
Network Flow

Network Flow

4 8 l/s

6

3 5

1232

4

?

Network Flow

4 8 l/s

6

3 5

1232

4

4
8

3 5
2

6

4
1

t

s

?

3 2

Network Flow: Problem Definition
Input:

• A directed graph G = (V,E)

• A function c : E → N that maps each edge to its capacity

Output:

A function f : E → R that associates each edge e to the flow
f(e) ≥ 0 across e and satisfies:

• Capacity constraints: ∀e ∈ E, f(e) ≤ c(e)

• Flow conservation: ∀v∈V \ {s, t},
X

(u,v)∈E

f(u, v) =
X

(v,w)∈E

f(v, w)

• A source vertex s ∈ V , with no incoming edges

• A target vertex t ∈ V , with no outgoing edges

Network Flow: Problem Definition
Measure (to maximize):

• The amount of flow leaving s (equivalently, reaching t).

|f | =
X

(s,v)∈E

f(s, v)

c

a d

b

1

2
2

3

4

2

2

Example:

s t

Network Flow: Problem Definition
Measure (to maximize):

• The amount of flow leaving s (equivalently, reaching t).

|f | =
X

(s,v)∈E

f(s, v)

c

a d

b

1

2
2

3

4

2

2

Maximum flow = 3

Example:

s t

Linear Programming Formulation

max
X

(s,v)∈E

fs,v s.t.

c(u, v)− fu,v ≥ 0 ∀(u, v) ∈ E
X

(u,v)∈E

fu,v −
X

(v,w)∈E

fv,w = 0 ∀v ∈ V \ {s, t}

fu,v ≥ 0 ∀(u, v) ∈ E

Capacity

Conservation Non-negative flow

|f |

d

t

1

2
2

3

4

2

2

A Solution Attempt

• Find a path P from s to t in G

a

s

c b

d

t

1

2
2

3

4

2

2

A Solution Attempt

• Find a path P from s to t in G

a

s

c b

d

t

1

2
2

3

4

2

2

A Solution Attempt

• Find a path P from s to t in G

a

• Send one unit of flow along P

s

c b

d

t

2
2

4
2

A Solution Attempt

• Find a path P from s to t in G

a

• Send one unit of flow along P

• Update capacities

0

2

1

s

c b

d

t

2
2

4
2

A Solution Attempt

• Find a path P from s to t in G

a

• Send one unit of flow along P

• Update capacities

2

1

• Repeat

s

c b

d

t

4
2

A Solution Attempt

• Find a path P from s to t in G

a

• Send one unit of flow along P

• Update capacities

• Repeat

s

c b
1

1

2

0

d

t

4
2

A Solution Attempt

• Find a path P from s to t in G

a

• Send one unit of flow along P

• Update capacities

• Repeat

s

c b
1

1

2

until no more paths from s to t exist

d

t

4
2

A Solution Attempt

• Find a path P from s to t in G

a

• Send one unit of flow along P

• Update capacities

• Repeat

s

c b
1

1

2

Computed flow = 2

until no more paths from s to t exist

d

t

4
2

A Solution Attempt

• Find a path P from s to t in G

a

• Send one unit of flow along P

• Update capacities

• Repeat

s

c b
1

1

2

Computed flow = 2

Might get stuck in a local maximum.Maximum flow = 3

until no more paths from s to t exist

A Second Attempt
• Find an augmenting path P from s to t in G

• Send one unit of flow along P

• Compute the residual graph

1

2
2

3

2

s

a

c b

d

t

4
2

4
2

A Second Attempt
• Find an augmenting path P from s to t in G

• Send one unit of flow along P

• Compute the residual graph

2
2

1

0

2
1 1

1

s

a

c b

d

t

4
2

A Second Attempt
• Find an augmenting path P from s to t in G

• Send one unit of flow along P

• Compute the residual graph

1

0

2
1 1

1

s

a

c b

d

t

2
2

• Repeat

4
2

A Second Attempt
• Find an augmenting path P from s to t in G

• Send one unit of flow along P

• Compute the residual graph

1

0

2
1 2

0

1

1

1

1

s

a

c b

d

t

• Repeat

A Second Attempt
• Find an augmenting path P from s to t in G

• Send one unit of flow along P

• Compute the residual graph

44
2

1

0

2
1 2

0

1

1

1

1

ss

a

c

a

c bb

dd

tt

• Repeat

A Second Attempt
• Find an augmenting path P from s to t in G

• Send one unit of flow along P

• Compute the residual graph

1

0
2

0

0

0
0

ss

a

c

a

c bb

2 3

2

dd

tt

3

1

1

1

• Repeat

A Second Attempt
• Find an augmenting path P from s to t in G

• Send one unit of flow along P

• Compute the residual graph

1

0
2

0

0

0
0

ss

a

c

a

c bb

2 3

2

dd

tt

3

1

1

1

• Repeat

No more paths from s to t. Computed flow = 3.

A Second Attempt

1

0
2

0

0

0

ss

a

c

a

c bb

2 3

2

dd

tt

3

1

1

1

0

• The flow f(e) on e is the original capacity c(e) of e minus
the capacity of e in the residual graph Gf .

