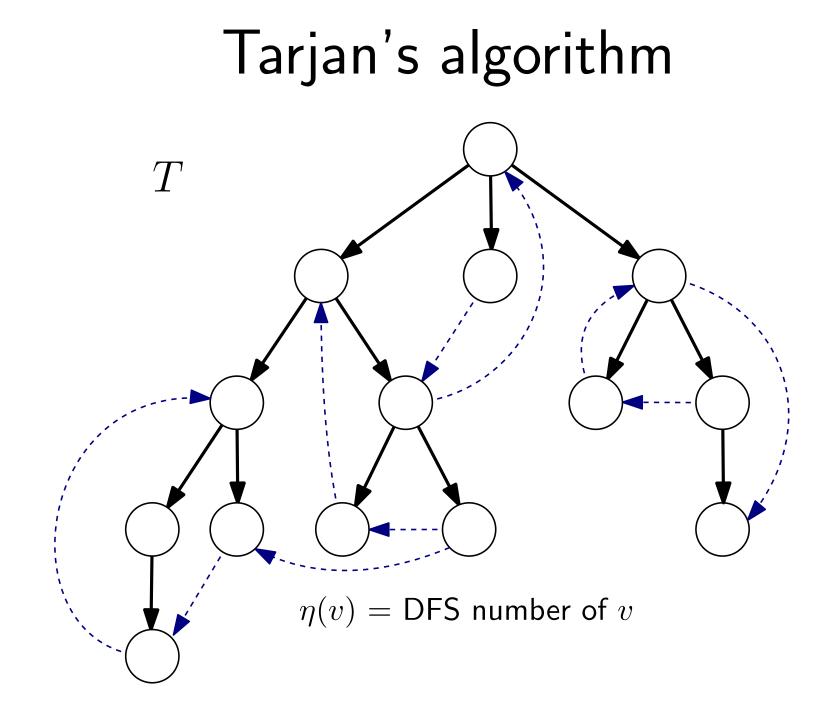
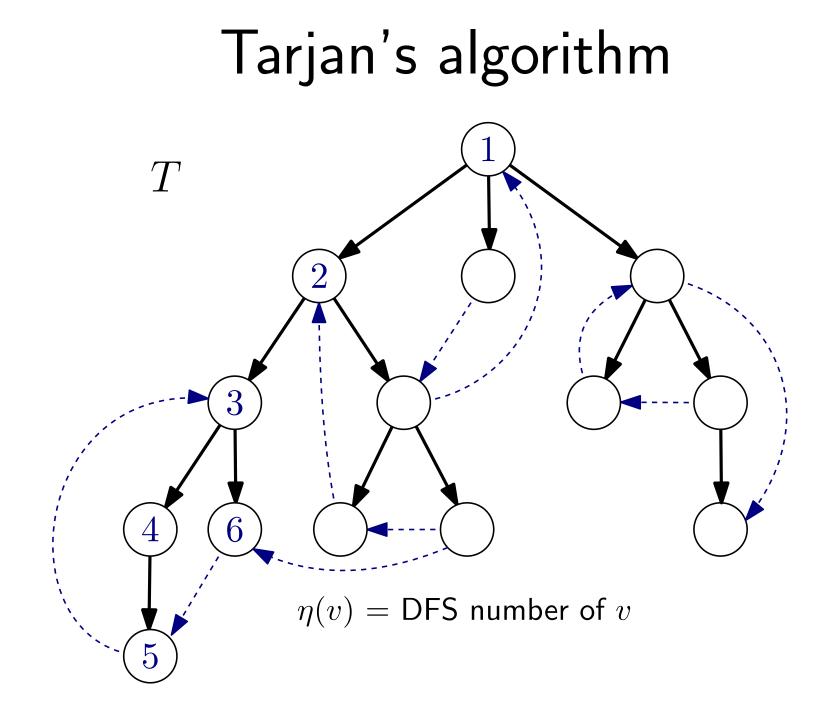
