Network Flow

Network Flow

 ~——
/__/-\’

Jﬁltéé /s

AL,

L5

4 E

Network Flow

 ~——
/__/-\’

Jﬁltéé /s

4 E

Network Flow: Problem Definition
Input:
e A directed graph G = (V, F)
e A source vertex s € V', with no incoming edges
o A target vertex t € V', with no outgoing edges
e A function c¢: E — N that maps each edge to its capacity
Output:

A function f : EF — R that associates each edge e to the flow
f(e) > 0 across e and satisfies:

e Capacity constraints: Ve € F, f(e) < c(e)

e Flow conservation: YoeV'\ {s,t}, Zf(u,v) :Zf(fu,w)

(u,v)EE (v,w)EFE

Network Flow: Problem Definition

Measure (to maximize):

e The amount of flow leaving s (equivalently, reaching t).

Example:

Network Flow: Problem Definition

Measure (to maximize):

e The amount of flow leaving s (equivalently, reaching t).

Example:

0 3 0

Maximum flow = 3

Linear Programming Formulation

max Z Js,0 S.t. Capacity
(s,v)EFE /
S c(u,v) — fuv >0 V(u,v) € K
Z fu,v_ Z fv,w: \V/UEV\{S7t}
(u,v)eEE (v,w)eEE

/ Juw 20 V(u,v) € E

Conservation Non-negative flow

A Solution Attempt

e Find a path P fromstotin G

A Solution Attempt

e Find a path P fromstotin G

A Solution Attempt

e Find a path P fromstotin G

e Send one unit of flow along P

A Solution Attempt

e Find a path P fromstotin G
e Send one unit of flow along P

e Update capacities

A Solution Attempt

Find a path P from stotin G
Send one unit of flow along P
Update capacities

Repeat

A Solution Attempt

Find a path P from stotin G
Send one unit of flow along P
Update capacities

Repeat

A Solution Attempt

Find a path P from stotin G
Send one unit of flow along P
Update capacities

Repeat until no more paths from s to ¢ exist

A Solution Attempt

e Find a path P fromstotin G
e Send one unit of flow along P
e Update capacities

e Repeat until no more paths from s to ¢ exist

Computed flow = 2

A Solution Attempt

e Find a path P fromstotin G
e Send one unit of flow along P
e Update capacities

e Repeat until no more paths from s to ¢ exist

Computed flow = 2

Maximum flow = 3 Might get stuck in a local maximum.

A Second Attempt

e Find an augmenting path P from stot in G
e Send one unit of flow along P

e Compute the residual graph

A Second Attempt

e Find an augmenting path P from stot in G
e Send one unit of flow along P

e Compute the residual graph

A Second Attempt

Find an augmenting path P from stot in GG
Send one unit of flow along P

Compute the residual graph

Repeat

A Second Attempt

Find an augmenting path P from stot in GG
Send one unit of flow along P

Compute the residual graph

Repeat

A Second Attempt

Find an augmenting path P from stot in GG
Send one unit of flow along P

Compute the residual graph

Repeat

A Second Attempt

Find an augmenting path P from stot in GG
Send one unit of flow along P

Compute the residual graph

Repeat

A Second Attempt

e Find an augmenting path P from stot in G
e Send one unit of flow along P

e Compute the residual graph

e Repeat

No more paths from s to t. Computed flow = 3.

A Second Attempt

e The flow f(e) on e is the original capacity c(e) of e minus
the capacity of e in the residual graph G .

A Second Attempt

e The flow f(e) on e is the original capacity c(e) of e minus
the capacity of e in the residual graph G .

Flow Algorithms

e Ford-Fulkerson (1955): Choose any augmenting path P
Time: O(m - f*) = O(m - n - max, c(e))

Time to find P * f Value of max flow

e Edmonds-Karp (1972): Choose an augmenting path P with
the fewest number of edges

Time: O(min{m - f*,m? - n})

e Push-Relabel (1986):
Time: O(n?)

