
Strongly Connected Components



Tarjan’s algorithm

T

η(v) = DFS number of v



Tarjan’s algorithm

1

2

3

4

5

6

T

η(v) = DFS number of v



Tarjan’s algorithm

1

2

3

4

5

6

exit(v) = minimum DFS number of a vertex u
in a yet undiscovered SCC such that u is
reachable from v via a path in T followed by at
most one final non-tree edge.

T

η(v) = DFS number of v



Tarjan’s algorithm

1

2

3

4

5

6

3

3

3

5

exit(v) = minimum DFS number of a vertex u
in a yet undiscovered SCC such that u is
reachable from v via a path in T followed by at
most one final non-tree edge.

T

η(v) = DFS number of v



Tarjan’s algorithm

1

2

3

4

5

6

3

3

3

5

exit(v) = minimum DFS number of a vertex u
in a yet undiscovered SCC such that u is
reachable from v via a path in T followed by at
most one final non-tree edge.

T

η(v) = DFS number of v



Tarjan’s algorithm

1

2

3

4

5

6

3

3

3

5

exit(v) = minimum DFS number of a vertex u
in a yet undiscovered SCC such that u is
reachable from v via a path in T followed by at
most one final non-tree edge.

T

η(v) = DFS number of v



Tarjan’s algorithm

1

2

3

4

5

6 9

3

3

3

5

7

8

exit(v) = minimum DFS number of a vertex u
in a yet undiscovered SCC such that u is
reachable from v via a path in T followed by at
most one final non-tree edge.

T

η(v) = DFS number of v



Tarjan’s algorithm

1

2

3

4

5

6 9

3

3

3

5

2 8

1

1 7

8

exit(v) = minimum DFS number of a vertex u
in a yet undiscovered SCC such that u is
reachable from v via a path in T followed by at
most one final non-tree edge.

T

η(v) = DFS number of v



Tarjan’s algorithm

1

2

3

4

5

6 9

10 11

12 13

14

3

3

3

5

2 8

1

1

7

11

14

7

8

exit(v) = minimum DFS number of a vertex u
in a yet undiscovered SCC such that u is
reachable from v via a path in T followed by at
most one final non-tree edge.

T

η(v) = DFS number of v



Tarjan’s algorithm

1

2

3

4

5

6 9

10 11

12 13

14

3

3

3

5

2 8

1

1

7
11

11

12

14

7

8

exit(v) = minimum DFS number of a vertex u
in a yet undiscovered SCC such that u is
reachable from v via a path in T followed by at
most one final non-tree edge.

T

η(v) = DFS number of v



Tarjan’s algorithm

1

2

3

4

5

6 9

10 11

12 13

14

3

3

3

5

2 8

1

1

7

1

11

11

12

14

7

8

exit(v) = minimum DFS number of a vertex u
in a yet undiscovered SCC such that u is
reachable from v via a path in T followed by at
most one final non-tree edge.

T

η(v) = DFS number of v



Proof of correctness
Claim: Let C be a SCC. The subgraph T [C] of T induced by
C is connected.
Proof:
Let u be the first vertex of C that is visited by the algorithm.
Let v ∈ C, with v ̸= u.
• u must be an ancestor of v in T (by the properties of DFS).

u

v

P



Proof of correctness
Claim: Let C be a SCC. The subgraph T [C] of T induced by
C is connected.
Proof:
Let u be the first vertex of C that is visited by the algorithm.
Let v ∈ C, with v ̸= u.
• u must be an ancestor of v in T (by the properties of DFS).

u

v

P



Proof of correctness
Claim: Let C be a SCC. The subgraph T [C] of T induced by
C is connected.
Proof:
Let u be the first vertex of C that is visited by the algorithm.
Let v ∈ C, with v ̸= u.
• u must be an ancestor of v in T (by the properties of DFS).

u

v

P



Proof of correctness
Claim: Let C be a SCC. The subgraph T [C] of T induced by
C is connected.
Proof:
Let u be the first vertex of C that is visited by the algorithm.
Let v ∈ C, with v ̸= u.
• u must be an ancestor of v in T (by the properties of DFS).

u

v

• There is a path from u to v in G =⇒ the vertices in P
are in C =⇒ u and v must also be connected in T [C].

