Network Flow

Network Flow

Network Flow

Network Flow: Problem Definition

Input:

- A directed graph G = (V, E)
- A source vertex $s \in V$, with no incoming edges
- A target vertex $t \in V$, with no outgoing edges
- A function $c: E \to \mathbb{N}$ that maps each edge to its *capacity*

Output:

A function $f: E \to \mathbb{R}$ that associates each edge e to the *flow* $f(e) \ge 0$ across e and satisfies:

• Capacity constraints: $\forall e \in E, f(e) \leq c(e)$

• Flow conservation: $\forall v \in V \setminus \{s, t\}$, $\sum_{(u,v) \in E} f(u,v) = \sum_{(v,w) \in E} f(v,w)$

Network Flow: Problem Definition Measure (to maximize):

• The amount of flow leaving s (equivalently, reaching t).

$$|f| = \sum_{(s,v)\in E} f(s,v)$$

Network Flow: Problem Definition Measure (to maximize):

• The amount of flow leaving s (equivalently, reaching t).

$$|f| = \sum_{(s,v)\in E} f(s,v)$$

Maximum flow = 3

Linear Programming Formulation

• Find a path P from s to t in G

• Find a path P from s to t in G

- Find a path P from s to t in G
- Send one unit of flow along P

- Find a path P from s to t in G
- Send one unit of flow along ${\it P}$
- Update capacities

- Find a path P from s to t in G
- Send one unit of flow along P
- Update capacities
- Repeat

- Find a path P from s to t in G
- Send one unit of flow along P
- Update capacities
- Repeat

- Find a path P from s to t in G
- Send one unit of flow along ${\it P}$
- Update capacities
- Repeat until no more paths from \boldsymbol{s} to \boldsymbol{t} exist

- Find a path P from s to t in G
- Send one unit of flow along ${\it P}$
- Update capacities
- Repeat until no more paths from \boldsymbol{s} to \boldsymbol{t} exist

Computed flow = 2

- Find a path P from s to t in G
- Send one unit of flow along ${\it P}$
- Update capacities
- Repeat until no more paths from \boldsymbol{s} to \boldsymbol{t} exist

Computed flow = 2

Maximum flow = 3 Might get stuck in a local maximum.

- Find an *augmenting path* P from s to t in G
- Send one unit of flow along P
- Compute the *residual graph*

- Find an *augmenting path* P from s to t in G
- Send one unit of flow along P
- Compute the *residual graph*

- Find an *augmenting path* P from s to t in G
- Send one unit of flow along P
- Compute the *residual graph*
- Repeat

- Find an *augmenting path* P from s to t in G
- Send one unit of flow along P
- Compute the *residual graph*
- Repeat

- Find an *augmenting path* P from s to t in G
- Send one unit of flow along P
- Compute the *residual graph*
- Repeat

- Find an augmenting path P from s to t in G
- Send one unit of flow along P
- Compute the *residual graph*
- Repeat

- Find an augmenting path P from s to t in G
- Send one unit of flow along P
- Compute the *residual graph*
- Repeat

No more paths from s to t. Computed flow = 3.

• The flow f(e) on e is the original capacity c(e) of e minus the capacity of e in the residual graph G_f .

• The flow f(e) on e is the original capacity c(e) of e minus the capacity of e in the residual graph G_f .

Flow Algorithms

• Ford-Fulkerson (1955): Choose any augmenting path ${\cal P}$

Time:
$$O(m \cdot f^*) = O(m \cdot n \cdot \max_e c(e))$$

Time to find P _____ Value of max flow

• Edmonds-Karp (1972): Choose an augmenting path P with the fewest number of edges

Time:
$$O(\min\{m \cdot f^*, m^2 \cdot n\})$$

• Push-Relabel (1986):

Time: $O(n^3)$

We will need three property maps:

- boost::edge_capacity_t: maps each edge e to its capacity c(e).
- boost::edge_residual_capacity_t: maps each edge e to its capacity in the residual network.
- boost::edge_reverse_t: we need to map each edge e = (u, v) to its corresponding reverse edge e' = (v, u), and vice-versa.

