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Proof of correctness
Claim: Let C be a SCC. The subgraph T [C] of T induced by
C is connected.
Proof:
Let u be the first vertex of C that is visited by the algorithm.
Let v ∈ C, with v ̸= u.
• u must be an ancestor of v in T (by the properties of DFS).
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Proof of correctness
Claim: Let C be a SCC. The subgraph T [C] of T induced by
C is connected.
Proof:
Let u be the first vertex of C that is visited by the algorithm.
Let v ∈ C, with v ̸= u.
• u must be an ancestor of v in T (by the properties of DFS).

u

v

• There is a path from u to v in G =⇒ the vertices in P
are in C =⇒ u and v must also be connected in T [C].

□

P
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C having minimum depth in T .
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Definition: the head u of a SCC C is the (unique!) vertex of
C having minimum depth in T .

Proof of correctness

Claim: ∀v ∈ C \ {u}, η(v) ̸= exit(v).

• There is a path P from v to u.

• Consider the first edge (x, y) of P such that y ̸∈ Tv.

• exit(v) ≤ η(y) < η(v).

y x □

u

v

• y is visited before v in the DFS.
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The Algorithm

• η(u) ← cnt; cnt ← cnt +1; exit(u) ← η(u)

SCC(u):

• cnt ← 0; T ← ({u}, ∅)

• For each (u, v) ∈ E:

• If v has not yet been visited:

• Add (u, v) to T

• SCC(v)

• exit(u) ← min{exit(u), exit(v)}
• Else:

• exit(u) ← min{exit(u), η(v)}
• If exit(u) = η(u):

• Report a new SCC C containing all the descendants of u in T

• Delete the vertices in C from G and T

While ∃ vertex u ∈ G (that has not been deleted):

• SCC(u)

(vertices can be “deleted” in constant time by marking them)
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• η(u) ← cnt; cnt ← cnt +1; exit(u) ← η(u)

SCC(u):

• cnt ← 0; T ← ({u}, ∅)

• For each (u, v) ∈ E:

• If v has not yet been visited:

• Add (u, v) to T

• SCC(v)

• exit(u) ← min{exit(u), exit(v)}
• Else:

• exit(u) ← min{exit(u), η(v)}
• If exit(u) = η(u):

• Delete the vertices in C from G and T

While ∃ vertex u ∈ G (that has not been deleted):

• SCC(u)

S ← Empty stack

Push u into S

• C = ∅; do z ← Pop from S; C ← C ∪ {z} while z ̸= u;

(vertices can be “deleted” in constant time by marking them)


