overline{x_i}$ to V.
- For each clause $(\ell_i \vee \ell_j)$:
 - Add $(\overline{\ell_i}, \ell_j)$ to E
 - Add $(\overline{\ell_j}, \ell_i)$ to E

• Intuitively $(u,v) \in E$ means that if $u = \top$, then we must set $v = \top$.

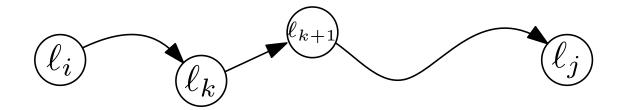
$$\phi = (x_1 \vee \overline{x_2}) \wedge (x_2 \vee x_4) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_3 \vee x_4) \wedge (\overline{x_1} \vee \overline{x_4})$$



A useful property

Claim: G_{ϕ} is skew-simmetric: If there is a path P from ℓ_i to ℓ_j in G_{ϕ} , then there is also a path from $\overline{\ell_j}$ to $\overline{\ell_i}$.

• Pick any edge (ℓ_k, ℓ_{k+1}) of P.



- The edge (ℓ_k, ℓ_{k+1}) must have been created from the clause $(\overline{\ell_k} \vee \ell_{k+1})$.
- The clause $(\overline{\ell_k} \vee \ell_{k+1})$ also creates the edge $(\overline{\ell_{k+1}}, \overline{\ell_k})$.

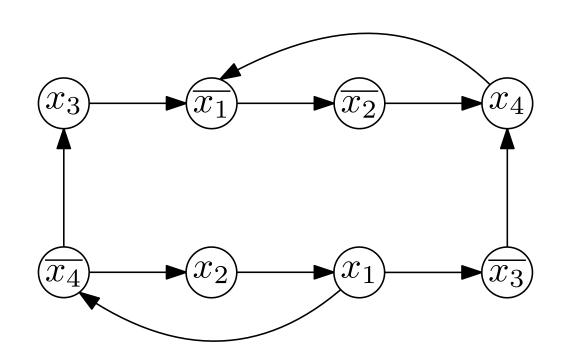
Strongly Connected Components

Definition: A strongly connected component of a graph G = (V, E) is a maximal set $C \subseteq V$ such that $\forall x, y \in C$, there is a path from x to y in G.

Strongly Connected Components

Definition: A strongly connected component of a graph G = (V, E) is a maximal set $C \subseteq V$ such that $\forall x, y \in C$, there is a path from x to y in G.

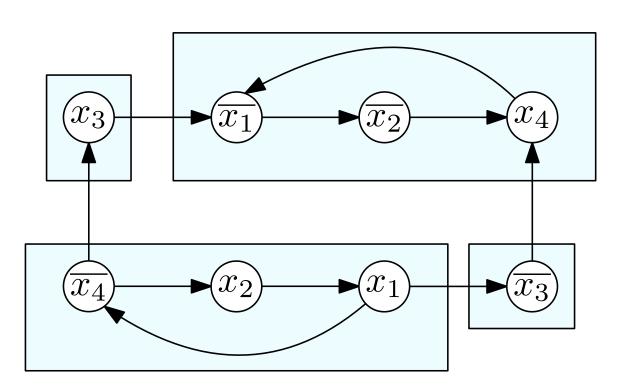
$$\phi = (x_1 \vee \overline{x_2}) \wedge (x_2 \vee x_4) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_3 \vee x_4) \wedge (\overline{x_1} \vee \overline{x_4})$$



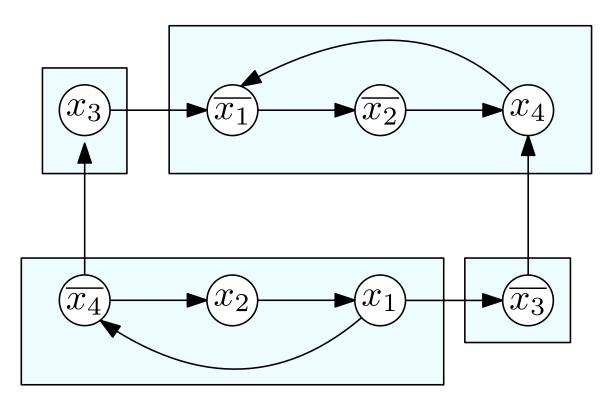
Strongly Connected Components

Definition: A strongly connected component of a graph G = (V, E) is a maximal set $C \subseteq V$ such that $\forall x, y \in C$, there is a path from x to y in G.