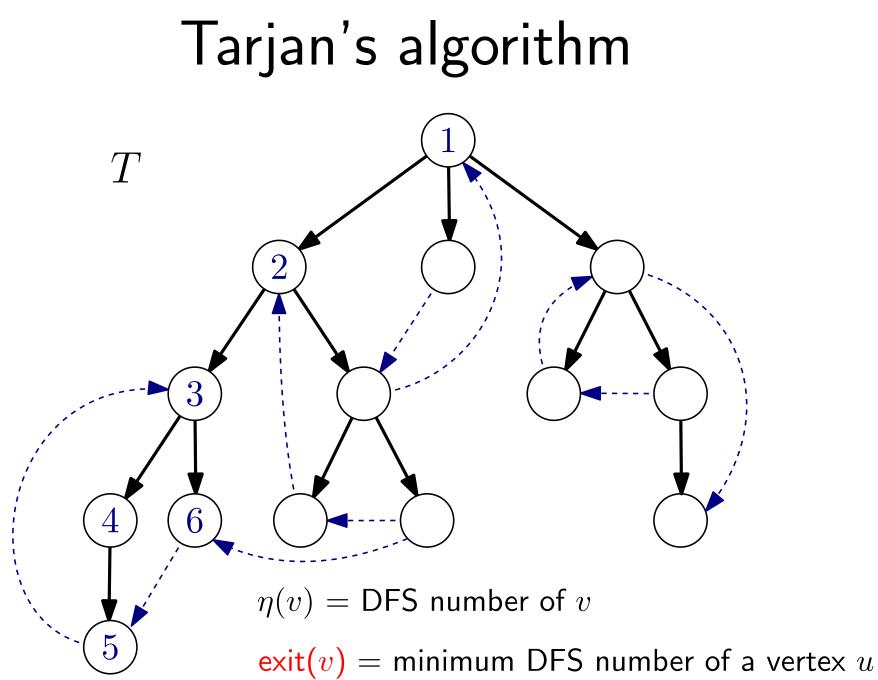
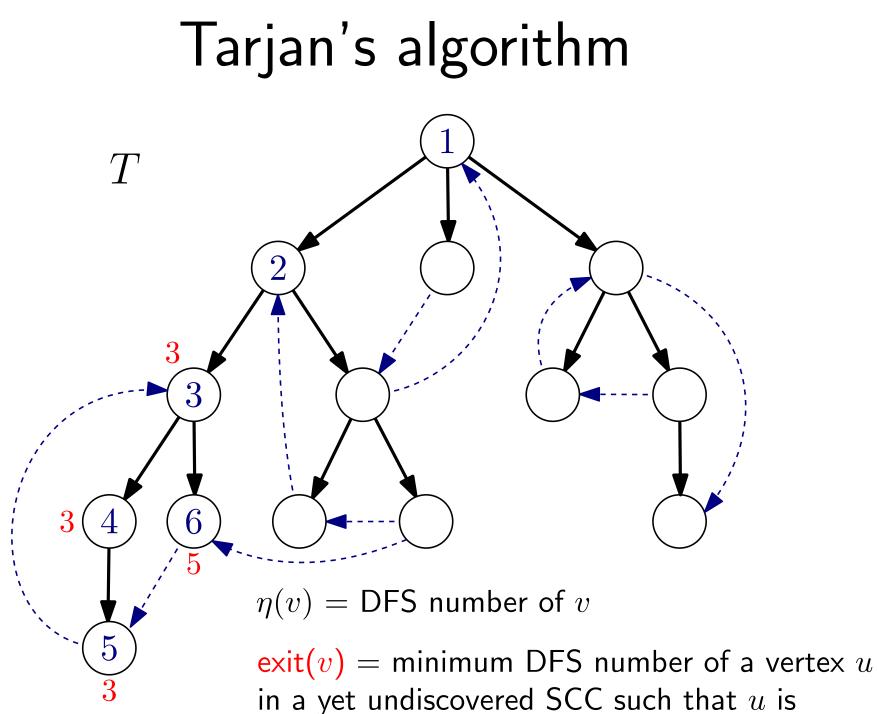
Strongly Connected Components