□

P



Definition: the head u of a SCC C is the (unique!) vertex of
C having minimum depth in T .

Proof of correctness



Definition: the head u of a SCC C is the (unique!) vertex of
C having minimum depth in T .

Proof of correctness

Claim: ∀v ∈ C \ {u}, η(v) ̸= exit(v).

u

v



Definition: the head u of a SCC C is the (unique!) vertex of
C having minimum depth in T .

Proof of correctness

Claim: ∀v ∈ C \ {u}, η(v) ̸= exit(v).

• There is a path P from v to u.

u

v



Definition: the head u of a SCC C is the (unique!) vertex of
C having minimum depth in T .

Proof of correctness

Claim: ∀v ∈ C \ {u}, η(v) ̸= exit(v).

• There is a path P from v to u.

• Consider the first edge (x, y) of P such that y ̸∈ Tv.

y x

u

v



Definition: the head u of a SCC C is the (unique!) vertex of
C having minimum depth in T .

Proof of correctness

Claim: ∀v ∈ C \ {u}, η(v) ̸= exit(v).

• There is a path P from v to u.

• Consider the first edge (x, y) of P such that y ̸∈ Tv.

y x

u

v

• y is visited before v in the DFS.



Definition: the head u of a SCC C is the (unique!) vertex of
C having minimum depth in T .

Proof of correctness

Claim: ∀v ∈ C \ {u}, η(v) ̸= exit(v).

• There is a path P from v to u.

• Consider the first edge (x, y) of P such that y ̸∈ Tv.

• exit(v) ≤ η(y) < η(v).

y x □

u

v

• y is visited before v in the DFS.



Proof of correctness
Claim: Let u be the first encountered head in postorder.
η(u) = exit(u).

• Assume that there is a vertex v s.t. η(v) = exit(u) < η(u).



Proof of correctness
Claim: Let u be the first encountered head in postorder.
η(u) = exit(u).

• Assume that there is a vertex v s.t. η(v) = exit(u) < η(u).

• v cannot be an ancestor of u (otherwise v ∈ C and u is not
the head of C).

u

v



Proof of correctness
Claim: Let u be the first encountered head in postorder.
η(u) = exit(u).

• Assume that there is a vertex v s.t. η(v) = exit(u) < η(u).

• v cannot be an ancestor of u (otherwise v ∈ C and u is not
the head of C).

uv



Proof of correctness
Claim: Let u be the first encountered head in postorder.
η(u) = exit(u).

• Assume that there is a vertex v s.t. η(v) = exit(u) < η(u).

• v cannot be an ancestor of u (otherwise v ∈ C and u is not
the head of C).

• If v ∈ C, then u and v are connected in T [C] =⇒ the
lowest common ancestor of u and v is in C.

uv



Proof of correctness
Claim: Let u be the first encountered head in postorder.
η(u) = exit(u).

• Assume that there is a vertex v s.t. η(v) = exit(u) < η(u).

• v cannot be an ancestor of u (otherwise v ∈ C and u is not
the head of C).

• If v ∈ C, then u and v are connected in T [C] =⇒ the
lowest common ancestor of u and v is in C.

uv

�
head of C



Proof of correctness
Claim: Let u be the first encountered head in postorder.
η(u) = exit(u).

• Assume that there is a vertex v s.t. η(v) = exit(u) < η(u).

• v cannot be an ancestor of u (otherwise v ∈ C and u is not
the head of C).

• If v ∈ C, then u and v are connected in T [C] =⇒ the
lowest common ancestor of u and v is in C.

