Strongly Connected Components
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most one final non-tree edge.
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Proof of correctness

Claim: Let C be a SCC. The subgraph T'|C] of T induced by

(' Is connected.
Proof:

Let u be the first vertex of C that is visited by the algorithm.
Let v € C, with v # w.
e u must be an ancestor of v in T (by the properties of DFS).

e Thereis a path from v to v in G — the vertices in P
are in C' = wu and v must also be connected in T|C].
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Proof of correctness

Definition: the head u of a SCC (' is the (unique!) vertex of
C' having minimum depth in 7.

Claim: Vv € C'\ {u}, n(v) # exit(v).
e Thereis a path P from v to w.

e Consider the first edge (z,y) of P such that y & T,,.
e y is visited before v in the DFS.

o exit(v) < n(y) < n(v).
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The Algorithm

While 3 vertex u € G (that has not been deleted):
o cnt < 0; T < ({u},0)
o SCC(u)

SCC(u):
e n(u) < cnt; cnt < cnt +1; exit(u) < n(u)
e For each (u,v) € F:
e If v has not yet been visited:
e Add (u,v) to T
e SCC(v)
o exit(u) < min{exit(u), exit(v)}
o Else:
o crit(u) + min{exit(u),n(v)}
o If exit(u) =n(u):
e Report a new SCC C containing all the descendants of w in T
e Delete the vertices in C from G and T

(vertices can be “deleted” in constant time by marking them)
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The Algorithm

While 3 vertex u € G (that has not been deleted):
e cnt + 0; T+ ({u},0) S < Empty stack
o SCC(u)

SCC(u):
e n(u) « cnt; cnt < cnt +1; exit(u) + n(u) Push u into S
e For each (u,v) € F:
e If v has not yet been visited:
o Add (u,v) to T
e SCC(v)
o exit(u) < min{exit(u), exit(v)}
o Else:
o crit(u) + min{exit(u),n(v)}
o If exit(u) =n(u):
e C =1(); do z+ Popfrom S; C + CU{z} while z # u;
e Delete the vertices in C' from G and T

(vertices can be “deleted” in constant time by marking them)