We will need three property maps:

- boost::edge_capacity_t: maps each edge e to its capacity c(e).
- boost::edge_residual_capacity_t: maps each edge e to its capacity in the residual network.
- boost::edge_reverse_t: we need to map each edge e = (u, v) to its corresponding reverse edge e' = (v, u), and vice-versa.

If both (u, v) and (v, u) are in the input graph, then the boost graph will have parallel edges.


```
#include <boost/graph/adjacency_list.hpp>
```

```
typedef boost::adjacency_list_traits<boost::vecS, boost::vecS, boost::directedS> Traits;
```

```
typedef boost::adjacency_list<boost::vecS, boost::vecS,
boost::directedS, boost::no_property,
boost::property<boost::edge_capacity_t, long,
boost::property<boost::edge_residual_capacity_t, long,
boost::property<boost::edge_reverse_t, Traits::edge_descriptor>
```

```
> > > Graph;
```

```
typedef boost::property_map<Graph, boost::edge_capacity_t>::type
capacity_map;
```

```
typedef boost::property_map<Graph, boost::edge_residual_capacity_t>::type
residual_map;
```

```
typedef boost::property_map<Graph, boost::edge_reverse_t>::type
reverse_map;
```

Simplify Graph Construction with a Helper Class

```
class EdgeAdder
   Graph &G; capacity_map capacity; reverse_map reverse;
public:
   explicit EdgeAdder(Graph &G) : G(G)
   {
       capacity = boost::get(boost::edge_capacity, G);
       reverse = boost::get(boost::edge_reverse, G);
   }
   void add_edge(long u, long v, long c)
   ſ
       auto [e, added] = boost::add_edge(u, v, G);
       auto [rev, rev_added] = boost::add_edge(v, u, G);
       capacity[e] = c; capacity[rev] = 0;
       reverse[e] = rev; reverse[rev] = e;
   }
```

int main()

{

```
Graph G(6);
EdgeAdder edge_adder(G);
```

edge_adder.add_edge(0, 1, 1); edge_adder.add_edge(0, 3, 2); edge_adder.add_edge(1, 2, 3); edge_adder.add_edge(1, 4, 4); edge_adder.add_edge(2, 5, 2); edge_adder.add_edge(3, 2, 2); edge_adder.add_edge(4, 5, 2);

[...]

Network Flow in BGL

```
#include <boost/graph/edmonds_karp_max_flow.hpp>
```

```
[...]
```

```
long flow = boost::edmonds_karp_max_flow(G, 0, 5);
```


Network Flow in BGL

Push-Relabel in BGL

#include <boost/graph/edmonds_karp_max_flow.hpp>

long flow = boost::edmonds_karp_max_flow(G, 0, 5);

#include <boost/graph/push_relabel_max_flow.hpp>

long flow = boost::push_relabel_max_flow(G, 0, 5);

Flow Applications

Input:

- A directed graph G = (V, E) with non-negative edge weights $c : E \to \mathbb{N}$.
- Two distinguished vertices $s, t \in V$.
- An s-t cut is a partition A, B of V with $s \in A$ and $t \in B$.

Output:

• An s-t cut of minimum capacity $cap(A, B) = \sum c(e)$.

Input:

- A directed graph G = (V, E) with non-negative edge weights $c: E \to \mathbb{N}$.
- Two distinguished vertices $s, t \in V$.
- An s-t cut is a partition A, B of V with $s \in A$ and $t \in B$.

Output:

Theorem: Let f be a maximum flow between s and t in G. Let (A^*, B^*) be an s-t cut of minimum capacity in G. $|f| = cap(A^*, B^*).$

Theorem: Let f be a maximum flow between s and t in G. Let (A^*, B^*) be an s-t cut of minimum capacity in G. $|f| = \operatorname{cap}(A^*, B^*).$

Proof: Given $X \subseteq V$, define:

Lemma: Let (A, B) be an s-t cut. $|f| = f^{out}(A) - f^{in}(A)$.

Intuitively: the net flow leaving any s-t cut is |f|.

