Range Trees

Range Trees

Y2

Y1

Range Trees

Y2

Y1

Range Trees

Range Trees
Input:

A set S of n D-dimensional points.

Goal:
Design a data stucture that, given p; € Z? ., ps € ZP can:

e Report the number of points ¢ € S such that p; < g < ps.
e Report the set of points ¢ € S such that p; < g < ps.

e Report the point ¢ € 5, p1 < q < ps, with smallest D-th
coordinate.

An easy case: D =1

e Points are integers
e Store points in a sorted array (in time O(nlogn)).

e Perform queries by binary searching for p; and ps

An easy case: D =1

e Points are integers
e Store points in a sorted array (in time O(nlogn)).

e Perform queries by binary searching for p; and ps

Query time: O(logn + k) k = “size” of the output.
e k = # reported points.

e k£ =0O(1) if we only care about the number of points.

K —HKHKK 43 K — KK — K — K K>
a b ¢ d € g h 1 9 k

X
f

An easy case: D =1

e Points are integers
e Store points in a sorted array (in time O(nlogn)).

e Perform queries by binary searching for p; and ps

Query time: O(logn + k) k = “size” of the output.
e k = # reported points.

e k£ =0O(1) if we only care about the number of points.

Space complexity: O(n)

K —HKHKK 43 K — KK — K — K K>
a b ¢ d € g h 1 9 k

X
f

Range Trees: D =1

Range Trees: D =1

(O
(O (O
() () ()}
@ O O () () (O
O O0OC O O O O
X K—AHK—NK K —XK X K —XK X X
a b ¢ d e f g h 1 9 k

Range Trees: D =1

O 1o

la, d] () e, f1 O 9,91 () [k,

Range Trees: D =1

O 1o

la, d] () e, f1 O 9,91 () [k,

Range Trees: D =1

O o)1)

ja, d] () e, f1 O 9,913 () [k,

Range Trees: D =1

O o)1)

ja, d] () e, f1 @ 9,913 () [k,

Range Trees: D =1

Construction:

e Preliminarily sort S (only once!)
—

e Split S into S; and S5 of & % elements each. O(1)

e Recursively build 77 and 15 from S; and S5, respectively.

e The root of T" has I} and 15 as its left and right subtrees.

e Return T

Range Trees: D =1

Construction:

e Preliminarily sort S (only once!)
—

e Split S into S; and S5 of & % elements each. O(1)

e Recursively build 77 and 15 from S; and S5, respectively.

e The root of T" has I} and 15 as its left and right subtrees.

e Return T

Time: O(nlogn) 4+ T'(n), where T'(n) =2 -T(%) + O(1)

Range Trees: D =1

Construction:

e Preliminarily sort S (only once!)
—

e Split S into S; and S5 of & % elements each. O(1)

e Recursively build 77 and 15 from S; and S5, respectively.

e The root of T" has I} and 15 as its left and right subtrees.

e Return T

Time: O(nlogn) 4+ T'(n), where T'(n) =2 -T(%) + O(1)

O(nlogn)

Range Trees: D =1

Construction:

e Preliminarily sort S (only once!)
—

e Split S into S; and S5 of & % elements each. O(1)

e Recursively build 77 and 15 from S; and S5, respectively.

e The root of T" has I} and 15 as its left and right subtrees.

e Return T’
Time: O(nlogn) 4+ T'(n), where T'(n) =2 -T(%) + O(1)
O(nlogn)

What if S is already sorted?

Range Trees: D =1

Construction:

e Preliminarily sort S (only once!)
—

e Split S into S; and S5 of & % elements each. O(1)

e Recursively build 77 and 15 from S; and S5, respectively.

e The root of T" has I} and 15 as its left and right subtrees.

e Return T’
Time: O(nlogn) 4+ T'(n), where T'(n) =2 -T(%) + O(1)
O(nlogn)

What if S is already sorted? O(n) (we will need this later)

Range Trees: D =1

Preprocessing time: O(nlogn)
Query time: O(logn + k)
e k = #f reported points.

e k£ =0(1) if we only care about the number of points.