A Second Attempt

• The flow f(e) on e is the original capacity c(e) of e minus
the capacity of e in the residual graph Gf .

d

t

1

2
2

3

4

2

2a

s

c b
f(s, c) = 2

f(c, b) = 2
f(b, t) = 2

f(s, a) = 1
f(a, d) = 1

f(d, t) = 1

Flow Algorithms

• Ford-Fulkerson (1955): Choose any augmenting path P

Time: O(m · f∗)

Time to find P Value of max flow

• Edmonds-Karp (1972): Choose an augmenting path P with
the fewest number of edges

Time: O(min{m · f∗,m2 · n})

= O(m · n ·maxe c(e))

• Push-Relabel (1986):

Time: O(n3)

Flow Tricks
Multiple Sources/Sinks

s1

s2

t1

t2

s t

∞

∞

∞

∞

Flow Tricks
Multiple Sources/Sinks

s1

s2

t1

t2

s t

∞

∞

∞

∞

Vertex capacities

5
5⇒

Flow Tricks
Multiple Sources/Sinks

s1

s2

t1

t2

s t

∞

∞

∞

∞

Vertex capacities

5
5⇒

Undirected Edges

5 ⇒
5

5
+ re-transform flow to use only

1 direction
1/5

4/5

⇒ 3/5

Flow Tricks
Multiple Sources/Sinks

s1

s2

t1

t2

s t

∞

∞

∞

∞

Vertex capacities

5
5⇒

Undirected Edges

5 ⇒
5

5
+ re-transform flow to use only

1 direction
1/5

4/5

⇒ 3/5

Minimum flow across edges
f(e) ∈ [c, C]

e

Solution f1 + f2 can be found as a
feasible flow f1 plus a max-flow f2

[c, C]

(See provided references if interested in the details)

Network Flow in BGL

We will need three property maps:

• boost::edge capacity t: maps each edge e to its
capacity c(e).

• boost::edge reverse t: we need to map each edge
e = (u, v) to its corresponding reverse edge e′ = (v, u),
and vice-versa.

• boost::edge residual capacity t: maps each edge e
to its capacity in the residual network.

u v

Network Flow in BGL

We will need three property maps:

• boost::edge capacity t: maps each edge e to its
capacity c(e).

• boost::edge reverse t: we need to map each edge
e = (u, v) to its corresponding reverse edge e′ = (v, u),
and vice-versa.

• boost::edge residual capacity t: maps each edge e
to its capacity in the residual network.

If both (u, v) and (v, u) are in the input graph, then the boost graph
will have parallel edges.

u v

Network Flow in BGL

#include <boost/graph/adjacency_list.hpp>

typedef boost::adjacency_list_traits<boost::vecS, boost::vecS,

boost::directedS> Traits;

typedef boost::adjacency_list<boost::vecS, boost::vecS,

boost::directedS, boost::no_property,

boost::property<boost::edge_capacity_t, long,

boost::property<boost::edge_residual_capacity_t, long,

boost::property<boost::edge_reverse_t, Traits::edge_descriptor>

> > > Graph;

typedef boost::property_map<Graph, boost::edge_capacity_t>::type

capacity_map;

typedef boost::property_map<Graph, boost::edge_residual_capacity_t>::type

residual_map;

typedef boost::property_map<Graph, boost::edge_reverse_t>::type

reverse_map;

Network Flow in BGL

Network Flow in BGL
Simplify Graph Construction with a Helper Class
class EdgeAdder

{

Graph &G; capacity_map capacity; reverse_map reverse;

public:

explicit EdgeAdder(Graph &G) : G(G)

{

capacity = boost::get(boost::edge_capacity, G);

reverse = boost::get(boost::edge_reverse, G);

}

void add_edge(long u, long v, long c)

{

auto [e, added] = boost::add_edge(u, v, G);

auto [rev, rev_added] = boost::add_edge(v, u, G);

capacity[e] = c; capacity[rev] = 0;

reverse[e] = rev; reverse[rev] = e;

}

};

Network Flow in BGL
int main()

{

Graph G(6);

EdgeAdder edge_adder(G);

edge_adder.add_edge(0, 1, 1);

edge_adder.add_edge(0, 3, 2);

edge_adder.add_edge(1, 2, 3);

edge_adder.add_edge(1, 4, 4);

edge_adder.add_edge(2, 5, 2);

edge_adder.add_edge(3, 2, 2);

edge_adder.add_edge(4, 5, 2);

[...]