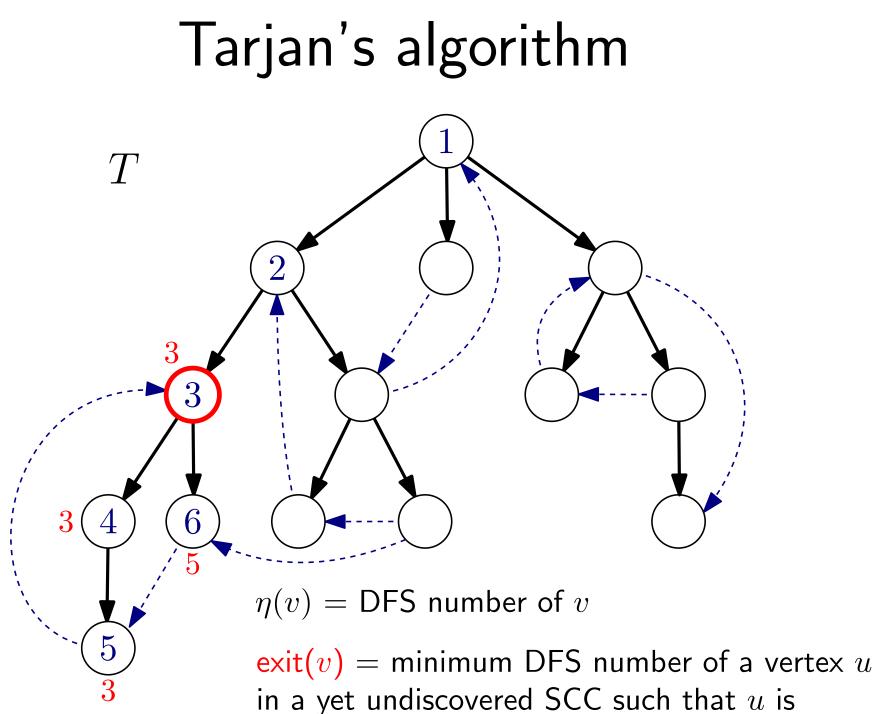




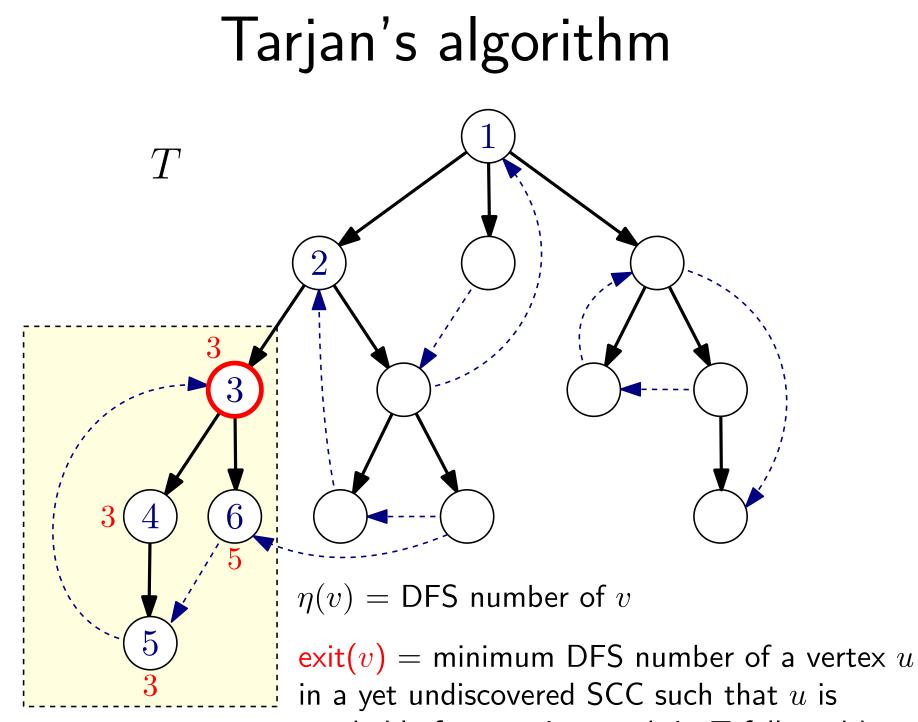
in a yet undiscovered SCC such that u is reachable from v via a path in T followed by at most one final non-tree edge.



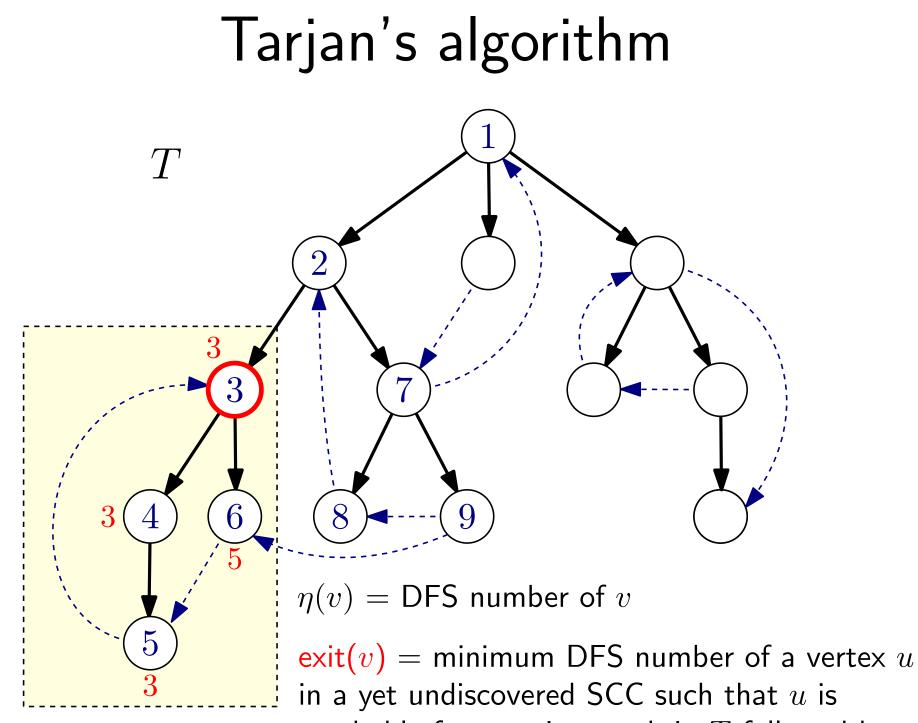
in a yet undiscovered SCC such that u is reachable from v via a path in T followed by at most one final non-tree edge.