Lemma: Let (A, B) be an *s*-*t* cut. $|f| = f^{out}(A) - f^{in}(A)$. **Proof:**

$$|f| = f^{\mathsf{out}}(s) = \sum_{u \in A} \left(f^{\mathsf{out}}(u) - f^{\mathsf{in}}(u) \right)$$

Lemma: Let (A, B) be an *s*-*t* cut. $|f| = f^{out}(A) - f^{in}(A)$. **Proof:**

$$|f| = f^{\mathsf{out}}(s) = \sum_{u \in A} \left(f^{\mathsf{out}}(u) - f^{\mathsf{in}}(u) \right)$$

Consider the contribution of edge $e = (u, v) \in E$ to the sum:

• If $u, v \in A$, e contributes 0

Lemma: Let (A, B) be an *s*-*t* cut. $|f| = f^{out}(A) - f^{in}(A)$. **Proof:**

$$|f| = f^{\mathsf{out}}(s) = \sum_{u \in A} \left(f^{\mathsf{out}}(u) - f^{\mathsf{in}}(u) \right)$$

- If $u, v \in A$, e contributes 0
- If $u, v \in B$, e contributes 0

Lemma: Let (A, B) be an *s*-*t* cut. $|f| = f^{out}(A) - f^{in}(A)$. **Proof:**

$$|f| = f^{\mathsf{out}}(s) = \sum_{u \in A} \left(f^{\mathsf{out}}(u) - f^{\mathsf{in}}(u) \right)$$

- If $u, v \in A$, e contributes 0
- If $u, v \in B$, e contributes 0
- If $u \in A$ and $v \in B$, e contributes f(e)

Lemma: Let (A, B) be an *s*-*t* cut. $|f| = f^{out}(A) - f^{in}(A)$. **Proof:**

$$|f| = f^{\mathsf{out}}(s) = \sum_{u \in A} \left(f^{\mathsf{out}}(u) - f^{\mathsf{in}}(u) \right)$$

- If $u, v \in A$, e contributes 0
- If $u, v \in B$, e contributes 0
- If $u \in A$ and $v \in B$, e contributes f(e)
- If $u \in B$ and $v \in A$, e contributes -f(e)

Lemma: Let (A, B) be an *s*-*t* cut. $|f| = f^{out}(A) - f^{in}(A)$. **Proof:**

$$|f| = f^{\mathsf{out}}(s) = \sum_{u \in A} \left(f^{\mathsf{out}}(u) - f^{\mathsf{in}}(u) \right)$$

- If $u, v \in A$, e contributes 0
- If $u, v \in B$, e contributes 0
- If $u \in A$ and $v \in B$, e contributes f(e)
- If $u \in B$ and $v \in A$, e contributes -f(e)

Claim: Let (A, B) be an *s*-*t* cut. $|f| \leq cap(A, B)$.

Claim: Let (A, B) be an s-t cut. $|f| \leq cap(A, B)$.

Proof:

$$\begin{split} f| &= f^{\mathsf{out}}(A) - f^{\mathsf{in}}(A) \leq f^{\mathsf{out}}(A) = \\ &= \sum_{\substack{e = (u, v) \in E \\ u \in A, v \in V \setminus A}} f(e) \leq \sum_{\substack{e = (u, v) \in E \\ u \in A, v \in V \setminus A}} c(e) = \mathsf{cap}(A, B). \end{split}$$

Claim: Let (A, B) be an *s*-*t* cut. $|f| \leq cap(A, B)$.

Corollary:
$$|f| \leq \min_{s-t \text{ cut } (A,B)} \operatorname{cap}(A,B) = \operatorname{cap}(A^*,B^*).$$

- The residual graph G_f for f has no augmenting path.
- Let A be the vertices reachable from s in G_f and $B = V \setminus A$.
- Clearly $s \in A$ and $t \in B \implies (A, B)$ is an s-t cut.

Claim: There is an s-t cut (A, B) such that $|f| \ge cap(A, B)$. **Proof:**

- The residual graph G_f for f has no augmenting path.
- Let A be the vertices reachable from s in G_f and $B = V \setminus A$.
- Clearly $s \in A$ and $t \in B \implies (A, B)$ is an s-t cut.

• If $e = (u, v) \in E$ with $u \in A$ and $v \in B$, f(e) = c(e).

(otherwise (u, v) is in G_f and $v \in A$).