4

5

1

2
2

3

4

2

2
1

0

3 2

Network Flow in BGL
#include <boost/graph/edmonds_karp_max_flow.hpp>

[...]

long flow = boost::edmonds_karp_max_flow(G, 0, 5);

std::cout << "The␣maximum␣flow␣from␣0␣to␣5␣is␣" << flow << "\n";

capacity_map capacity = boost::get(boost::edge_capacity, G);

residual_map residual_capacity =

boost::get(boost::edge_residual_capacity, G);

auto [e, found] = boost::edge(1, 4, G);

std::cout << "The␣flow␣across␣edge␣(1,␣4)␣is:␣"

<< capacity[e] - residual_capacity[e] << "\n";

2

4

5

1

2

3

4

2

2
1

0

23

Network Flow in BGL
#include <boost/graph/edmonds_karp_max_flow.hpp>

[...]

long flow = boost::edmonds_karp_max_flow(G, 0, 5);

std::cout << "The␣maximum␣flow␣from␣0␣to␣5␣is␣" << flow << "\n";

capacity_map capacity = boost::get(boost::edge_capacity, G);

residual_map residual_capacity =

boost::get(boost::edge_residual_capacity, G);

auto [e, found] = boost::edge(1, 4, G);

std::cout << "The␣flow␣across␣edge␣(1,␣4)␣is:␣"

<< capacity[e] - residual_capacity[e] << "\n";

2

4

5

1

2

3

4

2

2
1

0

23

$ g++ -std=c++17 flow.cpp -o flow

$

$./flow

The maximum flow from 0 to 5 is 3

The flow across edge (1, 4) is: 1

$

Push-Relabel in BGL

#include <boost/graph/edmonds_karp_max_flow.hpp>

long flow = boost::edmonds_karp_max_flow(G, 0, 5);

#include <boost/graph/push_relabel_max_flow.hpp>

long flow = boost::push_relabel_max_flow(G, 0, 5);

2

4

5

1

2

3

4

2

2
1

0

23

Flow Applications

Minimum s–t Cut

• A directed graph G = (V,E) with non-negative edge
weights c : E → N.

Input:

Output:

• An s–t cut of minimum capacity

t
6

3

4

1

4

2

7

Example:

• Two distinguished vertices s, t ∈ V .

cap(A,B) =
X

e=(u,v)∈E
u∈A,v∈B

c(e).

s

• An s–t cut is a partition A,B of V with s ∈ A and t ∈ B.

Minimum s–t Cut

• A directed graph G = (V,E) with non-negative edge
weights c : E → N.

Input:

Output:

• An s–t cut of minimum capacity

t
6

3

4

1

4

2

7

Capacity: 5

Example:

• Two distinguished vertices s, t ∈ V .

cap(A,B) =
X

e=(u,v)∈E
u∈A,v∈B

c(e).

s

A

• An s–t cut is a partition A,B of V with s ∈ A and t ∈ B.

B

Theorem: Let f be a maximum flow between s and t in G.
Let (A∗, B∗) be an s–t cut of minimum capacity in G.

|f | = cap(A∗, B∗).

Minimum s–t Cut

Theorem: Let f be a maximum flow between s and t in G.
Let (A∗, B∗) be an s–t cut of minimum capacity in G.

|f | = cap(A∗, B∗).

Minimum s–t Cut

fout(X) =
X

e=(u,v)∈E
u∈X,v∈V \X

f(e)

Proof: Given X ⊆ V , define:

X V \X X V \X

f in(X) =
X

e=(u,v)∈E
u∈V \X,v∈X

f(e)

Flow going into X Flow leaving X

Minimum s–t Cut
Lemma: Let (A,B) be an s–t cut. |f | = fout(A)− f in(A).

Intuitively: the net flow leaving any s–t cut is |f |.

A

B
s

t

|f | = 2

Minimum s–t Cut
Lemma: Let (A,B) be an s–t cut. |f | = fout(A)− f in(A).

|f | = fout(s) =
X

u∈A

fout(u)− f in(u)

�

Consider the contribution of edge e = (u, v) ∈ E to the sum:

Proof:

A

B
s

Minimum s–t Cut
Lemma: Let (A,B) be an s–t cut. |f | = fout(A)− f in(A).

|f | = fout(s) =
X

u∈A

fout(u)− f in(u)

�

Consider the contribution of edge e = (u, v) ∈ E to the sum:

• If u, v ∈ A, e contributes 0

Proof:

A

B
s

Minimum s–t Cut
Lemma: Let (A,B) be an s–t cut. |f | = fout(A)− f in(A).

|f | = fout(s) =
X

u∈A

fout(u)− f in(u)

�

• If u, v ∈ B, e contributes 0

Consider the contribution of edge e = (u, v) ∈ E to the sum:

• If u, v ∈ A, e contributes 0

Proof:

A

B
s

Minimum s–t Cut
Lemma: Let (A,B) be an s–t cut. |f | = fout(A)− f in(A).

|f | = fout(s) =
X

u∈A

fout(u)− f in(u)

�

• If u, v ∈ B, e contributes 0

Consider the contribution of edge e = (u, v) ∈ E to the sum:

• If u, v ∈ A, e contributes 0

• If u ∈ A and v ∈ B, e contributes f(e)

Proof:

A

B
s

Minimum s–t Cut
Lemma: Let (A,B) be an s–t cut. |f | = fout(A)− f in(A).

|f | = fout(s) =
X

u∈A

fout(u)− f in(u)

�

• If u, v ∈ B, e contributes 0

Consider the contribution of edge e = (u, v) ∈ E to the sum:

• If u, v ∈ A, e contributes 0

• If u ∈ A and v ∈ B, e contributes f(e)