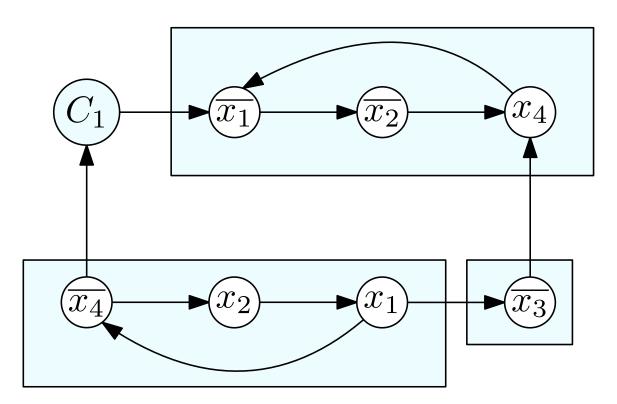
$$\phi = (x_1 \vee \overline{x_2}) \wedge (x_2 \vee x_4) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_3 \vee x_4) \wedge (\overline{x_1} \vee \overline{x_4})$$



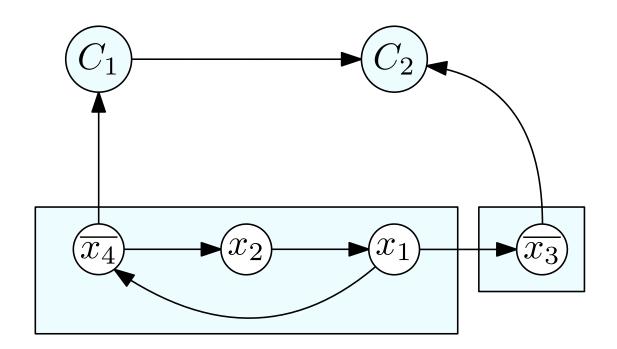
- ullet Each vertex in V' is a SCC of G.
- There is an edge between a pair of distinct connected components $(C,C')\in E$ iff $\exists x\in C,y\in C'$ such that $(x,y)\in E.$



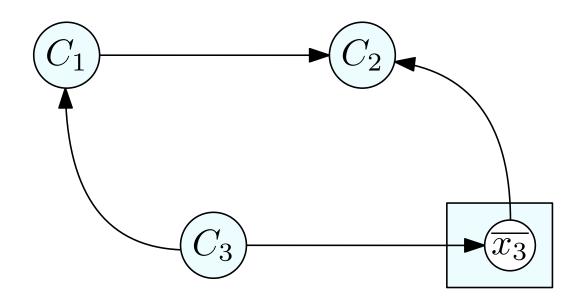
- ullet Each vertex in V' is a SCC of G.
- There is an edge between a pair of distinct connected components $(C,C')\in E$ iff $\exists x\in C,y\in C'$ such that $(x,y)\in E$.



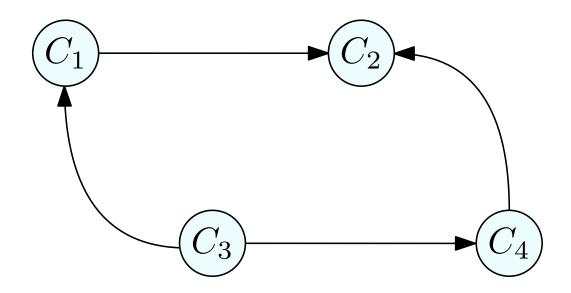
- ullet Each vertex in V' is a SCC of G.
- There is an edge between a pair of distinct connected components $(C,C')\in E$ iff $\exists x\in C,y\in C'$ such that $(x,y)\in E$.



- ullet Each vertex in V' is a SCC of G.
- There is an edge between a pair of distinct connected components $(C,C')\in E$ iff $\exists x\in C,y\in C'$ such that $(x,y)\in E$.