Claim: There is an s-t cut (A, B) such that $|f| \ge cap(A, B)$. **Proof:**

- The residual graph G_f for f has no augmenting path.
- Let A be the vertices reachable from s in G_f and $B = V \setminus A$.
- Clearly $s \in A$ and $t \in B \implies (A, B)$ is an s-t cut.

- If $e = (u, v) \in E$ with $u \in A$ and $v \in B$, f(e) = c(e).
- If $e = (u, v) \in E$ with $u \in B$ and $v \in A$, f(e) = 0.

(otherwise (v, u) is in G_f and $u \in A$).

- The residual graph G_f for f has no augmenting path.
- Let A be the vertices reachable from s in G_f and $B = V \setminus A$.
- Clearly $s \in A$ and $t \in B \implies (A, B)$ is an s-t cut.

- If $e = (u, v) \in E$ with $u \in A$ and $v \in B$, f(e) = c(e).
- If $e = (u, v) \in E$ with $u \in B$ and $v \in A$, f(e) = 0.

$$|f| = f^{\mathsf{out}}(A) - f^{\mathsf{in}}(A) = \sum_{\substack{e = (u,v) \in E \\ u \in A, v \in B}} c(e) - 0 = \mathsf{cap}(A, B).$$

We proved:

We proved:

Corollary:
$$|f| \ge \min_{s-t \text{ cut } (A,B)} \operatorname{cap}(A,B) = \operatorname{cap}(A^*,B^*).$$

We proved:

$$\begin{array}{ll} \textbf{Corollary:} & |f| \geq \min_{s-t \ \text{cut} \ (A,B)} \text{cap}(A,B) = \text{cap}(A^*,B^*). \\ & + \\ \textbf{Corollary:} & |f| \leq \min_{s-t \ \text{cut} \ (A,B)} \text{cap}(A,B) = \text{cap}(A^*,B^*). \end{array}$$

We proved:

Corollary:
$$|f| \ge \min_{s-t \text{ cut } (A,B)} \operatorname{cap}(A,B) = \operatorname{cap}(A^*,B^*).$$

Corollary:
$$|f| \leq \min_{s-t \operatorname{cut}(A,B)} \operatorname{cap}(A,B) = \operatorname{cap}(A^*,B^*).$$

$$\bigcup_{|f| = \operatorname{cap}(A^*, B^*).}$$

Goal: Find the maximum number of ways to go from s to t using each street at most once

Goal: Find the maximum number η of *edge-disjoint* paths from s to t in G.

Goal: Find the maximum number η of *edge-disjoint* paths from s to t in G.

Let f be a maximum flow from s to t in G. Then, $\eta = |f|$.

Goal: Find the maximum number η of *edge-disjoint* paths from s to t in G.

Let f be a maximum flow from s to t in G. Then, $\eta = |f|$. $|f| \le n \implies$ Time complexity: O(mn)

Flow decomposition: A flow $f\ {\rm can}\ {\rm be}\ {\rm decomposed}\ {\rm into}$

- |f| paths from s to t, and
 - A collection of cycles,

that are all edge-disjoint.

Flow decomposition: A flow f can be decomposed into

|f| paths from s to t, and
A collection of cycles,

that are all edge-disjoint.

Finding the decomposition:

- Start from a graph G' with edges along the flow direction.
- Pick any edge (u, v) from G'
- Walk backwards from u and forward from v until a cycle or an *s*-*t*-path is found. Remove its edges. Repeat.

Flow decomposition: A flow $f\ {\rm can}\ {\rm be}\ {\rm decomposed}\ {\rm into}$

• |f| paths from s to t, and

• A collection of cycles,

that are all edge-disjoint.

Time: O(mn)

Finding the decomposition: O(m) iterations O(n) time per it.

- Start from a graph G' with edges along the flow direction.
- Pick any edge (u,v) from G'
- Walk backwards from u and forward from v until a cycle or an *s*-*t*-path is found. Remove its edges. Repeat.

Circulation

In addition to edge capacities $c(e) \in \mathbb{N}$, each vertex v has an associated value $d_v \in \mathbb{Z}$

- If $d_v > 0$, vertex v has a *demand* of d_v units of flow.
- If $d_v < 0$, vertex v has a supply of $-d_v$ units of flow.

Is it possible to circulate flow so that all demands are met?