Space complexity: O(n)

O 000 O O O O
K KKK KKK KK KK K>

Range Trees: DD = 2

S |

Range Trees: DD = 2

Range Trees: DD = 2

KAHKNK KXK—XK K —XK—X—XK

Range Trees: DD = 2

Build a range tree on the set of x-coordinates of the points in S

Range Trees: D = 2

For each node v representing an interval [, = |z, x3], build a range tree
R, on the y coodinates of the points in .S whose x-coordinate is in I,

>0
B>~ o >0

> >« >« Q > <)
><0 O+»<1O O =0 <O O O

K —HK KK KXK—XK K — XK —AK—X— XK —>

| | L
L,

Range Trees: DD = 2

Range Trees: DD = 2

Range Trees: DD = 2

X
X
X <
X
X
X
>
A
q X

y A

Range Trees: DD = 2

X
X
X <
X
X
X
>
A
q X

y A

Range Trees: D = 2

Construction:

e Preliminarily sort S on the z-coordinate.
—>

e Split S into 51 and 5> of & 5 elements each.

e Recursively build 77 and 75 from S; and S5, respectively.

e The root v of T has I} and 15 as its left and right subtrees.

e Store, in v, a pointer to a new 1D Range Tree on S

e Return T

Range Trees: D = 2

Construction:
e Preliminarily sort S on the z-coordinate.

—>
e Split S into 51 and 5> of & 5 elements each.

e Recursively build 77 and 75 from S; and S5, respectively.

e The root v of T has I} and 15 as its left and right subtrees.

e Store, in v, a pointer to a new 1D Range Tree on S

e Return T

Time: O(nlogn) 4+ T'(n), where T'(n) =2 -T(%) + O(nlogn)

Range Trees: D = 2

Construction:
e Preliminarily sort S on the z-coordinate.

—>
e Split S into 51 and 5> of & 5 elements each.

e Recursively build 77 and 75 from S; and S5, respectively.

e The root v of T has I} and 15 as its left and right subtrees.

e Store, in v, a pointer to a new 1D Range Tree on S

e Return T

Time: O(nlogn) 4+ T'(n), where T'(n) =2 -T(%) + O(nlogn)

O(nlog®n)

can we do better?

Range Trees: D = 2

Construction: SY is the set S sorted on the y-coordinate

e Preliminarily sort S on the z-coordinate.

e Split S into 51 and 5> of & 5 elements each.

e Recursively build (71,57) and (15, S5) from S; and Ss,
respectively.

e Theroot v of T hasI7 and 15 as its left and right subtrees.
e Merge S{ and S5 into SY.

e Store, in v, a pointer to a new 1D Range Tree on SY

e Return (7,5Y)

Range Trees: D = 2

Construction: SY is the set S sorted on the y-coordinate

Preliminarily sort S on the x-coordinate.

Split S into 57 and S of = 5 elements each.

Recursively build (77, .57) and (7%, .55) from Sy and So,
respectively.

The root v of T' has I7 and 15 as its left and right subtrees.
Merge S7 and SJ into SY.
Store, in v, a pointer to a new 1D Range Tree on SY

Return (T, 5Y)

Time: O(nlogn) +T(n), where T(n)=2-T(%§)+ O(n)

Range Trees: D = 2

Construction: SY is the set S sorted on the y-coordinate

Preliminarily sort S on the x-coordinate.

Split S into 57 and S of = 5 elements each.

Recursively build (77, .57) and (7%, .55) from Sy and So,
respectively.

The root v of T' has I7 and 15 as its left and right subtrees.
Merge S7 and SJ into SY.
Store, in v, a pointer to a new 1D Range Tree on SY

Return (T, 5Y)

Time: O(nlogn) +T(n), where T(n)=2-T(%§)+ O(n)

O(nlogn)

Range Trees: D = 2

To report the points p1 = (z1,1y1) < q¢ < ps = (x2,¥y2):

e Use T to find the h = O(logn) subtrees Ry, ..., Ry that
store the points ¢ = (z,y) with 1 < z < 5.

e For each tree R; € {R1,..., R} representing the
z-interval I;:

o Query R, to report the number of/set of points
q = (z,y) withx € I, and y; <y < yo.

Range Trees: D = 2
(

To report the points p1 = (z1,%1) < ¢ < p2 = (T2, %2):

e Use T to find the h = O(logn) subtrees Ry, ..., Ry that
store the points ¢ = (z,y) with 1 < z < 5.

e For each tree R; € {R1,..., R} representing the
z-interval I;:

o Query R, to report the number of/set of points
q = (z,y) withx € I, and y; <y < yo.

