Strongly Connected Components

Tarjan’s algorithm

n(v) = DFS number

of v

- -

Tarjan’s algorithm

n(v) = DFS number

of v

- -

Tarjan's algorithm

\
\
\
\
\
1
1
1
1
1 S
~
1 s ~
V4 7’ ~
’ ! 4 A
7 V4 ~
1 ’ 7 N
’ ! \
1 Vi 4 1 N
1] AN
1 AY
1

-
~ -
—————————

1 1
1 1
1 1
1 1
\ 1
\ 4
4
\ /
e @ ‘ f ‘
4 ~ -
4
4

’// n(v) = DFS number of v

N exit(v) = minimum DFS number of a vertex u
in a yet undiscovered SCC such that u is

reachable from v via a path in 1" followed by at
most one final non-tree edge.

Tarjan's algorithm

1 1
1 1
1 1
1 1
\ 1
\ 4
4
\ /
@ ‘ f ‘
4 ~ -
g
4

-
~ -
—————————

n(v) = DFS number of v

exit(v) = minimum DFS number of a vertex u
in a yet undiscovered SCC such that u is

reachable from v via a path in 1" followed by at
most one final non-tree edge.

Tarjan's algorithm

1 1
1 1
1 1
1 1
\ 1
\ 4
4
\ /
@ ‘ f ‘
4 ~ -
g
4

-
~ -
—————————

n(v) = DFS number of v

exit(v) = minimum DFS number of a vertex u
in a yet undiscovered SCC such that u is

reachable from v via a path in 1" followed by at
most one final non-tree edge.

Tarjan's algorithm

-
~ -
—————————

; \ 1

; 1 1
\]

: \]
] 1

1 \ R

1 \ ’

1 /

1

1

] - -

1

’] -
“ D
’

’// ' n(v) = DFS number of v

N . exit(v) = minimum DFS number of a vertex u

.2 _________vinayetundiscovered SCC such that u is

reachable from v via a path in 1" followed by at
most one final non-tree edge.

Tarjan's algorithm

-
~ -
—————————

; \ 1

; 1 1
\]

: \]
] 1

1 \ R

1 \ ’

1 /

1

1

] - -

1

’] -
“ D
’

’// ' n(v) = DFS number of v

N . exit(v) = minimum DFS number of a vertex u

.2 _________vinayetundiscovered SCC such that u is

reachable from v via a path in 1" followed by at
most one final non-tree edge.

Tarjan's algorithm

’ 1 1 1
’ 1 | 1
’ \ 1
’ ! \ 1
1 \ ,
1 \ R
1 \ ’
1 /
1
1
3 2 ---(9)8
! 1
1
’] -
’
, 1

’/'" n(v) = DFS number of v

N . exit(v) = minimum DFS number of a vertex u
.2 _________vinayetundiscovered SCC such that u is

reachable from v via a path in 1" followed by at
most one final non-tree edge.

Tarjan's algorithm

S B ®
’// n(v) = DFS number of v
\ exit(v) = minimum DFS number of a vertex u

.2 _________vinayetundiscovered SCC such that u is

reachable from v via a path in 1" followed by at
most one final non-tree edge.

Tarjan's algorithm

L ¥
o1
3(4) (6} 2(8)=(9)s @
S5 T .
'/' ' n(v) = DFS number of v
\ exit(v) = minimum DFS number of a vertex u

.2 _________vinayetundiscovered SCC such that u is

reachable from v via a path in 1" followed by at
most one final non-tree edge.

TarJan s algorithm

-
~ -
————————

. n(v) = DFS number of v

. exit(v) = minimum DFS number of a vertex u
. in a yet undiscovered SCC such that u is

reachable from v via a path in 1" followed by at
most one final non-tree edge.

Proof of correctness

Claim: Let C be a SCC. The subgraph T'|C] of T induced by

(' Is connected.
Proof:

Let u be the first vertex of C that is visited by the algorithm.
Let v € C, with v # w.
e u must be an ancestor of v in T (by the properties of DFS).