• If u ∈ B and v ∈ A, e contributes −f(e)

Proof:

A

B
s

Minimum s–t Cut
Lemma: Let (A,B) be an s–t cut. |f | = fout(A)− f in(A).

|f | = fout(s) =
X

u∈A

fout(u)− f in(u)

�

• If u, v ∈ B, e contributes 0

Consider the contribution of edge e = (u, v) ∈ E to the sum:

• If u, v ∈ A, e contributes 0

• If u ∈ A and v ∈ B, e contributes f(e)

• If u ∈ B and v ∈ A, e contributes −f(e)

|f | =
X

e=(u,v)∈E
u∈A,v∈V \A

f(e)−
X

e=(u,v)∈E
u∈V \A,v∈A

f(e) = fout(A)− f in(A)

Proof:

□

A

B
s

Minimum s–t Cut
Claim: Let (A,B) be an s–t cut. |f | ≤ cap(A,B).

A
s

|f | ≤ 4

t

B

Minimum s–t Cut
Claim: Let (A,B) be an s–t cut. |f | ≤ cap(A,B).

Proof:

|f | = fout(A)− f in(A) ≤ fout(A) =

□

=
X

e=(u,v)∈E
u∈A,v∈V \A

f(e) ≤
X

e=(u,v)∈E
u∈A,v∈V \A

c(e) = cap(A,B).

A
s

|f | ≤ 4

t

B

Minimum s–t Cut
Claim: Let (A,B) be an s–t cut. |f | ≤ cap(A,B).

|f | ≤ min
s–t cut (A,B)

cap(A,B) = cap(A∗, B∗).Corollary:

A
s

|f | ≤ 4

t

B

Minimum s–t Cut
Claim: There is an s–t cut (A,B) such that |f | ≥ cap(A,B).

• The residual graph Gf for f has no augmenting path.

• Let A be the vertices reachable from s in Gf and B=V \A.
• Clearly s ∈ A and t ∈ B =⇒ (A,B) is an s–t cut.

Proof:

A B
s

t

Minimum s–t Cut
Claim: There is an s–t cut (A,B) such that |f | ≥ cap(A,B).

• The residual graph Gf for f has no augmenting path.

• Let A be the vertices reachable from s in Gf and B=V \A.
• Clearly s ∈ A and t ∈ B =⇒ (A,B) is an s–t cut.

• If e = (u, v) ∈ E with u ∈ A and v ∈ B, f(e) = c(e).

(otherwise (u, v) is in Gf and v ∈ A).

Proof:

A B
s

t

c(e)

vu

Minimum s–t Cut
Claim: There is an s–t cut (A,B) such that |f | ≥ cap(A,B).

• The residual graph Gf for f has no augmenting path.

• Let A be the vertices reachable from s in Gf and B=V \A.
• Clearly s ∈ A and t ∈ B =⇒ (A,B) is an s–t cut.

• If e = (u, v) ∈ E with u ∈ A and v ∈ B, f(e) = c(e).

• If e = (u, v) ∈ E with u ∈ B and v ∈ A, f(e) = 0.

Proof:

(otherwise (v, u) is in Gf and u ∈ A).

A B
s

t

c(e)

0 uv

Minimum s–t Cut
Claim: There is an s–t cut (A,B) such that |f | ≥ cap(A,B).

• The residual graph Gf for f has no augmenting path.

• Let A be the vertices reachable from s in Gf and B=V \A.
• Clearly s ∈ A and t ∈ B =⇒ (A,B) is an s–t cut.

• If e = (u, v) ∈ E with u ∈ A and v ∈ B, f(e) = c(e).

• If e = (u, v) ∈ E with u ∈ B and v ∈ A, f(e) = 0.

Proof:

A B
s

t

c(e)

0

|f | = fout(A)− f in(A) =
X

e=(u,v)∈E
u∈A,v∈B

c(e)− 0 = cap(A,B).

□

Claim: There is an s–t cut (A,B) such that |f | ≥ cap(A,B).

Minimum s–t Cut

We proved:

Claim: There is an s–t cut (A,B) such that |f | ≥ cap(A,B).

Minimum s–t Cut

|f | ≥ min
s–t cut (A,B)

cap(A,B) = cap(A∗, B∗).Corollary:

We proved:

Claim: There is an s–t cut (A,B) such that |f | ≥ cap(A,B).

Minimum s–t Cut

|f | ≥ min
s–t cut (A,B)

cap(A,B) = cap(A∗, B∗).Corollary:

|f | ≤ min
s–t cut (A,B)

cap(A,B) = cap(A∗, B∗).Corollary:

+

We proved:

Claim: There is an s–t cut (A,B) such that |f | ≥ cap(A,B).

Minimum s–t Cut

|f | ≥ min
s–t cut (A,B)

cap(A,B) = cap(A∗, B∗).Corollary:

|f | ≤ min
s–t cut (A,B)

cap(A,B) = cap(A∗, B∗).Corollary:

+

⇒

|f | = cap(A∗, B∗).