Circulation

In addition to edge capacities $c(e) \in \mathbb{N}$, each vertex v has an associated value $d_v \in \mathbb{Z}$

- If $d_v > 0$, vertex v has a *demand* of d_v units of flow.
- If $d_v < 0$, vertex v has a supply of $-d_v$ units of flow.

Is it possible to circulate flow so that all demands are met?

Circulation

In addition to edge capacities $c(e) \in \mathbb{N}$, each vertex v has an associated value $d_v \in \mathbb{Z}$

- If $d_v > 0$, vertex v has a *demand* of d_v units of flow.
- If $d_v < 0$, vertex v has a supply of $-d_v$ units of flow.

Is it possible to circulate flow so that all demands are met?

Circulation

In addition to edge capacities $c(e) \in \mathbb{N}$, each vertex v has an associated value $d_v \in \mathbb{Z}$

- If $d_v > 0$, vertex v has a *demand* of d_v units of flow.
- If $d_v < 0$, vertex v has a supply of $-d_v$ units of flow.

Is it possible to circulate flow so that all demands are met?

Circulation

In addition to edge capacities $c(e) \in \mathbb{N}$, each vertex v has an associated value $d_v \in \mathbb{Z}$

- If $d_v > 0$, vertex v has a *demand* of d_v units of flow.
- If $d_v < 0$, vertex v has a supply of $-d_v$ units of flow.

Is it possible to circulate flow so that all demands are met?

Circulation

In addition to edge capacities $c(e) \in \mathbb{N}$, each vertex v has an associated value $d_v \in \mathbb{Z}$

- If $d_v > 0$, vertex v has a *demand* of d_v units of flow.
- If $d_v < 0$, vertex v has a supply of $-d_v$ units of flow.

Is it possible to circulate flow so that all demands are met?

Compute maximum flow f and check if $|f| = \sum_{(v,t)} c(v,t)$.

 $M\subseteq E$ is a matching if no two edges in M share an endvertex

Goal: find a maximum-cardinality matching.

 $M \subseteq E$ is a matching if no two edges in M share an endvertex

Goal: find a maximum-cardinality matching.

All capacities are 1

 $M \subseteq E$ is a matching if no two edges in M share an endvertex

Goal: find a maximum-cardinality matching.

All capacities are 1

 $M \subseteq E$ is a matching if no two edges in M share an endvertex

Goal: find a maximum-cardinality matching.

Size of a maximum-cardinality matching: 3

 $M\subseteq E$ is a matching if no two edges in M share an endvertex

Goal: find a maximum-cardinality matching.

Size of a maximum-cardinality matching: 3

König's theorem: on bipartite graphs, the cardinality of a maximum matching is the size of a minimum vertex cover.

Goal (inf): segment an image into background and foreground

Goal (inf): segment an image into background and foreground

Goal (inf): segment an image into background and foreground

• Each pixel *i* has an associated likelihood f_i (resp. b_i) to be in the foreground (resp. background)

Goal (inf): segment an image into background and foreground

• Each pixel *i* has an associated likelihood f_i (resp. b_i) to be in the foreground (resp. background)

Goal (inf): segment an image into background and foreground

- Each pixel *i* has an associated likelihood f_i (resp. b_i) to be in the foreground (resp. background)
- Each pair i, j of adjacent pixels have an associated separation penalty $p_{i,j}$

This penalty is incurred if one pixel is in the background and the other is in the foreground

Goal (inf): segment an image into background and foreground

- Each pixel *i* has an associated likelihood f_i (resp. b_i) to be in the foreground (resp. background)
- Each pair i, j of adjacent pixels have an associated separation penalty $p_{i,j}$

This penalty is incurred if one pixel is in the background and the other is in the foreground