Time: O(logn) - O(logn) + O(k) = O(log® n + k)

!

Number of R;s Time to query R; “size” of the output

Range Trees: D = 2

Preprocessing time: O(nlogn)

Query time: O(log”n + k)
e k = #f reported points.

e kL =0(1) if we only care about the number of points.

Space complexity:
e Bounded by the overall size of 1D Range Trees
e Each point belongs to O(logn) 1D Range Tees
e Total space: O(nlogn)

Higher dimensions: construction

To store points p = (x,y, 2z, w,...) in D > 2 dimensions:
Recursive construction:

e Build a Range Tree T' on the first coordinate x of the points:

e For each subtree 7T, of 1" associated with the interval
Iv — [331,2[‘2]2
e Construct a range tree R, on the last D — 1 coordinates
(y,z...) of the set of points p = (z,y,...) with x € I,,.

e Store, in v, a pointer to R,,.

D—-1

Time: O(nlog” " n).

v

Space: O(nlog” ' n). ﬁx

Higher dimensions: query

Let D1 = (ZEl,yl, Zlyooo), D2 — (SEQ,yQ,ZQ, ce)
To report the points p; < q < pa:
e Use T to find the h = O(logn) subtrees Ry, ..., Ry that
store the points ¢ = (z,y, 2,...) with 1 < x < 5.

e For each tree R; € {Ry,..., Ry} representing the
z-interval I;:

e Recursively query R; to report the number/set of points
qgst. xeljand (y1,21,...) <q < (y2,22,...).

Query time: O(log” n + k).

> 2

Recap

Preprocessing
Time
O(nlogn)

O(nlogn)

O(nlog” ' n)

Query Time
O(logn + k)
O(log® n + k)

O(log” n + k)

Notes

Fractional Cascading

Fractional Cascading: The problem

Input:
k sorted arrays A, ..., A, of n elements each:

A1 |49 (15(22|23|38]41(50(53|58 L — 4

Ao | 3| 7]10]|11]15({17|20(36|62|64

As [21]23(29(35(37(40(52|57|61|66

A4 [2]5]6]15]24[27]39]50]54]76

Query:

Given x report, forte =1,....k, x if x € A; or its predecessor

Fractional Cascading: The problem

Input:

k sorted arrays Ai,..., A of n elements each:
Ay | 4]915/22|23]38]41|50|53|58 L— 4
Ao [3]7]10[11[15]17]20]36]62]64 r =3l

Az |21|23]29]35(37|40(52|57|61|66

As |2]5]6 [15/24]27|39(50|54|76

Query:

Given x report, forte =1,....k, x if x € A; or its predecessor

Fractional Cascading: The problem

Input:

k sorted arrays Ai,..., A of n elements each:
Ay |49]15/22]23|38]41|50(53|58 L— 4
Ao [3]7]10]11[15]17][20[36]62]64 T =98

As |21]23/|29(35|37(40|52|57]|61|66

Ay | 2|56 |15]24[27(39]50|54|76

Query:

Given x report, forte =1,....k, x if x € A; or its predecessor

Fractional Cascading: A Trivial solution

o Forve=1,... k:

e Binary search for x in A;

Time: O(klogn)

Fractional Cascading: A Trivial solution

o Forve=1,... k:

e Binary search for z in A,
Time: O(klogn)

We can do better!

Fractional Cascading

First idea: cross linking

Keep pointers from A;|j] to the predecessor of A;|j] in A;11.

A [4]9]15]2 50/53]58 I —
62

TN\~

As |31]7/10]1 366264

1/

Ag 19]23|29|35(37(40|52|57|61|66
15(24(27(39|50

Ag |2]5]6 54|76

Fractional Cascading

First idea: cross linking

Keep pointers from A;|j] to the predecessor of A;|j] in A;11.

AN /g

As |37 (10 2|64
As |19 716166

\\\\\\\\l/

Ay 015476

Fractional Cascading

First idea: cross linking

Keep pointers from A;|j] to the predecessor of A;|j] in A;11.

Ay [4]9]15]22]23[3841 58 =4
| \\\\l//
As |37 (10|11]15/17|20|36|62|64

/

As |19 716166

\\\\\\\\l/

Ay 015476

Fractional Cascading

First idea: cross linking

Keep pointers from A;|j] to the predecessor of A;|j] in A;11.