Proof of correctness

Claim: Let C be a SCC. The subgraph T'|C] of T induced by

(' Is connected.
Proof:

Let u be the first vertex of C that is visited by the algorithm.
Let v € C, with v # w.
e u must be an ancestor of v in T (by the properties of DFS).

Proof of correctness

Claim: Let C be a SCC. The subgraph T'|C] of T induced by

(' Is connected.
Proof:

Let u be the first vertex of C that is visited by the algorithm.
Let v € C, with v # w.
e u must be an ancestor of v in T (by the properties of DFS).

Proof of correctness

Claim: Let C be a SCC. The subgraph T'|C] of T induced by

(' Is connected.
Proof:

Let u be the first vertex of C that is visited by the algorithm.
Let v € C, with v # w.
e u must be an ancestor of v in T (by the properties of DFS).

e Thereis a path from v to v in G — the vertices in P
are in C' = wu and v must also be connected in T|C].

Proof of correctness

Definition: the head u of a SCC (' is the (unique!) vertex of
C' having minimum depth in 7.

Proof of correctness

Definition: the head u of a SCC (' is the (unique!) vertex of
C' having minimum depth in 7.

Claim: Vv € C'\ {u}, n(v) # exit(v).

Proof of correctness

Definition: the head u of a SCC (' is the (unique!) vertex of
C' having minimum depth in 7.

Claim: Vv € C'\ {u}, n(v) # exit(v).

e Thereis a path P from v to w.

Proof of correctness

Definition: the head u of a SCC (' is the (unique!) vertex of
C' having minimum depth in 7.

Claim: Vv € C'\ {u}, n(v) # exit(v).
e Thereis a path P from v to w.

e Consider the first edge (z,y) of P such that y & T,,.

Proof of correctness

Definition: the head u of a SCC (' is the (unique!) vertex of
C' having minimum depth in 7.

Claim: Vv € C'\ {u}, n(v) # exit(v).
e Thereis a path P from v to w.

e Consider the first edge (z,y) of P such that y & T,,.
e y is visited before v in the DFS.

Proof of correctness

Definition: the head u of a SCC (' is the (unique!) vertex of
C' having minimum depth in 7.

Claim: Vv € C'\ {u}, n(v) # exit(v).
e Thereis a path P from v to w.

e Consider the first edge (z,y) of P such that y & T,,.
e y is visited before v in the DFS.

o exit(v) < n(y) < n(v).

Proof of correctness

Claim: Let u be the first encountered head in postorder.
n(u) = exit(u).
e Assume that there is a vertex v s.t. n(v) = exit(u) < n(u).

Proof of correctness

Claim: Let u be the first encountered head in postorder.
n(u) = exit(u).
e Assume that there is a vertex v s.t. n(v) = exit(u) < n(u).

e v cannot be an ancestor of u (otherwise v € C' and w is not
the head of C).

Proof of correctness

Claim: Let u be the first encountered head in postorder.
n(u) = exit(u).
e Assume that there is a vertex v s.t. n(v) = exit(u) < n(u).

e v cannot be an ancestor of u (otherwise v € C' and w is not
the head of C).

Proof of correctness

Claim: Let u be the first encountered head in postorder.
n(u) = exit(u).
e Assume that there is a vertex v s.t. n(v) = exit(u) < n(u).

e v cannot be an ancestor of u (otherwise v € C' and w is not
the head of C).

e If v € C, then u and v are connected in T|C|] = the
lowest common ancestor of w and v i1s in C'.