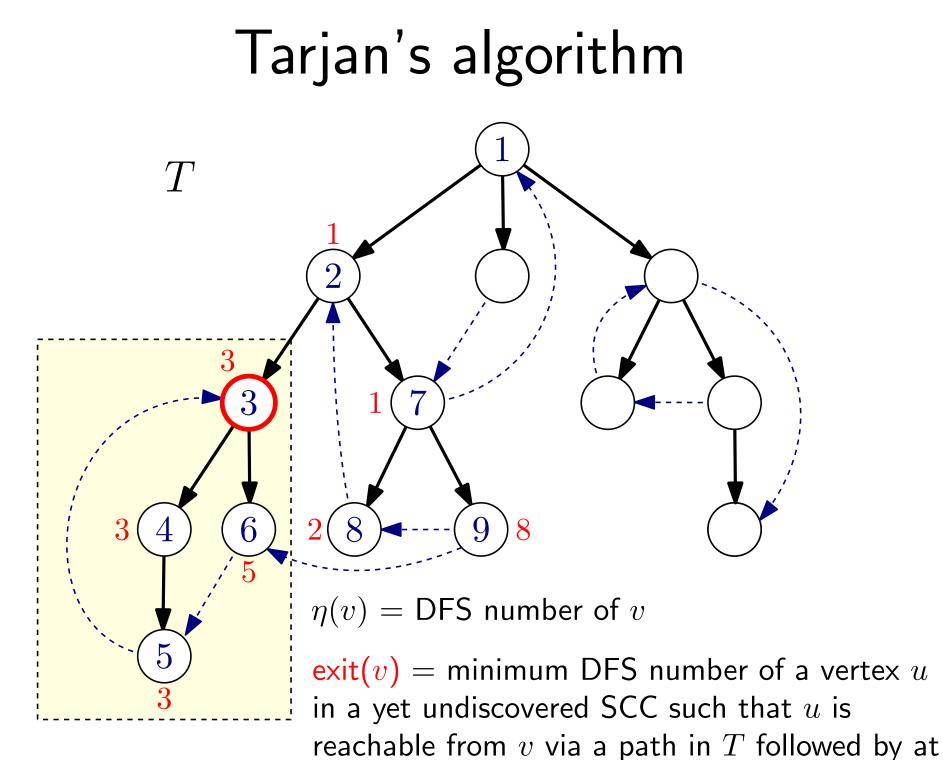
reachable from v via a path in T followed by at most one final non-tree edge.



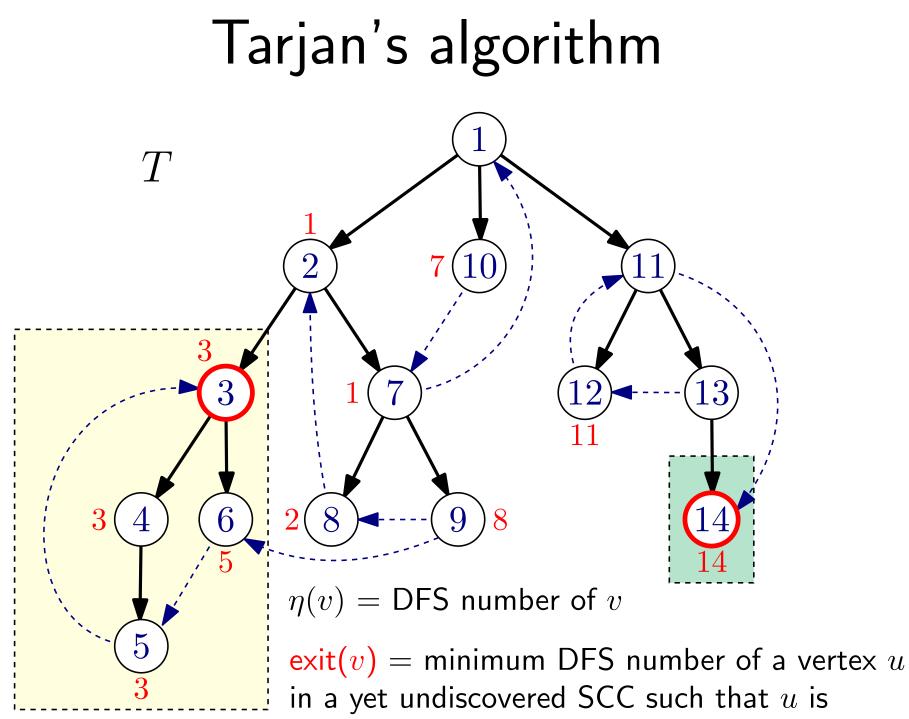
in a yet undiscovered SCC such that u is reachable from v via a path in T followed by at most one final non-tree edge.