Flow Tricks

Multiple Sources/Sinks

Flow Tricks

Multiple Sources/Sinks

Vertex capacities

PSS

Flow Tricks

Multiple Sources/Sinks Vertex capacities

300 - 30801

Undirected Edges

D
O—=—0O=C 0O
D
+ re-transform flow to use only
1 direction

1/5 35
;4/5 N

Flow Tricks

Multiple Sources/Sinks

Vertex capacities

300 - 30801

Undirected Edges

D
O—=—0O=C 0O
D
+ re-transform flow to use only
1 direction

1/5 35
;4/5 N

Minimum flow across edges
f(e) € le, C]

c, C

O—=0

Solution f; 4+ f2 can be found as a
feasible flow f; plus a max-flow f5

(See provided references if interested in the details)

Network Flow in BGL

Network Flow in BGL

We will need three property maps:

e boost::edge_capacity_t: maps each edge e to its
capacity c(e).

e boost::edge_residual_capacity_t: maps each edge €
to its capacity in the residual network.

e boost::edge_reverse_t: we need to map each edge
e = (u,v) to its corresponding reverse edge ¢’ = (v, u),
and vice-versa.

-
~

Network Flow in BGL

We will need three property maps:

e boost::edge_capacity_t: maps each edge e to its
capacity c(e).

e boost::edge_residual_capacity_t: maps each edge €
to its capacity in the residual network.

e boost::edge_reverse_t: we need to map each edge
e = (u,v) to its corresponding reverse edge ¢’ = (v, u),
and vice-versa.

If both (u,v) and (v, u) are in the input graph, then the boost graph
will have parallel edges.

-——
- -~

-
-
S, _--

Network Flow in BGL

#include <boost/graph/adjacency_list.hpp>

typedef boost::adjacency_list_traits<boost::vecS, boost::vecS,
boost::directedS> Traits;

typedef boost::adjacency_list<boost::vecS, boost::vecS,
boost::directedS, boost::no_property,
boost: :property<boost::edge_capacity_t, long,
boost: :property<boost::edge_residual_capacity_t, long,
boost: :property<boost::edge_reverse_t, Traits::edge_descriptor>
> > > Graph;

typedef boost::property_map<Graph, boost::edge_capacity_t>::type
capacity_map;

typedef boost::property_map<Graph, boost::edge_residual_capacity_t>::type
residual_map;

typedef boost::property_map<Graph, boost::edge_reverse_t>::type
reverse_map;

Network Flow in BGL

Simplify Graph Construction with a Helper Class
class EdgeAdder

{

Graph &G; capacity_map capacity; reverse_map reverse;
public:

explicit EdgeAdder(Graph &G) : G(G)

{

capacity = boost::get(boost::edge_capacity, G);
reverse = boost::get(boost::edge_reverse, G);

}
void add_edge(long u, long v, long c)
{
auto [e, added] = boost::add_edge(u, v, G);
auto [rev, rev_added] = boost::add_edge(v, u, G);
capacitylel = c; capacitylrev] = 0;
reversele] = rev; reverselrev] = e;
+

Network Flow in BGL

int main()
{
Graph G(6);
EdgeAdder edge_adder(G);

edge_adder.add_edge(0, 1, 1);
edge_adder.add_edge(0, 3, 2);
edge_adder.add_edge(1, 2, 3);
edge_adder.add_edge(1, 4, 4);
edge_adder.add_edge(2, 5, 2);
edge_adder.add_edge(3, 2, 2);
edge_adder.add_edge(4, 5, 2);

[...]