We proved:

□

Edge Disjoint Paths

s

t

Goal: Find the maximum number of ways to go from s to t
using each street at most once

Edge Disjoint Paths

s

t

Goal: Find the maximum number η of edge-disjoint paths
from s to t in G.

G

Edge Disjoint Paths

s

t

Goal: Find the maximum number η of edge-disjoint paths
from s to t in G.

G

Let f be a maximum flow from s to t in G. Then, η = |f |.

Edge Disjoint Paths

s

t

Goal: Find the maximum number η of edge-disjoint paths
from s to t in G.

G

Let f be a maximum flow from s to t in G. Then, η = |f |.
|f | ≤ n =⇒ Time complexity: O(mn)

Edge Disjoint Paths
Flow decomposition: A flow f can be decomposed into

s

t
G

• |f | paths from s to t, and

• A collection of cycles,

that are all edge-disjoint.

Edge Disjoint Paths
Flow decomposition: A flow f can be decomposed into

s

t
G

• |f | paths from s to t, and

• A collection of cycles,

that are all edge-disjoint.

• Walk backwards from u and forward from v until a cycle
or an s-t-path is found. Remove its edges. Repeat.

• Start from a graph G′ with edges along the flow direction.

• Pick any edge (u, v) from G′

Finding the decomposition:

Edge Disjoint Paths
Flow decomposition: A flow f can be decomposed into

s

t
G

• |f | paths from s to t, and

• A collection of cycles,

that are all edge-disjoint.

• Walk backwards from u and forward from v until a cycle
or an s-t-path is found. Remove its edges. Repeat.

• Start from a graph G′ with edges along the flow direction.

• Pick any edge (u, v) from G′

Finding the decomposition: O(m) iterations O(n) time per it.

Time: O(mn)

Circulation
In addition to edge capacities c(e) ∈ N, each vertex v has an
associated value dv ∈ Z
• If dv > 0, vertex v has a demand of dv units of flow.

• If dv < 0, vertex v has a supply of −dv units of flow.

Is it possible to circulate flow so that all demands are met?

da

−3

6

4

−8

2

2 7

3

1

b

c

Circulation
In addition to edge capacities c(e) ∈ N, each vertex v has an
associated value dv ∈ Z
• If dv > 0, vertex v has a demand of dv units of flow.

• If dv < 0, vertex v has a supply of −dv units of flow.

Is it possible to circulate flow so that all demands are met?

da

−3

6

4

−8

2

2 7

3

1

1

2
72

b

c

Circulation
In addition to edge capacities c(e) ∈ N, each vertex v has an
associated value dv ∈ Z
• If dv > 0, vertex v has a demand of dv units of flow.

• If dv < 0, vertex v has a supply of −dv units of flow.

Is it possible to circulate flow so that all demands are met?

da

−3

6

4

−8

2

2 7

3

1

ts

b

c

Circulation
In addition to edge capacities c(e) ∈ N, each vertex v has an
associated value dv ∈ Z
• If dv > 0, vertex v has a demand of dv units of flow.

• If dv < 0, vertex v has a supply of −dv units of flow.

Is it possible to circulate flow so that all demands are met?

da

6

4

2

2 7

3

1

ts
3

8 b

c

In addition to edge capacities c(e) ∈ N, each vertex v has an
associated value dv ∈ Z

Circulation
In addition to edge capacities c(e) ∈ N, each vertex v has an
associated value dv ∈ Z
• If dv > 0, vertex v has a demand of dv units of flow.

• If dv < 0, vertex v has a supply of −dv units of flow.

Is it possible to circulate flow so that all demands are met?

da

2

2 7

3

1

ts
3

8 b 6

c
4

In addition to edge capacities c(e) ∈ N, each vertex v has an
associated value dv ∈ Z

Circulation
In addition to edge capacities c(e) ∈ N, each vertex v has an
associated value dv ∈ Z
• If dv > 0, vertex v has a demand of dv units of flow.

• If dv < 0, vertex v has a supply of −dv units of flow.

Is it possible to circulate flow so that all demands are met?

da

2

2 7

3

1

ts
3

8 b 6

c
4

Compute maximum flow f and check if |f | = P
(v,t) c(v, t).

In addition to edge capacities c(e) ∈ N, each vertex v has an
associated value dv ∈ Z

Maximum Bipartite Matching

M ⊆ E is a matching if no two edges in M share an endvertex

Goal: find a maximum-cardinality matching.

Maximum Bipartite Matching

All capacities are 1

s t

M ⊆ E is a matching if no two edges in M share an endvertex

Goal: find a maximum-cardinality matching.

Maximum Bipartite Matching

All capacities are 1

s t

M ⊆ E is a matching if no two edges in M share an endvertex

Goal: find a maximum-cardinality matching.

Maximum Bipartite Matching

Size of a maximum-cardinality matching: 3

M ⊆ E is a matching if no two edges in M share an endvertex

Goal: find a maximum-cardinality matching.

Maximum Bipartite Matching

Size of a maximum-cardinality matching: 3

M ⊆ E is a matching if no two edges in M share an endvertex

Goal: find a maximum-cardinality matching.