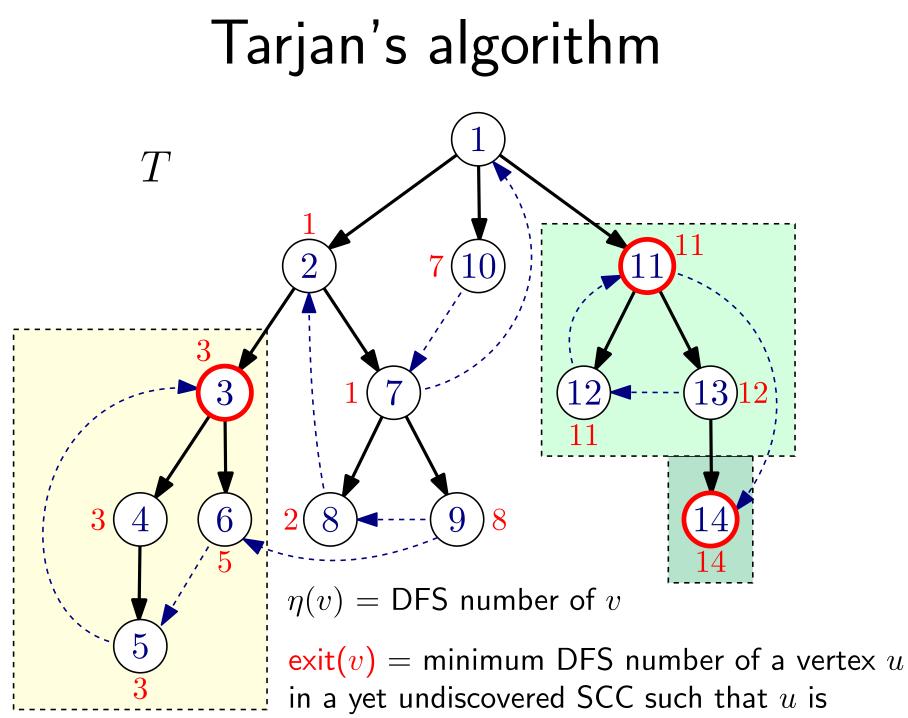
In a yet undiscovered SCC such that u is reachable from v via a path in T followed by at most one final non-tree edge.



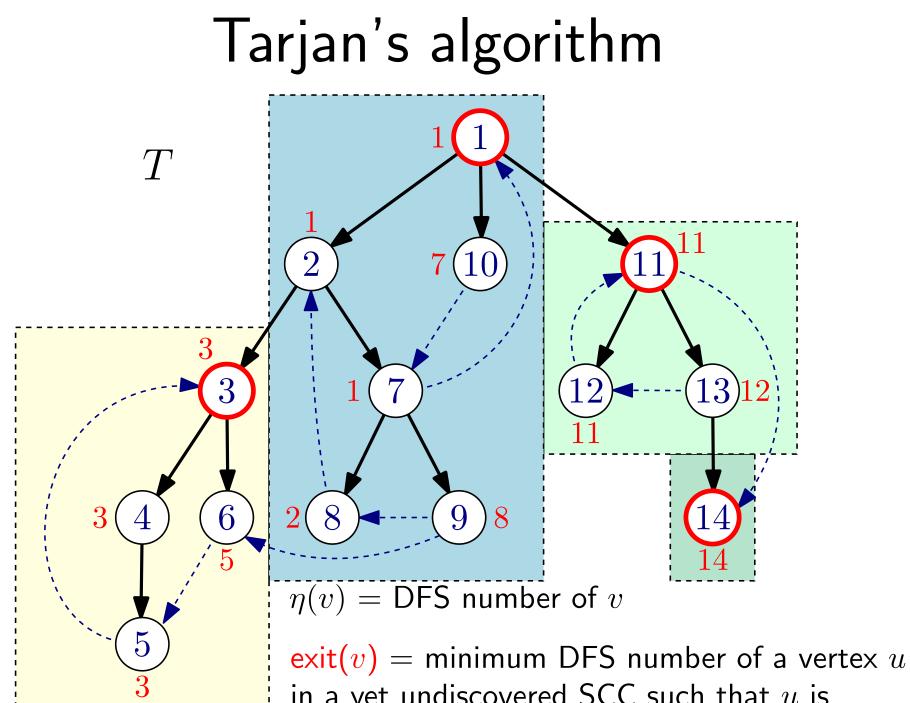
most one final non-tree edge.