Network Flow in BGL

#include <boost/graph/edmonds_karp_max_flow.hpp>
[...]
long flow = boost::edmonds_karp_max_flow(G, O, 5);

std: :cout << "The maximum flow, from O, to 5.,is " << flow << "\n";

capacity_map capacity = boost::get(boost::edge_capacity, G);

residual_map residual_capacity =
boost::get(boost::edge_residual_capacity, G);

auto [e, found] = boost::edge(l, 4, G);
std::cout << "The_flow across edge (1,.4) is: "
<< capacityle] - residual_capacityle] << "\n";

Network Flow in BGL

#in 1de <boos aph/edmonds oW . hpp>

$ gt+ —-std=c++17 flow.cpp -o flow

$
ik $./flow
The maximum flow from O to 5 is 3
The flow across edge (1, 4) is: 1

[..

sta
cap
res $

aut
sto

Push-Relabel in BGL

#include <boost/graph/edmonds_karp_max_flow.hpp>

long flow = boost::edmonds_karp_max_flow(G, 0, 5);

#include <boost/graph/push_relabel_max_flow.hpp>

long flow = boost::push_relabel_max_flow(G, 0, 5);

Flow Applications

Minimum s—t Cut

Input:
e A directed graph G = (V, F/) with non-negative edge
weights ¢ : £/ — N.
e Two distinguished vertices s,t € V.

e An s—t cut is a partition A, B of V with s € Aand t € B.

Output:
e An s—t cut of minimum capacity cap(A, B) = Z c(e).
e=(u,v)ER
uceA,veEB

Example:

Minimum s—t Cut

Input:
e A directed graph G = (V, F/) with non-negative edge
weights ¢ : £/ — N.
e Two distinguished vertices s,t € V.

e An s—t cut is a partition A, B of V with s € Aand t € B.

Output:

e An s—t cut of minimum capacity cap(A, B) = Z c(e).

e=(u,v)ER

Example: ucA,veB

Capacity: 5

Minimum s—t Cut

Theorem: Let f be a maximum flow between s and ¢ in G.
Let (A%, B*) be an s—t cut of minimum capacity in G.

| f| = cap(A*, BY).

Minimum s—t Cut

Theorem: Let f be a maximum flow between s and ¢ in G.
Let (A%, B*) be an s—t cut of minimum capacity in G.

/| = cap(A", BY).

Proof: Given X C V', define:

Flow going into X Flow leaving X
frX)= >, flo =3 flo

e=(u,v)EFE e=(u,v)EFE

ueV\X,veX ueX,veV\X

X V\ X X V\ X

Minimum s—t Cut
Lemma: Let (A, B) be an s—t cut. |f]| = foUt(4) — f"(A).

Intuitively: the net flow leaving any s—t cut is | f].

fl=2

Minimum s—t Cut
Lemma: Let (A, B) be an s—t cut. |f]| = foUt(4) — f"(A).

Proof:

fl=Fs) =) (f"(w) = £ (w)

ueA
Consider the contribution of edge e = (u,v) € F to the sum:

‘© O.

Minimum s—t Cut
Lemma: Let (A, B) be an s—t cut. |f]| = foUt(4) — f"(A).

Proof:

fl=Fs) =) (f"(w) = £ (w)

ueA
Consider the contribution of edge e = (u,v) € F to the sum:

o If u,v € A, e contributes 0 A O
& L,

Minimum s—t Cut
Lemma: Let (A, B) be an s—t cut. |f]| = foUt(4) — f"(A).

Proof:

fl=Fs) =) (f"(w) = £ (w)

ueA
Consider the contribution of edge e = (u,v) € F to the sum:

o If u,v € A, e contributes 0 A
o If u,v € B, e contributes 0 @ B

Minimum s—t Cut
Lemma: Let (A, B) be an s—t cut. |f]| = foUt(4) — f"(A).

Proof:

fl=Fs) =) (f"(w) = £ (w)

ueA
Consider the contribution of edge e = (u,v) € F to the sum:

o If u,v € A, e contributes 0 A g
o If u,v € B, e contributes (e B

o If u e Aand v € B, e contributes f(e)

Minimum s—t Cut
Lemma: Let (A, B) be an s—t cut. |f]| = foUt(4) — f"(A).

Proof:

fl=Fs) =) (f"(w) = £ (w)

ueA
Consider the contribution of edge e = (u,v) € F to the sum:

o If u,v € A, e contributes 0 A Q
o If u,v € B, e contributes (e B

o If u e Aand v € B, e contributes f(e)

e If u e Band v e A, e contributes — f(e)

Minimum s—t Cut
Lemma: Let (A, B) be an s—t cut. |f]| = foUt(4) — f"(A).