Goal (inf): segment an image into *background* and *foreground*

- Each pixel *i* has an associated likelihood f_i (resp. b_i) to be in the foreground (resp. background)
- Each pair i, j of adjacent pixels have an associated separation penalty $p_{i,j}$

$$\sum_{i \in F} f_i + \sum_{i \in B} b_i - \sum_{\substack{\text{adjacent } i, j \\ |F \cap \{i, j\}| = 1}} p_{i, j}$$

$$\sum_{i \in F} f_i + \sum_{i \in B} b_i - \sum_{\substack{\text{adjacent } i, j \\ |F \cap \{i, j\}| = 1}} p_{i, j}$$

$$\sum_{i \in F} f_i + \sum_{i \in B} b_i - \sum_{\substack{\text{adjacent } i, j \\ |F \cap \{i, j\}| = 1}} p_{i, j}$$
$$\sum_i f_i - \sum_{i \in B} f_i$$

$$\sum_{i \in F} f_i + \sum_{i \in B} b_i - \sum_{\substack{\text{adjacent } i, j \\ |F \cap \{i, j\}| = 1}} p_{i, j}$$
$$\sum_i f_i - \sum_{i \in B} f_i \qquad \sum_i b_i - \sum_{i \in F} b_i$$

$$\sum_{i \in B} (f_i + b_i) - \sum_{i \in B} f_i - \sum_{i \in F} b_i - \sum_{\substack{\text{adjacent } i, j \\ |F \cap \{i, j\}| = 1}} p_{i, j}$$

$$\sum_{i \in B} (f_i + b_i) - \sum_{i \in B} f_i - \sum_{i \in F} b_i - \sum_{\substack{\text{adjacent } i, j \\ |F \cap \{i, j\}| = 1}} p_{i, j}$$

$$\sum_{i \in B} f_i + \sum_{i \in F} b_i + \sum_{\substack{\text{adjacent } i, j \\ |F \cap \{i, j\}| = 1}} p_{i, j}$$

$$\sum_{i \in B} f_i + \sum_{i \in F} b_i + \sum_{\substack{\text{adjacent } i, j \\ |F \cap \{i, j\}| = 1}} p_{i, j}$$

$$\sum_{i \in B} f_i + \sum_{i \in F} b_i + \sum_{\substack{\text{adjacent } i, j \\ |F \cap \{i, j\}| = 1}} p_{i, j}$$

(s)

(t)

$$\sum_{i \in B} f_i + \sum_{i \in F} b_i + \sum_{\substack{\text{adjacent } i, j \\ |F \cap \{i, j\}| = 1}} p_{i, j}$$

Equivalent goal: find a partition F, B of the pixels **minimizing**

(t)

$$\sum_{i \in B} f_i + \sum_{i \in F} b_i + \sum_{\substack{\text{adjacent } i, j \\ |F \cap \{i, j\}| = 1}} p_{i, j}$$

$$\sum_{i \in B} f_i + \sum_{i \in F} b_i + \sum_{\substack{\text{adjacent } i, j \\ |F \cap \{i, j\}| = 1}} p_{i, j}$$

$$\sum_{i \in B} f_i + \sum_{i \in F} b_i + \sum_{\substack{\text{adjacent } i, j \\ |F \cap \{i, j\}| = 1}} p_{i, j}$$

Equivalent goal: find a partition F, B of the pixels **minimizing**

$$\sum_{i \in B} f_i + \sum_{i \in F} b_i + \sum_{\substack{\text{adjacent } i, j \\ |F \cap \{i, j\}| = 1}} p_{i, j}$$

Solution: Compute a minimum *s*-*t*-cut (F', B'), pick $F = F' \setminus \{s\}$ and $B = B' \setminus \{t\}$

Min-Cost Max-Flow

Min-Cost Max-Flow

Input:

- A directed graph G = (V, E)
- A source vertex $s \in V$, with no incoming edges
- A target vertex $t \in V$, with no outgoing edges
- A function cap : $E \to \mathbb{N}$ that maps each edge to its capacity
- A function cost : $E \to \mathbb{Z}$ that maps each edge to its *cost*

Output:

A flow f that minimizes $cost(f) = \sum_{e \in E} f(e) \cdot cost(e)$ chosen among all s-t flows that maximize |f|.

Minimum Cost Bipartite Matching

Goal: find a maximum-cardinality matching of minimum cost.

Minimum Cost Bipartite Matching

Goal: find a maximum-cardinality matching of minimum cost.

 $\mathsf{capacity}(\cdot)$

Minimum Cost Bipartite Matching

Goal: find a maximum-cardinality matching of minimum cost.

cost(f) = 3 + 1 + 3 = 7

|f| = 3

Oil Delivery

Oil needs to be delivered from refineries to gas stations.