In a yet undiscovered SCC such that u is reachable from v via a path in T followed by at most one final non-tree edge.



in a yet undiscovered SCC such that u is reachable from v via a path in T followed by at most one final non-tree edge.

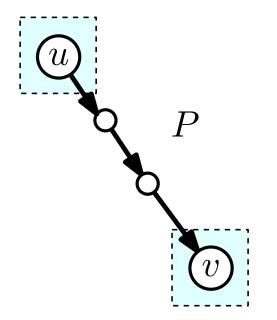


in a yet undiscovered SCC such that u is reachable from v via a path in T followed by at most one final non-tree edge.

Claim: Let C be a SCC. The subgraph T[C] of T induced by C is connected. **Proof:**

Let u be the first vertex of C that is visited by the algorithm. Let $v \in C$, with $v \neq u$.

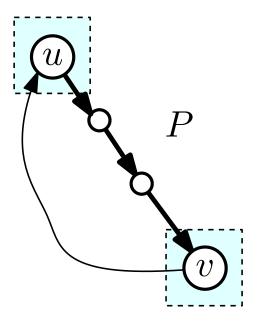
• u must be an ancestor of v in T (by the properties of DFS).



Claim: Let C be a SCC. The subgraph T[C] of T induced by C is connected. **Proof:**

Let u be the first vertex of C that is visited by the algorithm. Let $v \in C$, with $v \neq u$.

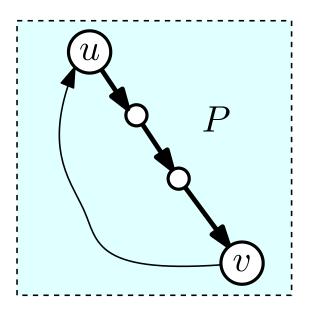
• u must be an ancestor of v in T (by the properties of DFS).



Claim: Let C be a SCC. The subgraph T[C] of T induced by C is connected. **Proof:**

Let u be the first vertex of C that is visited by the algorithm. Let $v \in C$, with $v \neq u$.

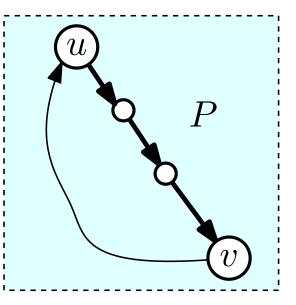
• u must be an ancestor of v in T (by the properties of DFS).



Claim: Let C be a SCC. The subgraph T[C] of T induced by C is connected. **Proof:**

Let u be the first vertex of C that is visited by the algorithm. Let $v \in C$, with $v \neq u$.

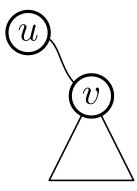
• u must be an ancestor of v in T (by the properties of DFS).



• There is a path from u to v in $G \implies$ the vertices in P are in $C \implies u$ and v must also be connected in T[C].

Definition: the *head* u of a SCC C is the (unique!) vertex of C having minimum depth in T.

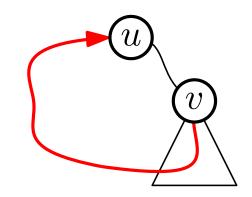
Definition: the *head* u of a SCC C is the (unique!) vertex of C having minimum depth in T.



Definition: the *head* u of a SCC C is the (unique!) vertex of C having minimum depth in T.

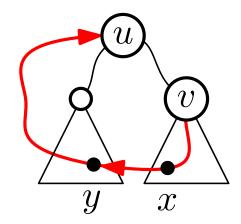
Claim: $\forall v \in C \setminus \{u\}, \ \eta(v) \neq exit(v).$

• There is a path P from v to u.



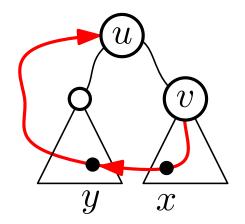
Definition: the *head* u of a SCC C is the (unique!) vertex of C having minimum depth in T.

- There is a path P from v to u.
- Consider the first edge (x, y) of P such that $y \notin T_v$.



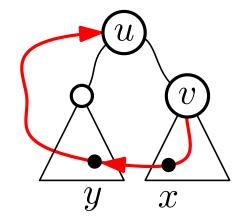
Definition: the *head* u of a SCC C is the (unique!) vertex of C having minimum depth in T.