TN

As | 3| 7(10[11|15]|17]20|36|62|64
As [19]23 7|61|66

\\\\\\\l/

Ay |2 015476

Fractional Cascading

First idea: cross linking

Keep pointers from A;|j] to the predecessor of A;|j] in A;11.

RIRN g

29|3 716166

* \\\\\\l/

As 1215 015476

Fractional Cascading

First idea: cross linking

Keep pointers from A;|j] to the predecessor of A;|j] in A;11.

RIRN g

29|3 716166

\\\\\\l/

As 1215 015476

Fractional Cascading

First idea: cross linking

Keep pointers from A;|j] to the predecessor of A;|j] in A;11.

RIRN g

29|3 716166

\\\\\\l/

As 1215 015476

Fractional Cascading

First idea: cross linking

Keep pointers from A;|j] to the predecessor of A;|j] in A;11.

RIRN g

29|3 716166

\\\\\\l/

Ag |25 739 015476

Fractional Cascading

How much time does it take?

Ay

Fractional Cascading

How much time does it take?

N msee]

Fractional Cascading

How much time does it take?

N asess

Fractional Cascading

How much time does it take?

N asess

Fractional Cascading

How much time does it take?

N asess

Fractional Cascading

How much time does it take?

N asess

Fractional Cascading

How much time does it take?

N asess

Fractional Cascading

How much time does it take?

N asess

Fractional Cascading

How much time does it take?

N asess

Fractional Cascading

How much time does it take?

N asess

Fractional Cascading

How much time does it take?

N asess

Fractional Cascading

How much time does it take?

N asess

How muc

Fractional Cascading

h time does it take?

Ay

Fractional Cascading

How much time does it take?

N asess

Worst-case time: O(kn)

Fractional Cascading

Second idea: fractional cascading

Forvi =k, k—1,...,2: Add every other element of A; to A;_1.

VARRIRY/7Z74

//////////////

As |5 [15]19]23]2

\\\l \l///////

Ay 15(24127(39]|50|54 76

Fractional Cascading

Keep pointers from newly added elements to A; to their
predecessor among the original elements of A,

9 111]115]115]20]22|23|29|37|38|41|50|53|57|58|64

~ AN AN N

Ao |3 7]10(11(15(15(17]|20(23|29(36|37|50|57|62(64|66

Almr\?r\ﬂ\ﬂ\ ~_n

| AN y\ F\
As | 5(15[19|23]|27(29|35|37|40(50|52|57|61|66|76

Fractional Cascading

Keep pointers from newly added elements to A; to their
predecessor among the original elements of A,

AN\

A [T

| A

| A

)

23

29

37

38

41

50

53|57

58|64

F\

11 1520

A\

AN

| AN

Ay |37

10

11

15

15

17

20

23

29

36

37

o0

57

62|64

66

19

| A

23

27

29

39

37

| A

40

o0

D2

57

61

F\

66

76

15

24

27

39

50

54

76

Fractional Cascading

Keep pointers from newly added elements to A; to their
predecessor among the original elements of A,

AN\

| A

A [T

9

11

| A

| A

e

)

23

29

37

38

41

50

03

D7

58|64

2

A\

AN

| AN

Ay |37

10

11

15

20

23

29

36

37

o0

57

62

64

66

| A

15&7

| A

F\

19

23

27

29

39

37

40

o0

D2

57

61

66

76

15

24

27

39

50

54

76

Fractional Cascading

Keep pointers from newly added elements to A; to their
predecessor among the original elements of A,

AN\

| A

A [T

9

11

| A

| A

e

)

23129

37

38

41

50

53|57

58|64

2

Ay |37

10

11

15

15

| A

AN

| AN

36

37

o0

57

62|64

66

9

| A

F\

19

23

27

29

39

37

40150

D2

57

61

66

76

15

24

27

39

50

54|76

Fractional Cascading

Keep pointers from newly added elements to A; to their
predecessor among the original elements of A,

AN\

| AN | ANEN A
Ap [4|79 [11]15]15]20(22|23|29|37|38|41(50|53|57|58|64
m A
Ag |37 36(37(50(57|62|64|66
r =19
Y\
As [5]15[19 52|57|61|66|76

15

24

27

39

50

54

76

Fractional Cascading

Keep pointers from newly added elements to A; to their
predecessor among the original elements of A,