Kőnig’s theorem: on bipartite graphs, the cardinality of a
maximum matching is the size of a minimum vertex cover.

Image Segmentation

Goal (inf): segment an image into background and foreground

Image Segmentation

Goal (inf): segment an image into background and foreground

Image Segmentation

• Each pixel i has an associated likelihood fi (resp. bi) to be
in the foreground (resp. background)

20
2

1
25

Goal (inf): segment an image into background and foreground

Image Segmentation

• Each pixel i has an associated likelihood fi (resp. bi) to be
in the foreground (resp. background)

f1
b1

f25
b25

f2
b2

...

...

Goal (inf): segment an image into background and foreground

Image Segmentation

• Each pixel i has an associated likelihood fi (resp. bi) to be
in the foreground (resp. background)

f1
b1

f25
b25

f2
b2

...

...

• Each pair i, j of adjacent pixels have an associated
separation penalty pi,j

Goal (inf): segment an image into background and foreground

3
50

This penalty is incurred if one pixel is in the background and the other
is in the foreground

Image Segmentation

• Each pixel i has an associated likelihood fi (resp. bi) to be
in the foreground (resp. background)

f1
b1

f25
b25

f2
b2

...

...

• Each pair i, j of adjacent pixels have an associated
separation penalty pi,j

Goal (inf): segment an image into background and foreground

pi,j

This penalty is incurred if one pixel is in the background and the other
is in the foreground

Image Segmentation

• Each pixel i has an associated likelihood fi (resp. bi) to be
in the foreground (resp. background)

f1
b1

f25
b25

f2
b2

...

...

• Each pair i, j of adjacent pixels have an associated
separation penalty pi,j

Goal (inf): segment an image into background and foreground

pi,j

Goal: find a partition F,B of the pixels maximizingP
i∈F

fi +
P
i∈B

bi −
P

adjacent i,j
|F∩{i,j}|=1

pi,j

Image Segmentation

Goal: find a partition F,B of the pixels maximizing
P
i∈F

fi +
P
i∈B

bi −
P

adjacent i,j
|F∩{i,j}|=1

pi,j

Image Segmentation

Goal: find a partition F,B of the pixels maximizing
P
i∈F

fi +
P
i∈B

bi −
P

adjacent i,j
|F∩{i,j}|=1

pi,j

P
i fi −

P
i∈B

fi

Image Segmentation

Goal: find a partition F,B of the pixels maximizing
P
i∈F

fi +
P
i∈B

bi −
P

adjacent i,j
|F∩{i,j}|=1

pi,j

P
i fi −

P
i∈B

fi
P

i bi −
P
i∈F

bi

Image Segmentation

Goal: find a partition F,B of the pixels maximizing
P

i(fi + bi)−
P
i∈B

fi −
P
i∈F

bi −
P

adjacent i,j
|F∩{i,j}|=1

pi,j

Image Segmentation

Goal: find a partition F,B of the pixels maximizing
P

i(fi + bi)−
P
i∈B

fi −
P
i∈F

bi −
P

adjacent i,j
|F∩{i,j}|=1

pi,j

Image Segmentation

Equivalent goal: find a partition F,B of the pixels minimizing
P
i∈B

fi +
P
i∈F

bi +
P

adjacent i,j
|F∩{i,j}|=1

pi,j

Image Segmentation

Equivalent goal: find a partition F,B of the pixels minimizing
P
i∈B

fi +
P
i∈F

bi +
P

adjacent i,j
|F∩{i,j}|=1

pi,j

Image Segmentation

Equivalent goal: find a partition F,B of the pixels minimizing
P
i∈B

fi +
P
i∈F

bi +
P

adjacent i,j
|F∩{i,j}|=1

pi,j

pi,j

3

50

Image Segmentation

Equivalent goal: find a partition F,B of the pixels minimizing
P
i∈B

fi +
P
i∈F

bi +
P

adjacent i,j
|F∩{i,j}|=1

pi,j

pi,j

3

50

s t

Image Segmentation

Equivalent goal: find a partition F,B of the pixels minimizing
P
i∈B

fi +
P
i∈F

bi +
P

adjacent i,j
|F∩{i,j}|=1

pi,j

pi,j

3

50

s

fi

1

20 t
...

Image Segmentation

Equivalent goal: find a partition F,B of the pixels minimizing
P
i∈B

fi +
P
i∈F

bi +
P

adjacent i,j
|F∩{i,j}|=1

pi,j

pi,j

3

50

s

fi

1

20 t

bi

2

25

...
...

Image Segmentation

Equivalent goal: find a partition F,B of the pixels minimizing
P
i∈B

fi +
P
i∈F

bi +
P

adjacent i,j
|F∩{i,j}|=1

pi,j

pi,j

3

50

s

fi

1

20 t

bi

2

25

...
...

Image Segmentation

Equivalent goal: find a partition F,B of the pixels minimizing
P
i∈B

fi +
P
i∈F

bi +
P

adjacent i,j
|F∩{i,j}|=1

pi,j

pi,j

3

50

s

fi

1

20 t

bi

2

25

Solution: Compute a minimum s-t-cut (F ′, B′),
pick F = F ′ \ {s} and B = B′ \ {t}

...
...