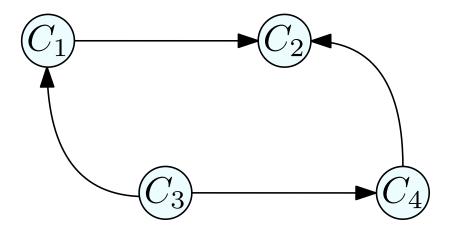


- ullet Each vertex in V' is a SCC of G.
- There is an edge between a pair of distinct connected components $(C,C')\in E$ iff $\exists x\in C,y\in C'$ such that $(x,y)\in E$.



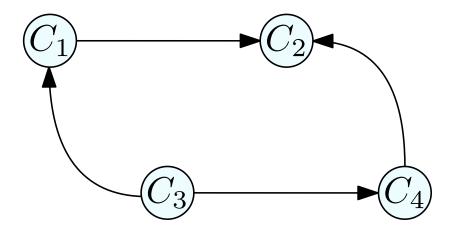
Topological Order

Observation: Contracting the SCCs of a directed graph yields a directed acyclic graph.

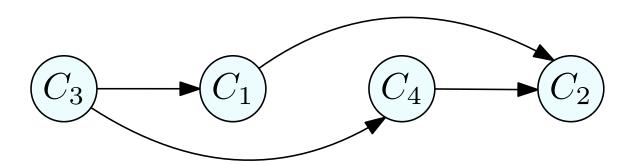


Topological Order

Observation: Contracting the SCCs of a directed graph yields a directed acyclic graph.



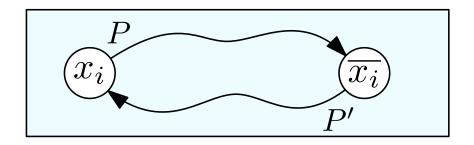
Definition: A topological order of a directed acyclic graph is a linear order v_1, v_2, \ldots of the vertices such that, for any edge (v_i, v_j) , we have i < j.



Claim 1: If, for some x_i , both x_i and $\overline{x_i}$ belong to the same SCC C, then ϕ is not satisfiable.

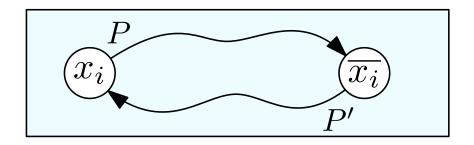
Claim 1: If, for some x_i , both x_i and $\overline{x_i}$ belong to the same SCC C, then ϕ is not satisfiable.

• Since x_i and $\overline{x_i}$ are in the same SCC, there is a path P in G from x_i to $\overline{x_i}$ and a path P' from $\overline{x_i}$ to x_i .



Claim 1: If, for some x_i , both x_i and $\overline{x_i}$ belong to the same SCC C, then ϕ is not satisfiable.

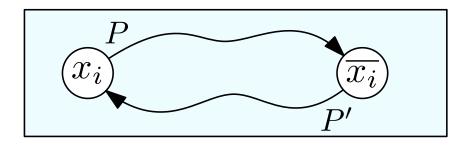
• Since x_i and $\overline{x_i}$ are in the same SCC, there is a path P in G from x_i to $\overline{x_i}$ and a path P' from $\overline{x_i}$ to x_i .



• In any satisfying assignment, we cannot have $x_i = \top$, since it would imply (through P) that $\overline{x_i} = \top$, i.e., $x_i = \bot$. \updownarrow

Claim 1: If, for some x_i , both x_i and $\overline{x_i}$ belong to the same SCC C, then ϕ is not satisfiable.

• Since x_i and $\overline{x_i}$ are in the same SCC, there is a path P in G from x_i to $\overline{x_i}$ and a path P' from $\overline{x_i}$ to x_i .



- In any satisfying assignment, we cannot have $x_i = \top$, since it would imply (through P) that $\overline{x_i} = \top$, i.e., $x_i = \bot$. \updownarrow
- A symmetric argument shows that we cannot have $x_i = \bot$ since it would imply $x_i = \top$ through P'. 5

Assumption: for all x_i , x_i and $\overline{x_i}$ belong to different SCCs.