- Refinery i produces s_i units of oil.
- Gas station j needs d_j units of oil.

Using a truck to transport 1 unit oil across road e costs cost(e).

At most cap(e) trucks per day can traverse road e.

Goal: satisfy all demands with minimum cost.

Oil Delivery

Oil needs to be delivered from refineries to gas stations.

- Refinery i produces s_i units of oil.
- Gas station j needs d_j units of oil.

Using a truck to transport 1 unit oil across road e costs cost(e).

At most cap(e) trucks per day can traverse road e.

Goal: satisfy all demands with minimum cost.

Min-Cost Max-Flow in BGL

Costs are encoded as edge weights (boost::edge_weight_t). Edge e has weight cost(e). The reverse edge has weight -cost(e)

Cycle Canceling

- Needs an initial maximum flow f to work.
- Time $O(C \cdot n \cdot m)$, where C is the cost difference between f and a MCMF.
- Can handle negative costs
Min-Cost Max-Flow in BGL

Costs are encoded as edge weights (boost::edge_weight_t). Edge e has weight cost(e). The reverse edge has weight -cost(e)

Cycle Canceling

- Needs an initial maximum flow f to work.
- Time $O(C \cdot n \cdot m)$, where C is the cost difference between f and a MCMF.
- Can handle negative costs

Successive Shortest Paths

- Does not need an initial flow.
- Time $O(|f| \cdot (m + n \log n))$, where |f| is the maximum flow.
- Cannot handle negative costs

int main()

{

```
Graph G(6);
EdgeAdder edge_adder(G);
```

```
edge_adder.add_edge(0, 1, 1, 2);
edge_adder.add_edge(0, 3, 2, 3);
edge_adder.add_edge(1, 2, 3, 5);
edge_adder.add_edge(1, 4, 4, 1);
edge_adder.add_edge(2, 5, 2, 3);
edge_adder.add_edge(3, 1, 1, 1);
edge_adder.add_edge(3, 2, 2, 6);
edge_adder.add_edge(4, 5, 2, 4);
```

```
long flow = boost::push_relabel_max_flow(G, 0, 5);
std::cout << "The_maximum_flow_from_0_to_5_is_" << flow << "\n";</pre>
```

```
return EXIT_SUCCESS;
```

int main()

{

Graph G(6); EdgeAdder edge_adder(G);

costs

edge_adder.add_edge(0, 1, 1, 2); edge_adder.add_edge(0, 3, 2, 3); edge_adder.add_edge(1, 2, 3, 5); edge_adder.add_edge(1, 4, 4, 1); edge_adder.add_edge(2, 5, 2, 3); edge_adder.add_edge(3, 1, 1, 1); edge_adder.add_edge(3, 2, 2, 6); edge_adder.add_edge(4, 5, 2, 4);

Alternatively, edmonds_karp_max_flow

long flow = boost::push_relabel_max_flow(G, 0, 5); std::cout << "The_maximum_flow_from_0_to_5_is_" << flow << "\n";</pre>

return EXIT_SUCCESS;

returns the cost of the flow

int main()

{

Successive Shortest Paths: Example

```
int main()
```

ſ

}

```
[...]
```

```
boost::successive_shortest_path_nonnegative_weights(G, 0, 5);
```

```
return EXIT_SUCCESS;
```

Successive Shortest Paths: Example

int main()

{

[...]

boost::successive_shortest_path_nonnegative_weights(G, 0, 5);

//Compute flow value by summing over out-edges of the source vertex 0
capacity_map capacity = boost::get(boost::edge_capacity, G);
residual_map residual_capacity =

boost::get(boost::edge_residual_capacity, G);

```
Compute |f| = \sum_{e=(s,v)} f(e)
```

```
long flow = 0;
for(auto [eit, eend]= boost::out_edges(0, G); eit!=eend; eit++)
    flow += capacity[*eit] - residual_capacity[*eit];
```

std::cout << "The_maximum_flow_from_0_to_5_is_" << flow << "\n";</pre>

```
return EXIT_SUCCESS;
```

Successive Shortest Paths: Example

int main()

{