- There is a path P from v to u.
- Consider the first edge (x, y) of P such that $y \notin T_v$.
- y is visited before v in the DFS.



Definition: the *head* u of a SCC C is the (unique!) vertex of C having minimum depth in T.

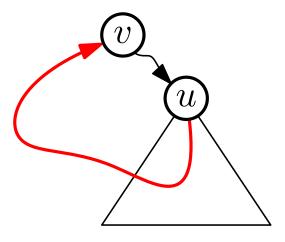
- There is a path P from v to u.
- Consider the first edge (x, y) of P such that $y \notin T_v$.
- y is visited before v in the DFS.
- $exit(v) \le \eta(y) < \eta(v)$.



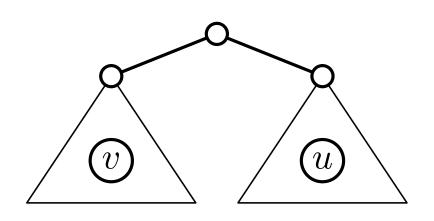
Claim: Let u be the first encountered head in postorder. $\eta(u) = exit(u)$.

• Assume that there is a vertex v s.t. $\eta(v) = exit(u) < \eta(u)$.

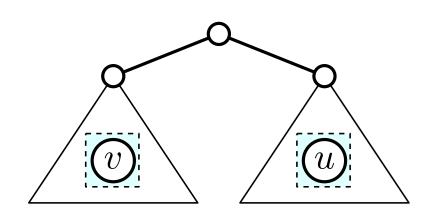
- Assume that there is a vertex v s.t. $\eta(v) = exit(u) < \eta(u)$.
- v cannot be an ancestor of u (otherwise $v \in C$ and u is not the head of C).



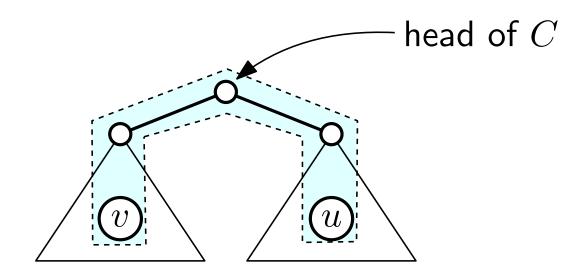
- Assume that there is a vertex v s.t. $\eta(v) = exit(u) < \eta(u)$.
- v cannot be an ancestor of u (otherwise $v \in C$ and u is not the head of C).



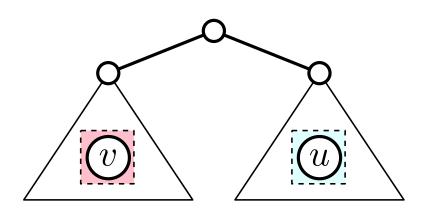
- Assume that there is a vertex v s.t. $\eta(v) = exit(u) < \eta(u)$.
- v cannot be an ancestor of u (otherwise $v \in C$ and u is not the head of C).
- If $v \in C$, then u and v are connected in $T[C] \implies$ the lowest common ancestor of u and v is in C.



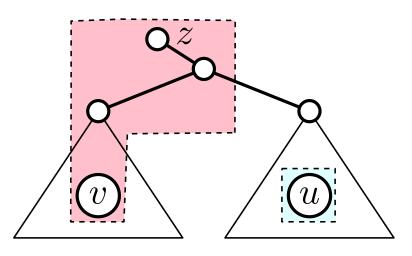
- Assume that there is a vertex v s.t. $\eta(v) = exit(u) < \eta(u)$.
- v cannot be an ancestor of u (otherwise $v \in C$ and u is not the head of C).
- If v ∈ C, then u and v are connected in T[C] ⇒ the lowest common ancestor of u and v is in C.



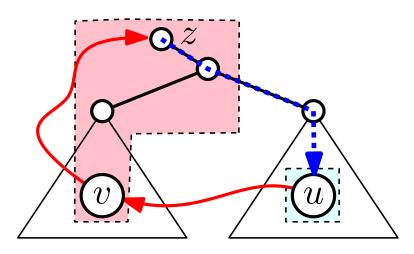
- Assume that there is a vertex v s.t. $\eta(v) = exit(u) < \eta(u)$.
- v cannot be an ancestor of u (otherwise $v \in C$ and u is not the head of C).
- If $v \in C$, then u and v are connected in $T[C] \implies$ the lowest common ancestor of u and v is in C.
- If v ∈ C' ≠ C then the head z of C' must be an ancestor of u ⇒ there is a path from u to z and vice-versa.