An algorithm:

- \forall SCC $C = C_1, C_2, \ldots$ of G in reverse topological order.
 - Assign all unassigned literals of C to \top and their complement to \bot .

Assumption: for all x_i , x_i and $\overline{x_i}$ belong to different SCCs.

An algorithm:

- \forall SCC $C = C_1, C_2, \ldots$ of G in reverse topological order.
 - Assign all unassigned literals of C to \top and their complement to \bot .

Claim 2: When ℓ_i is set to \top , all literals ℓ_j reachable from ℓ_i in G are set to \top .

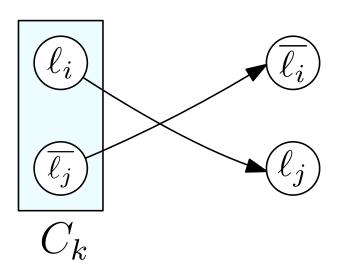
Proof: By induction on the index k of the SCC C_k containing ℓ_i .

Suppose that there is a neighbor ℓ_j of ℓ_i such that $\ell_j = \bot$.

By skew-simmetry G contains the edge $(\overline{\ell_j},\overline{\ell_i})$

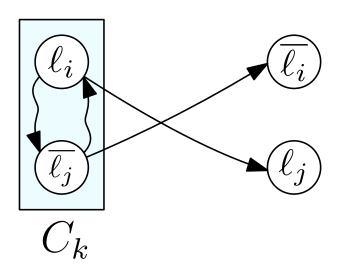
Suppose that there is a neighbor ℓ_j of ℓ_i such that $\ell_j = \bot$.

By skew-simmetry G contains the edge $(\overline{\ell_j},\overline{\ell_i})$



Suppose that there is a neighbor ℓ_j of ℓ_i such that $\ell_j = \bot$.

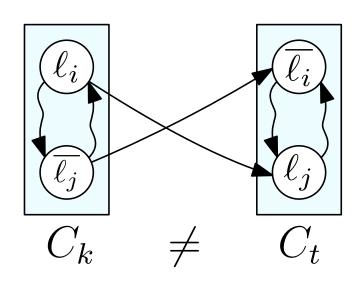
By skew-simmetry G contains the edge $(\overline{\ell_j},\overline{\ell_i})$



Suppose that there is a neighbor ℓ_j of ℓ_i such that $\ell_j = \bot$.

By skew-simmetry G contains the edge $(\overline{\ell_j},\overline{\ell_i})$

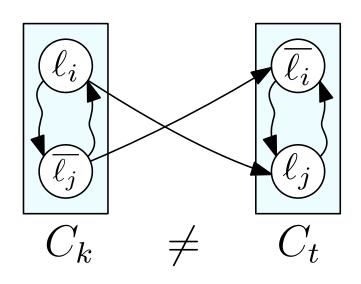
 $\overline{\ell_j}$ is set to \top and must belong to a SCC C_h for some $h \leq k$. If h = k:



• $C_k \neq C_t$ (otherwise $\ell_i, \overline{\ell_i} \in C_k$)

Suppose that there is a neighbor ℓ_j of ℓ_i such that $\ell_j = \bot$.

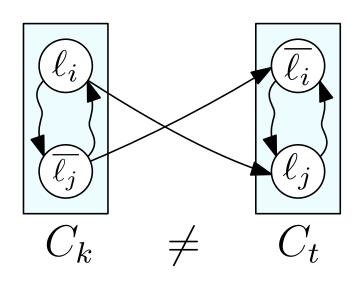
By skew-simmetry G contains the edge $(\overline{\ell_j},\overline{\ell_i})$



- $C_k \neq C_t$ (otherwise $\ell_i, \overline{\ell_i} \in C_k$)
- $(C_k, C_t) \in E' \implies t < k$

Suppose that there is a neighbor ℓ_j of ℓ_i such that $\ell_j = \bot$.