AN\

A [T

| ANEN AN
11{15]15[20|22(23|29(37|38[41|50(53|57|58|64
m N
36|37(50(57(62|64|66
r =19
P\
52|57(61|66|76

15

24

27

39

50

54

76

Fractional Cascading

Keep pointers from newly added elements to A; to their
predecessor among the original elements of A,

AN\

| A\
Ay 4|79 11|15]15

| AN

| A

20

)

23

29

37

38

41

50

03

D7

58

64

AN

| AN

36

37

o0

57

62

64

66

F\

D2

57

61

66

76

Fractional Cascading

Keep pointers from newly added elements to A; to their
predecessor among the original elements of A,

Almr\?r\ A\ | ANEE A\

9 |11]15]15/20(22(23|29|37|38|41|50|53|57|58|64

AN

Ag |37 36/37|50|57|62(64|66
r =19
™\
As |5 |15]19] 52|57|61|66|76

Observation: the red pointer advances at most once per array

Fractional Cascading

Keep pointers from newly added elements to A; to their
predecessor among the original elements of A,

AN\

| AN
Ay 14(7]9 |11

Ag |25

Size: O(kn)

Preprocessing: O(kn)

| ANE AN
15]15(20(22(23(29|37|38|41(50(53|57|58 |64
m N
36|37(50(57(62|64|66
r =19
P\
52|57(61|66|76

Query: O(k + logn)

Layered Range Trees

Layered Range Trees, D = 2

Build a 2D range tree in which the inner 1D range trees are implemented
with arrays

Layered Range Trees, D = 2

Reuse the cross-linking idea from fractional cascading

| «—()
U U
| [«—() | -)
U Ul U Ul
1<) 1<) [1<) 1 <)
Ul Ul U U

Layered Range Trees, D = 2

Reuse the cross-linking idea from fractional cascading

] [«—()
UI U
T T 1<)] [J<—)
U Ul U Ul
T 1<) [T [T 1 <) [T] <—)
Ul Ul U U

Layered Range Trees, D = 2

V element y in the 1D range tree of v, store a pointer to the
predecessor of y in the 1D range tree of the left/right child of v.

K —HK KK KXK—XK K — XK —AK—X— XK —>

Layered Range Trees, D = 2

V element y in the 1D range tree of v, store a pointer to the
predecessor of y in the 1D range tree of the left/right child of v.

HK—HKeX—XK KXK—XK K—XK—XK Ko X —KX—>

Layered Range Trees, D = 2

V element y in the 1D range tree of v, store a pointer to the
predecessor of y in the 1D range tree of the left/right child of v.

HK—HKeX—XK KXK—XK K—XK—XK Ko X —KX—>

Layered Range Trees, D = 2

V element y in the 1D range tree of v, store a pointer to the
predecessor of y in the 1D range tree of the left/right child of v.

XK HK—AHKNXK K—XK XK K—XK XK K—XK—>
Query: O(k + logn)

> 2

Recap

Preprocessing
Time
O(nlogn)

O(nlogn)

O(nlog” ' n)

Query Time
O(logn + k)
O(log® n + k)

O(log” n + k)

Notes

> 2

Recap

Preprocessing
Time
O(nlogn)

O(nlogn)
O(nlog” ' n)

O(nlogn)

Query Time

O(logn + k)
O(log® n + k)
O(log” n + k)

O(logn + k)

Notes

with
cross-linking

> 2

> 2

O(

D—-1

nlog™ " n)

O(nlogn)

O(

nlog” ' n)

Recap

Preprocessing
Time
O(nlogn)

O(nlogn)
O(nlog” ' n)
O(nlogn)

O(nlog” ' n)

Query Time

O(logn + k)
O(log® n + k)
O(log” n + k)
O(logn + k)

O(log” ' n+k)

Notes

with
cross-linking

with
cross-linking

> 2

2

> 2

O(nlogn)
O(nlog” ' n)
O(nlogn)

O(nlog” ' n)

Recap

Preprocessing
Time
O(nlogn)

O(nlogn)
O(nlog” ' n)
O(nlogn)

O(nlog” ' n)

Query Time

O(logn + k)
O(log® n + k)
O(log” n + k)
O(logn + k)

O(log” ' n+k)

Notes

with
cross-linking

with
cross-linking

Can be made dynamic (supports point insertion / deletion) in
O(log®” n) amortized time per update.