Min-Cost Max-Flow

Min-Cost Max-Flow
Input:

• A directed graph G = (V,E)

• A function cap : E → N that maps each edge to its
capacity

Output:

A flow f that minimizes cost(f) =
P

e∈E f(e) · cost(e)
chosen among all s–t flows that maximize |f |.

• A source vertex s ∈ V , with no incoming edges

• A target vertex t ∈ V , with no outgoing edges

• A function cost : E → Z that maps each edge to its cost

Minimum Cost Bipartite Matching

3

2

3

4

1

Goal: find a maximum-cardinality matching of minimum cost.

Minimum Cost Bipartite Matching

s t

3

2

3

4

1

cost(·)

capacity(·)
1

1
1

1

1

1
1

1
1

1
1

1
1

Goal: find a maximum-cardinality matching of minimum cost.

Minimum Cost Bipartite Matching

s t

3

2

3

4

1

cost(·)

capacity(·)
1

1
1

1

1

1
1

1
1

1
1

1
1

|f | = 3 cost(f) = 3 + 1 + 3 = 7

Goal: find a maximum-cardinality matching of minimum cost.

Oil Delivery
Oil needs to be delivered from refineries to gas stations.

Refinery i produces si units of oil.

1

2

3

1

2

3

e

cap(e), cost(e)

Gas station j needs dj units of oil.

Using a truck to transport 1 unit oil across road e costs cost(e).

At most cap(e) trucks per day can traverse road e.

Goal: satisfy all demands with minimum cost.

Oil Delivery
Oil needs to be delivered from refineries to gas stations.

Refinery i produces si units of oil.

1

2

3

1

2

3

s t
s2

s1

s3

d2

d1

d3

e

cap(e), cost(e)

Gas station j needs dj units of oil.

Using a truck to transport 1 unit oil across road e costs cost(e).

At most cap(e) trucks per day can traverse road e.

Goal: satisfy all demands with minimum cost.

Min-Cost Max-Flow in BGL

Cycle Canceling

• Needs an initial maximum flow f to work.

• Time O(C · n ·m), where C is the cost difference between
f and a MCMF.

• Can handle negative costs

Edge e has weight cost(e). The reverse edge has weight −cost(e)

Costs are encoded as edge weights (boost::edge weight t).

Min-Cost Max-Flow in BGL

Cycle Canceling

• Needs an initial maximum flow f to work.

• Time O(C · n ·m), where C is the cost difference between
f and a MCMF.

• Can handle negative costs

Successive Shortest Paths

• Does not need an initial flow.

• Time O(|f | · (m+ n log n)), where |f | is the maximum flow.

• Cannot handle negative costs

Edge e has weight cost(e). The reverse edge has weight −cost(e)

Costs are encoded as edge weights (boost::edge weight t).

int main()

{

Graph G(6);

EdgeAdder edge_adder(G);

edge_adder.add_edge(0, 1, 1, 2);

edge_adder.add_edge(0, 3, 2, 3);

edge_adder.add_edge(1, 2, 3, 5);

edge_adder.add_edge(1, 4, 4, 1);

edge_adder.add_edge(2, 5, 2, 3);

edge_adder.add_edge(3, 1, 1, 1);

edge_adder.add_edge(3, 2, 2, 6);

edge_adder.add_edge(4, 5, 2, 4);

long flow = boost::push_relabel_max_flow(G, 0, 5);

std::cout << "The␣maximum␣flow␣from␣0␣to␣5␣is␣" << flow << "\n";

boost::cycle_canceling(G);

std::cout << "The␣minimum␣cost␣of␣a␣max␣flow␣from␣0␣to␣15␣is␣"

<< boost::find_flow_cost(G) << "\n";

return EXIT_SUCCESS;

}

Cycle Canceling: Example

int main()

{

Graph G(6);

EdgeAdder edge_adder(G);

edge_adder.add_edge(0, 1, 1, 2);

edge_adder.add_edge(0, 3, 2, 3);

edge_adder.add_edge(1, 2, 3, 5);

edge_adder.add_edge(1, 4, 4, 1);

edge_adder.add_edge(2, 5, 2, 3);

edge_adder.add_edge(3, 1, 1, 1);

edge_adder.add_edge(3, 2, 2, 6);

edge_adder.add_edge(4, 5, 2, 4);

long flow = boost::push_relabel_max_flow(G, 0, 5);

std::cout << "The␣maximum␣flow␣from␣0␣to␣5␣is␣" << flow << "\n";

boost::cycle_canceling(G);

std::cout << "The␣minimum␣cost␣of␣a␣max␣flow␣from␣0␣to␣15␣is␣"

<< boost::find_flow_cost(G) << "\n";

return EXIT_SUCCESS;

}

costs

returns the cost of the flow

Alternatively,
edmonds karp max flow

Cycle Canceling: Example

int main()

{

Graph G(6);