Proof:

fl=Fs) =) (f"(w) = £ (w)

ueA
Consider the contribution of edge e = (u,v) € F to the sum:

o If u,v € A, e contributes 0 A Q
o If u,v € B, e contributes (e B

o If u e Aand v € B, e contributes f(e)

e If u e Band v e A, e contributes — f(e)

fl= 2 flo— 3 fle)=FM"A) - (4

e=(u,v)eFE e=(u,v)eFE
ucA,veV\A ueV\AveA

Minimum s—t Cut
Claim: Let (A, B) be an s—t cut. |f| < cap(A4, B).

B

fl <4

Minimum s—t Cut
Claim: Let (A, B) be an s—t cut. |f| < cap(A4, B).

B

fl <4

Proof:
£ = FU(A) — f(A) < f(A) =
= Y feo< S cle) =cap(4, B).

e=(u,v)eF e=(u,v)eEFE
ucA,veV\A ucA,veV\A

Minimum s—t Cut
Claim: Let (A, B) be an s—t cut. |f| < cap(A4, B).

B

fl <4

Corollary:

fl <

min
s—t cut (A,B)

cap(A, B) = cap(A™, BY).

Minimum s—t Cut
Claim: There is an s—t cut (A, B) such that |f| > cap(A4, B).

Proof:
e The residual graph G for f has no augmenting path.

o Let A be the vertices reachable from s in Gf and B=V\ A.
o Clearly se Aandt € B — (A, B) is an s—t cut.

00’

Minimum s—t Cut
Claim: There is an s—t cut (A, B) such that |f| > cap(A4, B).

Proof:
e The residual graph G for f has no augmenting path.

o Let A be the vertices reachable from s in Gf and B=V\ A.
o Clearly se Aandt € B — (A, B) is an s—t cut.

o Ife=(u,v) e Ewithue Aand v e B, f(e) =c(e).

(otherwise (u,v) is in G¢ and v € A).

Minimum s—t Cut
Claim: There is an s—t cut (A, B) such that |f| > cap(A4, B).

Proof:
e The residual graph G for f has no augmenting path.

o Let A be the vertices reachable from s in Gf and B=V\ A.

o Clearly se Aandt € B — (A, B) is an s—t cut.
c(e)

(Sl
o If e =(u,v) e Ewithue Aand v e B, f(e)
o If e =(u,v) € Ewithu e Bandv e A, f(e)

c(e).
0.

(otherwise (v, u) isin G and u € A).

Minimum s—t Cut
Claim: There is an s—t cut (A, B) such that |f| > cap(A4, B).

Proof:
e The residual graph G for f has no augmenting path.

o Let A be the vertices reachable from s in Gf and B=V\ A.

o Clearly se Aandt € B — (A, B) is an s—t cut.
c(e)

L

o Ife=(u,v) e Ewithue Aand v e B, f(e) =c(e).
o Ife=(u,v) e Ewithue Bandv e A, f(e) =0.
Fl=F"(A) = f"(A) =) cle) = 0=cap(4, B),

e=(u,v)ER

uceA,veB

Minimum s—t Cut

We proved:
Claim: There is an s—t cut (A, B) such that |f| > cap(A4, B).

Minimum s—t Cut

We proved:
Claim: There is an s—t cut (A, B) such that |f| > cap(A4, B).

: > ' A, B) = A* B").
Corollary: |f| = » CIEI?A,B) cap(4, B) = cap(A™, BY)

Minimum s—t Cut

We proved:
Claim: There is an s—t cut (A, B) such that |f| > cap(A4, B).

: > ' A, B) = A* B").
Corollary: |f| = » CIEI?A,B) cap(4, B) = cap(A™, BY)

|

: < ’ A, B) = A* B").
Corollary: |f]| < » CIEI?AB) cap(4, B) = cap(A™, BY)

Minimum s—t Cut

We proved:
Claim: There is an s—t cut (A, B) such that |f| > cap(A4, B).