By skew-simmetry G contains the edge $(\overline{\ell_j},\overline{\ell_i})$

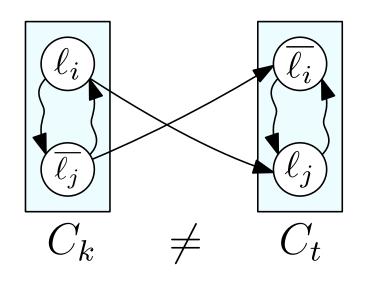


- $C_k \neq C_t$ (otherwise $\ell_i, \overline{\ell_i} \in C_k$)
- $(C_k, C_t) \in E' \implies t < k$
- After C_t was considered $\overline{\ell_i} = \top \implies \ell_i = \bot$.

Suppose that there is a neighbor ℓ_j of ℓ_i such that $\ell_j = \bot$.

By skew-simmetry G contains the edge $(\overline{\ell_j},\overline{\ell_i})$

 $\overline{\ell_j}$ is set to \top and must belong to a SCC C_h for some $h \leq k$. If h = k:



- $C_k \neq C_t$ (otherwise $\ell_i, \overline{\ell_i} \in C_k$)
- $(C_k, C_t) \in E' \implies t < k$
- After C_t was considered $\overline{\ell_i} = \top \implies \ell_i = \bot$.

7

If h < k:

By inductive hyphotesis, all neighbors of ℓ_j are set to \top , i.e.,

$$\overline{\ell_i} = \top \implies \ell_i = \bot$$
.

Claim 1: If, for some x_i , both x_i and $\overline{x_i}$ belong to the same SCC C, then ϕ is not satisfiable.

Assumption: $\forall x_i$, x_i and $\overline{x_i}$ belong to different SCCs.

Claim 2: When ℓ_i is set to \top , all literals ℓ_j reachable from ℓ_i in G are set to \top .

Claim 1: If, for some x_i , both x_i and $\overline{x_i}$ belong to the same SCC C, then ϕ is not satisfiable.

Assumption: $\forall x_i$, x_i and $\overline{x_i}$ belong to different SCCs.

Claim 2: When ℓ_i is set to \top , all literals ℓ_j reachable from ℓ_i in G are set to \top .

Corollary: ϕ is satisfiable iff $\forall x_i$, x_i and $\overline{x_i}$ belong to different SCCs. The algorithm computes a satisfying assignment.

- Consider a generic clause $(\ell_i \lor \ell_j)$
- If ℓ_i is set to \top , the clause is satisfied.
- If ℓ_i is set to \bot : $\overline{\ell_i} = \top$ and G contains the edge $(\overline{\ell_i}, \ell_j)$. The claim implies that $\ell_j = \top$.

Time Complexity

Satisfiability

(Assuming $m = \Omega(n)$)

ullet Construct the implication graph G_ϕ

O(m)

ullet Compute the SSCs of G_ϕ

- O(m)
- If a SCC of G contains both x_i and $\overline{x_i}$, for some x_i : O(n)
 - Return " ϕ is not satisfiable"
- ullet Return " ϕ is satisfiable"

Time Complexity

Satisfying assignment

(Assuming $m = \Omega(n)$)

ullet Construct the implication graph G_ϕ

O(m)

ullet Compute the SSCs of G_ϕ

O(m)

- If a SCC of G contains both x_i and $\overline{x_i}$, for some x_i : O(n)
 - Return " ϕ is not satisfiable"

• $G'_{\phi} \leftarrow$ Contract the SCCs of G_{ϕ}

O(m)

• Topologically sort G'

O(m)

- ullet \forall SCC C of G in reverse topological order.
 - ullet Assign all unassigned literals of C to \top and their complement to \bot .

Time Complexity

Satisfying assignment

(Assuming $m = \Omega(n)$)

ullet Construct the implication graph G_ϕ

O(m)

ullet Compute the SSCs of G_ϕ

How?

- O(m)
- If a SCC of G contains both x_i and $\overline{x_i}$, for some x_i : O(n)
 - Return " ϕ is not satisfiable"
- $G'_{\phi} \leftarrow$ Contract the SCCs of G_{ϕ}

O(m)

Topologically sort G'

O(m)

- ullet \forall SCC C of G in reverse topological order.
 - ullet Assign all unassigned literals of C to \top and their complement to \bot .

O(n)