EdgeAdder edge_adder(G);

edge_adder.add_edge(0, 1, 1, 2);

edge_adder.add_edge(0, 3, 2, 3);

edge_adder.add_edge(1, 2, 3, 5);

edge_adder.add_edge(1, 4, 4, 1);

edge_adder.add_edge(2, 5, 2, 3);

edge_adder.add_edge(3, 1, 1, 1);

edge_adder.add_edge(3, 2, 2, 6);

edge_adder.add_edge(4, 5, 2, 4);

long flow = boost::push_relabel_max_flow(G, 0, 5);

std::cout << "The␣maximum␣flow␣from␣0␣to␣5␣is␣" << flow << "\n";

boost::cycle_canceling(G);

std::cout << "The␣minimum␣cost␣of␣a␣max␣flow␣from␣0␣to␣15␣is␣"

<< boost::find_flow_cost(G) << "\n";

return EXIT_SUCCESS;

}

costs

returns the cost of the flow

Alternatively,
edmonds karp max flow

$ g++ -std=c++17 mcmf_cc.cpp -o mcmf_cc

$

$./mcmf_cc

The maximum flow from 0 to 5 is 3

The minimum cost of a max flow from 0 to 5 is 22

$

2

4

5

1

2

3

4

2

2
1

0

2

2

3

5

1

3
6

1

3

1 1

Cycle Canceling: Example

int main()

{

Graph G(6);

EdgeAdder edge_adder(G);

edge_adder.add_edge(0, 1, 1, 2);

edge_adder.add_edge(0, 3, 2, 3);

edge_adder.add_edge(1, 2, 3, 5);

edge_adder.add_edge(1, 4, 4, 1);

edge_adder.add_edge(2, 5, 2, 3);

edge_adder.add_edge(3, 1, 1, 1);

edge_adder.add_edge(3, 2, 2, 6);

edge_adder.add_edge(4, 5, 2, 4);

long flow = boost::push_relabel_max_flow(G, 0, 5);

std::cout << "The␣maximum␣flow␣from␣0␣to␣5␣is␣" << flow << "\n";

boost::cycle_canceling(G);

std::cout << "The␣minimum␣cost␣of␣a␣max␣flow␣from␣0␣to␣15␣is␣"

<< boost::find_flow_cost(G) << "\n";

return EXIT_SUCCESS;

}

costs

returns the cost of the flow

Alternatively,
edmonds karp max flow

$ g++ -std=c++17 mcmf_cc.cpp -o mcmf_cc

$

$./mcmf_cc

The maximum flow from 0 to 5 is 3

The minimum cost of a max flow from 0 to 5 is 22

$

2

4

5

1

2

3

4

2

2
1

0

2

2

3

5

1

3
6

1

3

1 1

Cycle Canceling: Example

Successive Shortest Paths: Example
int main()

{

[...]

boost::successive_shortest_path_nonnegative_weights(G, 0, 5);

std::cout << "The␣minimum␣cost␣of␣a␣max␣flow␣from␣0␣to␣5␣is␣"

<< boost::find_flow_cost(G) << "\n";

return EXIT_SUCCESS;

}

int main()

{

[...]

boost::successive_shortest_path_nonnegative_weights(G, 0, 5);

std::cout << "The␣minimum␣cost␣of␣a␣max␣flow␣from␣0␣to␣5␣is␣"

<< boost::find_flow_cost(G) << "\n";

//Compute flow value by summing over out-edges of the source vertex 0

capacity_map capacity = boost::get(boost::edge_capacity, G);

residual_map residual_capacity =

boost::get(boost::edge_residual_capacity, G);

long flow = 0;

for(auto [eit, eend]= boost::out_edges(0, G); eit!=eend; eit++)

flow += capacity[*eit] - residual_capacity[*eit];

std::cout << "The␣maximum␣flow␣from␣0␣to␣5␣is␣" << flow << "\n";

return EXIT_SUCCESS;

}

Successive Shortest Paths: Example

Compute |f | = P
e=(s,v) f(e)

int main()

{

[...]

boost::successive_shortest_path_nonnegative_weights(G, 0, 5);

std::cout << "The␣minimum␣cost␣of␣a␣max␣flow␣from␣0␣to␣5␣is␣"

<< boost::find_flow_cost(G) << "\n";

//Compute flow value by summing over out-edges of the source vertex 0

capacity_map capacity = boost::get(boost::edge_capacity, G);

residual_map residual_capacity =

boost::get(boost::edge_residual_capacity, G);

long flow = 0;

for(auto [eit, eend]= boost::out_edges(0, G); eit!=eend; eit++)

flow += capacity[*eit] - residual_capacity[*eit];

std::cout << "The␣maximum␣flow␣from␣0␣to␣5␣is␣" << flow << "\n";

return EXIT_SUCCESS;

}

Successive Shortest Paths: Example

Compute |f | = P
e=(s,v) f(e)

$ g++ -std=c++17 mcmf_ssp.cpp -o mcmf_ssp

$

$./mcmf_ssp

The minimum cost of a max flow from 0 to 5 is 22

The maximum flow from 0 to 5 is 3

$

2

4

5

1

2

3

4

2

2
1

0

2

2

3

5

1

3
6

1

3

1 1