: > ' A, B) = A* B").
Corollary: |f| = » CIEI?A,B) cap(4, B) = cap(A™, BY)

|

: < ’ A, B) = A* B").
Corollary: |f]| < » CIEI?AB) cap(4, B) = cap(A™, BY)

|

[f| = cap(47, BY).

Edge Disjoint Paths

Goal: Find the maximum number of ways to go from s to ¢
using each street at most once

{
O

Edge Disjoint Paths

Goal: Find the maximum number n of edge-disjoint paths
from stotinG.

Edge Disjoint Paths

Goal: Find the maximum number n of edge-disjoint paths
from s tot in G.

Let f be a maximum flow from s to ¢ in G. Then, n = |f|.

Edge Disjoint Paths

Goal: Find the maximum number n of edge-disjoint paths
from s tot in G.

Let f be a maximum flow from s to ¢ in G. Then, n = |f|.

f| <n = Time complexity: O(mn)

Edge Disjoint Paths

Flow decomposition: A flow f can be decomposed into

e |f| paths from s to t, and — t
N é"i

e A collection of cycles, w
that are all edge-disjoint.

G

Edge Disjoint Paths

Flow decomposition: A flow f can be decomposed into

e |f| paths from s to t, and — t
N é"i

e A collection of cycles, w
that are all edge-disjoint.

Finding the decomposition:

G

e Start from a graph G’ with edges along the flow direction.

—>

e Pick any edge (u,v) from G’

e Walk backwards from u and forward from v until a cycle
_ or an s-t-path is found. Remove its edges. Repeat.

Edge Disjoint Paths

Flow decomposition: A flow f can be decomposed into

e |f| paths from s to t, and t
\;X ~ s.
S
e A collection of cycles, *\'
that are all edge-disjoint.
Time: O(mn)
Finding the decomposition: O(m) iterations O(n) time per it.

G

e Start from a graph G’ with edges along the flow direction.

—>

e Pick any edge (u,v) from G’

e Walk backwards from u and forward from v until a cycle
_ or an s-t-path is found. Remove its edges. Repeat.

Circulation

In addition to edge capacities c¢(¢) € N, each vertex v has an
associated value d, € Z

o |f d, >0, vertex v has a demand of d, units of flow.
o If d, <O, vertex v has a supply of —d, units of flow.

Is it possible to circulate flow so that all demands are met?

Circulation

In addition to edge capacities c¢(¢) € N, each vertex v has an
associated value d, € Z

o |f d, >0, vertex v has a demand of d, units of flow.
o If d, <O, vertex v has a supply of —d, units of flow.

Is it possible to circulate flow so that all demands are met?

Circulation

In addition to edge capacities c¢(¢) € N, each vertex v has an
associated value d, € Z

o |f d, >0, vertex v has a demand of d, units of flow.
o If d, <O, vertex v has a supply of —d, units of flow.

Is it possible to circulate flow so that all demands are met?

Circulation

In addition to edge capacities c¢(¢) € N, each vertex v has an
associated value d, € Z

o |f d, >0, vertex v has a demand of d, units of flow.
o If d, <O, vertex v has a supply of —d, units of flow.

Is it possible to circulate flow so that all demands are met?

Circulation

In addition to edge capacities c¢(¢) € N, each vertex v has an
associated value d, € Z

o |f d, >0, vertex v has a demand of d, units of flow.
o If d, <O, vertex v has a supply of —d, units of flow.

Is it possible to circulate flow so that all demands are met?

Circulation

In addition to edge capacities c¢(¢) € N, each vertex v has an
associated value d, € Z

o |f d, >0, vertex v has a demand of d, units of flow.
o If d, <O, vertex v has a supply of —d, units of flow.

Is it possible to circulate flow so that all demands are met?

Compute maximum flow f and check if |f| =), ; c(v,).

Maximum Bipartite Matching
M C E is a matching if no two edges in M share an endvertex

Goal: find a maximum-cardinality matching.

O

O

O

Maximum Bipartite Matching
M C E is a matching if no two edges in M share an endvertex

Goal: find a maximum-cardinality matching.