• If v ∈ C ′ ̸= C then the head z of C ′ must be an ancestor
of u =⇒ there is a path from u to z and vice-versa.

uv

�



Proof of correctness
Claim: Let u be the first encountered head in postorder.
η(u) = exit(u).

• Assume that there is a vertex v s.t. η(v) = exit(u) < η(u).

• v cannot be an ancestor of u (otherwise v ∈ C and u is not
the head of C).

• If v ∈ C, then u and v are connected in T [C] =⇒ the
lowest common ancestor of u and v is in C.

• If v ∈ C ′ ̸= C then the head z of C ′ must be an ancestor
of u =⇒ there is a path from u to z and vice-versa.

uv

�

z



Proof of correctness
Claim: Let u be the first encountered head in postorder.
η(u) = exit(u).

• Assume that there is a vertex v s.t. η(v) = exit(u) < η(u).

• v cannot be an ancestor of u (otherwise v ∈ C and u is not
the head of C).

• If v ∈ C, then u and v are connected in T [C] =⇒ the
lowest common ancestor of u and v is in C.

• If v ∈ C ′ ̸= C then the head z of C ′ must be an ancestor
of u =⇒ there is a path from u to z and vice-versa.

uv

�

z



Proof of correctness
Claim: Let u be the first encountered head in postorder.
η(u) = exit(u).

• Assume that there is a vertex v s.t. η(v) = exit(u) < η(u).

• v cannot be an ancestor of u (otherwise v ∈ C and u is not
the head of C).

• If v ∈ C, then u and v are connected in T [C] =⇒ the
lowest common ancestor of u and v is in C.

• If v ∈ C ′ ̸= C then the head z of C ′ must be an ancestor
of u =⇒ there is a path from u to z and vice-versa.

uv

�

z

�



The Algorithm

• η(u) ← cnt; cnt ← cnt +1; exit(u) ← η(u)

SCC(u):

• cnt ← 0; T ← ({u}, ∅)

• For each (u, v) ∈ E:

• If v has not yet been visited:

• Add (u, v) to T

• SCC(v)

• exit(u) ← min{exit(u), exit(v)}
• Else:

• exit(u) ← min{exit(u), η(v)}
• If exit(u) = η(u):

• Report a new SCC C containing all the descendants of u in T

• Delete the vertices in C from G and T

While ∃ vertex u ∈ G (that has not been deleted):

• SCC(u)

(vertices can be “deleted” in constant time by marking them)



The Algorithm

• η(u) ← cnt; cnt ← cnt +1; exit(u) ← η(u)

SCC(u):

• cnt ← 0; T ← ({u}, ∅)

• For each (u, v) ∈ E:

• If v has not yet been visited:

• Add (u, v) to T

• SCC(v)

• exit(u) ← min{exit(u), exit(v)}
• Else:

• exit(u) ← min{exit(u), η(v)}
• If exit(u) = η(u):

• Report a new SCC C containing all the descendants of u in T

• Delete the vertices in C from G and T

While ∃ vertex u ∈ G (that has not been deleted):

• SCC(u)

(vertices can be “deleted” in constant time by marking them)



The Algorithm

• η(u) ← cnt; cnt ← cnt +1; exit(u) ← η(u)

SCC(u):

• cnt ← 0; T ← ({u}, ∅)

• For each (u, v) ∈ E:

• If v has not yet been visited:

• Add (u, v) to T

• SCC(v)

• exit(u) ← min{exit(u), exit(v)}
• Else:

• exit(u) ← min{exit(u), η(v)}
• If exit(u) = η(u):

• Delete the vertices in C from G and T

While ∃ vertex u ∈ G (that has not been deleted):

• SCC(u)

S ← Empty stack

Push u into S

• C = ∅; do z ← Pop from S; C ← C ∪ {z} while z ̸= u;

(vertices can be “deleted” in constant time by marking them)