Proof of correctness

Claim: Let u be the first encountered head in postorder.
n(u) = exit(u).
e Assume that there is a vertex v s.t. n(v) = exit(u) < n(u).

e v cannot be an ancestor of u (otherwise v € C' and w is not
the head of C).

e If v € C, then u and v are connected in T|C|] = the
lowest common ancestor of u and v is in C. %

/— head of C

Proof of correctness

Claim: Let u be the first encountered head in postorder.
n(u) = exit(u).
e Assume that there is a vertex v s.t. n(v) = exit(u) < n(u).

e v cannot be an ancestor of u (otherwise v € C' and w is not
the head of C).

e If v € C, then u and v are connected in T|C|] = the

owest common ancestor of u and v is in C. %

o If v € C" # C then the head z of C' must be an ancestor
of u = there is a path from u to z and vice-versa.

Proof of correctness

Claim: Let u be the first encountered head in postorder.
n(u) = exit(u).
e Assume that there is a vertex v s.t. n(v) = exit(u) < n(u).

e v cannot be an ancestor of u (otherwise v € C' and w is not
the head of C).

e If v € C, then u and v are connected in T|C|] = the

owest common ancestor of u and v is in C. %

o If v € C" # C then the head z of C' must be an ancestor
of u = there is a path from u to z and vice-versa.

Proof of correctness

Claim: Let u be the first encountered head in postorder.
n(u) = exit(u).
e Assume that there is a vertex v s.t. n(v) = exit(u) < n(u).

e v cannot be an ancestor of u (otherwise v € C' and w is not
the head of C).

e If v € C, then u and v are connected in T|C|] = the

owest common ancestor of u and v is in C. %

o If v € C" # C then the head z of C' must be an ancestor
of u = there is a path from u to z and vice-versa.

Proof of correctness

Claim: Let u be the first encountered head in postorder.
n(u) = exit(u).
e Assume that there is a vertex v s.t. n(v) = exit(u) < n(u).

e v cannot be an ancestor of u (otherwise v € C' and w is not
the head of C).

e If v € C, then u and v are connected in T|C|] = the

owest common ancestor of u and v is in C. %

o If v € C" # C then the head z of C' must be an ancestor
of u = there is a path from u to z and vice-versa. %

The Algorithm

While 3 vertex u € G (that has not been deleted):
o cnt < 0; T < ({u},0)
o SCC(u)

SCC(u):
e n(u) < cnt; cnt < cnt +1; exit(u) < n(u)
e For each (u,v) € F:
e If v has not yet been visited:
e Add (u,v) to T
e SCC(v)
o exit(u) < min{exit(u), exit(v)}
o Else:
o crit(u) + min{exit(u),n(v)}
o If exit(u) =n(u):
e Report a new SCC C containing all the descendants of w in T
e Delete the vertices in C from G and T

(vertices can be “deleted” in constant time by marking them)

The Algorithm

While 3 vertex u € G (that has not been deleted):
o cnt < 0; T < ({u},0)
o SCC(u)

SCC(u):
e n(u) < cnt; cnt < cnt +1; exit(u) < n(u)
e For each (u,v) € F:
e If v has not yet been visited:
e Add (u,v) to T
e SCC(v)
o exit(u) < min{exit(u), exit(v)}
o Else:
o crit(u) + min{exit(u),n(v)}
o If exit(u) =n(u):
e Report a new SCC C containing all the descendants of w in T
e Delete the vertices in C from G and T

(vertices can be “deleted” in constant time by marking them)

The Algorithm

While 3 vertex u € G (that has not been deleted):
e cnt + 0; T+ ({u},0) S < Empty stack
o SCC(u)

SCC(u):
e n(u) « cnt; cnt < cnt +1; exit(u) + n(u) Push u into S
e For each (u,v) € F:
e If v has not yet been visited:
o Add (u,v) to T
e SCC(v)
o exit(u) < min{exit(u), exit(v)}
o Else:
o crit(u) + min{exit(u),n(v)}
o If exit(u) =n(u):
e C =1(); do z+ Popfrom S; C + CU{z} while z # u;
e Delete the vertices in C' from G and T

(vertices can be “deleted” in constant time by marking them)