All capacities are 1

Maximum Bipartite Matching
M C E is a matching if no two edges in M share an endvertex

Goal: find a maximum-cardinality matching.

All capacities are 1

Maximum Bipartite Matching
M C E is a matching if no two edges in M share an endvertex

Goal: find a maximum-cardinality matching.

O

Size of a maximum-cardinality matching: 3

Maximum Bipartite Matching
M C E is a matching if no two edges in M share an endvertex

Goal: find a maximum-cardinality matching.

O

Size of a maximum-cardinality matching: 3

Konig’'s theorem: on bipartite graphs, the cardinality of a
maximum matching is the size of a minimum vertex cover.

Image Segmentation

Goal (inf): segment an image into background and foreground

Image Segmentation

B

Goal (inf): segment an image into background and foreground

Image Segmentation

1
25

Goal (inf): segment an image into background and foreground

e Each pixel ¢ has an associated likelihood f; (resp. b;) to be
in the foreground (resp. background)

Image Segmentation

fi|fa] -
by | ba | ---

f2s5
bas

Goal (inf): segment an image into background and foreground

e Each pixel ¢ has an associated likelihood f; (resp. b;) to be
in the foreground (resp. background)

Image Segmentation

fi|fa] -
by | ba | -

f2s5
bas

Goal (inf): segment an image into background and foreground

e Each pixel ¢ has an associated likelihood f; (resp. b;) to be
in the foreground (resp. background)

e Each pair 7, 5 of adjacent pixels have an associated
separation penalty p;_;

This penalty is incurred if one pixel is in the background and the other
Is in the foreground

Image Segmentation

fi|fa] -
by | ba | -

Pi,j

f2s5
bas

Goal (inf): segment an image into background and foreground

e Each pixel ¢ has an associated likelihood f; (resp. b;) to be
in the foreground (resp. background)

e Each pair 7, 5 of adjacent pixels have an associated
separation penalty p;_;

This penalty is incurred if one pixel is in the background and the other
Is in the foreground

Image Segmentation

fi|fa] -
by | ba | -

Pi,j

f2s5
bas

Goal (inf): segment an image into background and foreground

e Eac
In t

e Eac

n pixel ¢ has an associated likelihood f; (resp. b;) to be
ne foreground (resp. background)

n pair 7, 7 of adjacent pixels have an associated

separation penalty p;_;

Goal: find a partition F, B of the pixels maximizing

> fi+ D> b — > DPij

1€l 1€B adjacent 2,3
[Fn{i,g =1

Image Segmentation

Goal: find a partition F, B of the pixels maximizing

> fi+ D> b — > DPij

1€l 1€B adjacent 2,3
|[Fn{s,5} =1

Image Segmentation

Goal: find a partition F, B of the pixels maximizing

> fi+ > bi— D Di.j

1€F 1€B adjacent 2,3

|[F'n{s,5t=1

1€ b

Image Segmentation

Goal: find a partition F, B of the pixels maximizing

Yo fi+ D> by — > DPij

1€F 1€B adjacent 2,3
|[Fn{s,5} =1

duli— 2o i b= 2l by

1€ B 1€ F

Image Segmentation

Goal: find a partition F, B of the pixels maximizing

dulfi+bi) =2 fi— 2 bi— >, pij
1€B 1€ F adjacent 1,7
[Fn{i,5}=1

Image Segmentation

Goal: find a partition F, B of the pixels maximizing

SHEbl - > fi—- Y bi— > piy

1€B 1€l adjacent 1,7
[F'n{i,j =1

Image Segmentation

Equivalent goal: find a partition F, B of the pixels minimizing

> fi+ D> b+ > Dij

1€B 1€l adjacent 2,3
|[Fn{s,5} =1

Image Segmentation

O
O
O
O
O—0O

i
()
NN
()
NN

:

()
</
()
N\

O
()
o/

OO
OO

Equivalent goal: find a partition F, B of the pixels minimizing

> fi+ D> b+ > Dij

1€B 1€l adjacent 2,3
|[Fn{i,g}=1

Image Segmentation

(OV)
SO
O—0O
i() O
OO0

()
N\
()
Y
O
O
()