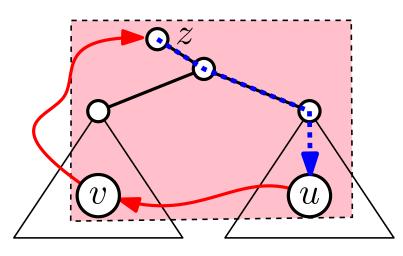
- Assume that there is a vertex v s.t. $\eta(v) = exit(u) < \eta(u)$.
- v cannot be an ancestor of u (otherwise $v \in C$ and u is not the head of C).
- If $v \in C$, then u and v are connected in $T[C] \implies$ the lowest common ancestor of u and v is in C.
- If v ∈ C' ≠ C then the head z of C' must be an ancestor of u ⇒ there is a path from u to z and vice-versa.



- Assume that there is a vertex v s.t. $\eta(v) = exit(u) < \eta(u)$.
- v cannot be an ancestor of u (otherwise $v \in C$ and u is not the head of C).
- If $v \in C$, then u and v are connected in $T[C] \implies$ the lowest common ancestor of u and v is in C.
- If v ∈ C' ≠ C then the head z of C' must be an ancestor of u ⇒ there is a path from u to z and vice-versa.



- Assume that there is a vertex v s.t. $\eta(v) = exit(u) < \eta(u)$.
- v cannot be an ancestor of u (otherwise $v \in C$ and u is not the head of C).
- If $v \in C$, then u and v are connected in $T[C] \implies$ the lowest common ancestor of u and v is in C.
- If v ∈ C' ≠ C then the head z of C' must be an ancestor for u ⇒ there is a path from u to z and vice-versa.



The Algorithm

While \exists vertex $u \in G$ (that has not been deleted):

- cnt $\leftarrow 0; \ T \leftarrow (\{u\}, \emptyset)$
- SCC(*u*)

SCC(u):

- $\eta(u) \leftarrow \text{cnt}; \text{ cnt} \leftarrow \text{cnt} + 1; exit(u) \leftarrow \eta(u)$
- For each $(u, v) \in E$:
 - If v has not yet been visited:
 - $\bullet \ \operatorname{\mathsf{Add}}\ (u,v)$ to T
 - SCC(v)
 - $exit(u) \leftarrow \min\{exit(u), exit(v)\}$

• Else:

- $exit(u) \leftarrow \min\{exit(u), \eta(v)\}$
- If $exit(u) = \eta(u)$:
 - $\bullet\,$ Report a new SCC C containing all the descendants of u in T
 - Delete the vertices in C from G and T (vertices can be "deleted" in constant time by marking them)

The Algorithm

While \exists vertex $u \in G$ (that has not been deleted):

- cnt $\leftarrow 0$; $T \leftarrow (\{u\}, \emptyset)$
- SCC(*u*)

SCC(u):

- $\eta(u) \leftarrow \mathsf{cnt}; \, \mathsf{cnt} \leftarrow \mathsf{cnt} + 1; \, exit(u) \leftarrow \eta(u)$
- For each $(u, v) \in E$:
 - If v has not yet been visited:
 - $\bullet \ \operatorname{\mathsf{Add}}\ (u,v)$ to T
 - SCC(v)
 - $exit(u) \leftarrow \min\{exit(u), exit(v)\}$

• Else:

- $exit(u) \leftarrow \min\{exit(u), \eta(v)\}$
- If $exit(u) = \eta(u)$:
 - $\bullet\,$ Report a new SCC C containing all the descendants of u in T
 - Delete the vertices in C from G and T (vertices can be "deleted" in constant time by marking them)

The Algorithm

While \exists vertex $u \in G$ (that has not been deleted):

• cnt $\leftarrow 0$; $T \leftarrow (\{u\}, \emptyset)$ $S \leftarrow \mathsf{Empty stack}$

• SCC(*u*)

SCC(u):

- $\eta(u) \leftarrow \text{cnt}$; $\text{cnt} \leftarrow \text{cnt} + 1$; $exit(u) \leftarrow \eta(u)$ Push u into S
- For each $(u, v) \in E$:
 - If v has not yet been visited:
 - $\bullet \ \operatorname{\mathsf{Add}}\ (u,v)$ to T
 - SCC(*v*)
 - $exit(u) \leftarrow \min\{exit(u), exit(v)\}$

• Else:

- $exit(u) \leftarrow \min\{exit(u), \eta(v)\}$
- If $exit(u) = \eta(u)$:
 - $C = \emptyset$; do $z \leftarrow \mathsf{Pop}$ from S; $C \leftarrow C \cup \{z\}$ while $z \neq u$;
 - Delete the vertices in C from G and T (vertices can be "deleted" in constant time by marking them)