N

50

0 N
o

O
(\

O

Equivalent goal: find a partition F, B of the pixels minimizing

> fi+ D> b+ > Dij

1€B 1€l adjacent 2,3
|[Fn{i,g}=1

Image Segmentation

©),
O—0O—-0O
ii
O—O
O—0O
O g O—CO
&

()
N\
()
Y
O
O
()

N

50

0 N
o

O
(\

O

Equivalent goal: find a partition F, B of the pixels minimizing

> fi+ D> b+ > Dij

1€B 1€l adjacent 2,3
|[Fn{i,g}=1

Image Segmentation

)
)

e
e

()
/
p

(N
/

¢
X
&

N
(G4
2%
U
M
U

50

()
N\
—0
OO

)
o/

() 0
o

Equivalent goal: find a partition F, B of the pixels minimizing

> fi+ D> b+ > Dij

1€B 1€l adjacent 2,3
|[Fn{i,g}=1

Image Segmentation

Equivalent goal: find a partition F, B of the pixels minimizing

> fi+ D> b+ > Dij

1€B 1€l adjacent 2,3
|[Fn{i,g}=1

Image Segmentation

Equivalent goal: find a partition F, B of the pixels minimizing

> fi+ D> b+ > Dij

1€B 1€l adjacent 2,3
|[Fn{i,g}=1

Image Segmentation

Equivalent goal: find a partition F, B of the pixels minimizing

> fi+ D> b+ > Dij

1€B 1€l adjacent 2,3
|[Fn{i,g}=1

Solution: Compute a minimum s-t-cut (F', B),
pick = F'\ {s} and B= B"\ {t}

Min-Cost Max-Flow

Min-Cost Max-Flow

Input:
e A directed graph G = (V, F)
e A source vertex s € V', with no incoming edges
o A target vertex t € V', with no outgoing edges

e A function cap : E — N that maps each edge to its
capacity

e A function cost : £ — Z that maps each edge to its cost

Output:

A flow f that minimizes cost(f) = > ..y f(e) - cost(e)
chosen among all s—t flows that maximize |f]|.

Minimum Cost Bipartite Matching

Goal: find a maximum-cardinality matching of minimum cost.

Minimum Cost Bipartite Matching

Goal: find a maximum-cardinality matching of minimum cost.

| ! ‘

capacity(-)

Minimum Cost Bipartite Matching

Goal: find a maximum-cardinality matching of minimum cost.

capacity(-)

fl=3 cost(f) =3+1+3=7

Oil Delivery

Oil needs to be delivered from refineries to gas stations.
Refinery ¢ produces s; units of olil.

Gas station j needs d; units of olil.

Using a truck to transport 1 unit oil across road e costs cost(e).
At most cap(e) trucks per day can traverse road e.

Goal: satisfy all demands with minimum cost.
L cap(e), cost(e) 1

.

Oil Delivery

Oil needs to be delivered from refineries to gas stations.
Refinery ¢ produces s; units of olil.
Gas station j needs d; units of olil.
Using a truck to transport 1 unit oil across road e costs cost(e).
At most cap(e) trucks per day can traverse road e.

Goal: satisfy all demands with minimum cost.

L cap(e), cost(e) 1

il

Min-Cost Max-Flow in BGL

Costs are encoded as edge weights (boost: :edge weight t).
Edge e has weight cost(e). The reverse edge has weight —cost(e)

Cycle Canceling
e Needs an initial maximum flow f to work.

e Time O(C -n-m), where C' is the cost difference between
f and a MCMF.

e Can handle negative costs

Min-Cost Max-Flow in BGL

Costs are encoded as edge weights (boost: :edge weight t).
Edge e has weight cost(e). The reverse edge has weight —cost(e)

Cycle Canceling
e Needs an initial maximum flow f to work.

e Time O(C -n-m), where C' is the cost difference between
f and a MCMF.

e Can handle negative costs
Successive Shortest Paths

e Does not need an initial flow.

e Time O(|f|- (m+nlogn)), where |f| is the maximum flow.

e Cannot handle negative costs

Cycle Canceling: Example

int main()

{
Graph G(6);
EdgeAdder edge_adder (G);

edge_adder.add_edge(0, 1, 1, 2);
edge_adder.add_edge(0, 3, 2, 3);
edge_adder.add_edge(1, 2, 3, 5);
edge_adder.add_edge(1, 4, 4, 1);
edge_adder.add_edge(2, 5, 2, 3);
edge_adder.add_edge(3, 1, 1, 1);
edge_adder.add_edge(3, 2, 2, 6);
edge_adder.add_edge(4, 5, 2, 4);

long flow = boost::push_relabel_max_flow(G, 0, 5);
std: :cout << "The maximum flow, from O, to 5,is " << flow << "\n";

boost::cycle_canceling(G);
std: :cout << "The minimum ,cost of a max flow from O to, 15 ,is "

<< boost::find_flow_cost(G) << "\n";

return EXIT_SUCCESS;

Cycle Canceling: Example

int main()

{

Graph G(6);
EdgeAdder edge_adder (G);

»
N
~

- e

edge_adder.add_edge (0,
edge_adder.add_edge (0,
edge_adder.add_edge(1,
edge_adder.add_edge(1,
edge_adder.add_edge (2,
edge_adder.add_edge (3,

-

w
~

.
)

-

o
92/
~

- e

»

e d
w
~
- e

-

>

—
\/
- e

“

Alternatively,

ONE O DNWR-
NDNENDDPOND-
-

-/

edge_adder.add_edge(3, 2, 2,| 6);
edge_adder.add_edge(4, 5, 2, 4); edmonds _karplnax_f low
long flow = boost::Push_relabel_max_flow(G, 0, 5); T

std: :cout << "The maximum flow, from O, to 5,is " << flow << "\n";

boost::cycle_canceling(G);
std: :cout << "The minimum ,cost of a max ,flow from O to 15 ,is "
<< boost::find_flow_cost(G) << "\n";

return EXIT_SUCCESS; —— returns the cost of the flow

Cycle Canceling: Example

int main()

{

$ g++ -std=c++17 mcmf_cc.cpp -o mcmf_cc

$

$./mcmf_cc

The maximum flow from O to 5 is 3

The minimum cost of a max flow from O to 5 is 22

$

Cycle Canceling: Example

int main()

{

$ g++ -std=c++17 mcmf_cc.cpp -o mcmf_cc

$

$./mcmf_cc

The maximum flow from O to 5 is 3

The minimum cost of a max flow from O to 5 is 22

$

Successive Shortest Paths: Example

int main()

{
[...]

boost: :successive_shortest_path_nonnegative_weights(G, 0, 5);

std: :cout << "The minimum ,cost of a max flow from O to 5,is "
<< boost::find_flow_cost(G) << "\n";

return EXIT_SUCCESS;

Successive Shortest Paths: Example

int main()

{

boost: :successive_shortest_path_nonnegative_weights(G, 0, 5);

std: :cout << "The minimum ,cost,,0of a max flow from O to, 5 ,1s "
<< boost::find_flow_cost(G) << "\n";

//Compute flow value by summing over out-edges of the source vertex O
capacity_map capacity = boost::get(boost::edge_capacity, G);
residual_map residual_capacity =

boost: :get(boost::edge_residual_capacity, G);

Compute |f| = >_._ (5 . f(€)

long flow = O;

for(auto [eit, eend]= boost::out_edges(0, G); eit!=eend; eit++)
flow += capacityl[*eit] - residual_capacityl[*eit];

std: :cout << "The maximum flow, from O, to 5.,is " << flow << "\n";

return EXIT_SUCCESS;

Successive Shortest Paths: Example

int main()

{

$ gt++ -std=c++17 mcmf_ssp.cpp —-o mcmf_ssp

$

$./mcmf_ssp

The minimum cost of a max flow from O to 5 is 22
The maximum flow from O to 5 is 3

