

Input:

A set S of n D-dimensional points.

Goal:

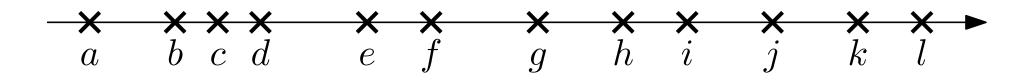
Design a data stucture that, given $p_1 \in \mathbb{Z}^D, p_2 \in \mathbb{Z}^D$ can:

- Report the number of points $q \in S$ such that $p_1 \leq q \leq p_2$.
- Report the set of points $q \in S$ such that $p_1 \leq q \leq p_2$.
- Report the point $q \in S$, $p_1 \leq q \leq p_2$, with *smallest* D-th coordinate.

• . .

An easy case: D = 1

- Points are integers
- Store points in a sorted array (in time $O(n \log n)$).
- Perform queries by binary searching for p_1 and p_2

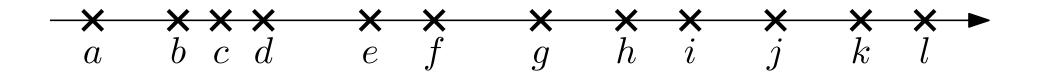


An easy case: D = 1

- Points are integers
- Store points in a sorted array (in time $O(n \log n)$).
- Perform queries by binary searching for p_1 and p_2

Query time: $O(\log n + k)$ k = "size" of the output.

- k = # reported points.
- $k = \Theta(1)$ if we only care about the *number* of points.



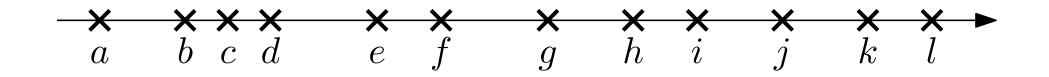
An easy case: D = 1

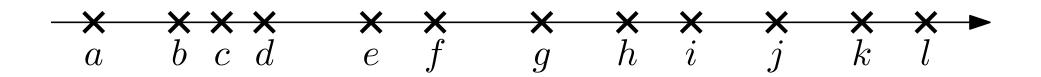
- Points are integers
- Store points in a sorted array (in time $O(n \log n)$).
- Perform queries by binary searching for p_1 and p_2

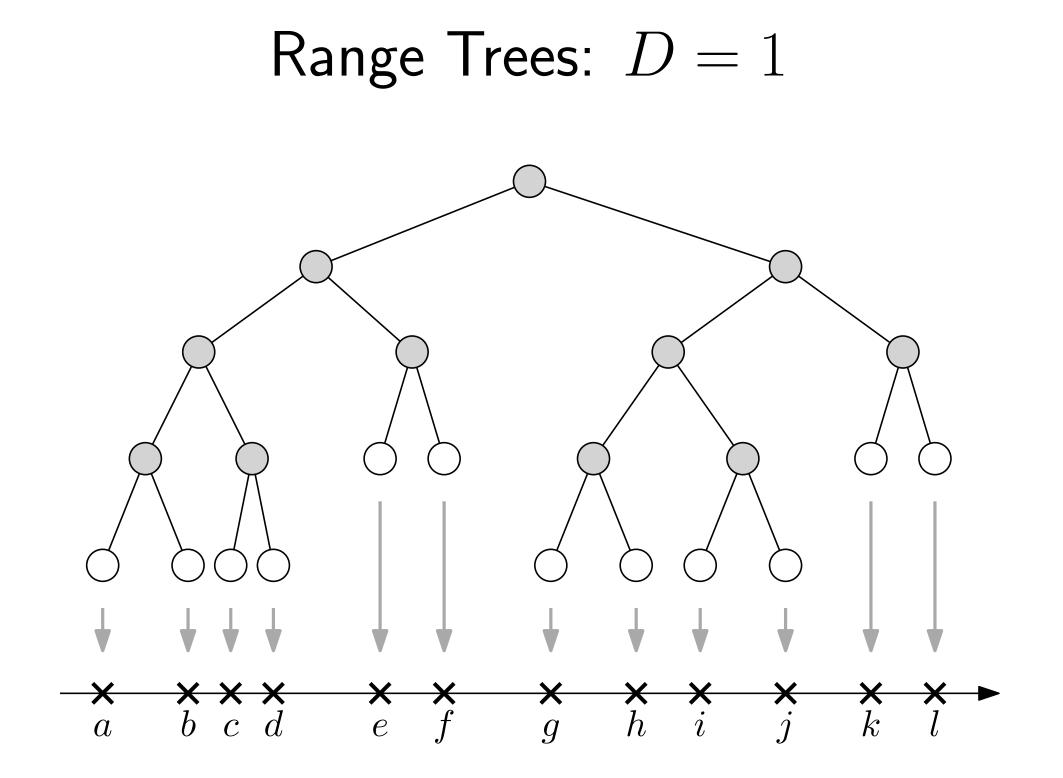
Query time: $O(\log n + k)$ k = "size" of the output.

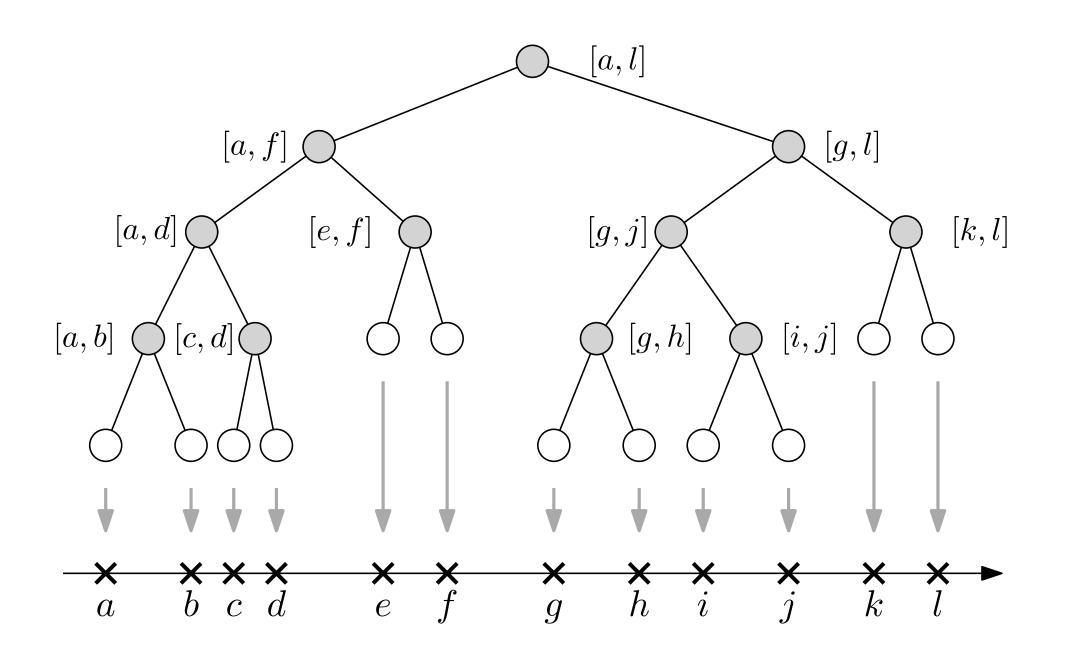
- k = # reported points.
- $k = \Theta(1)$ if we only care about the *number* of points.

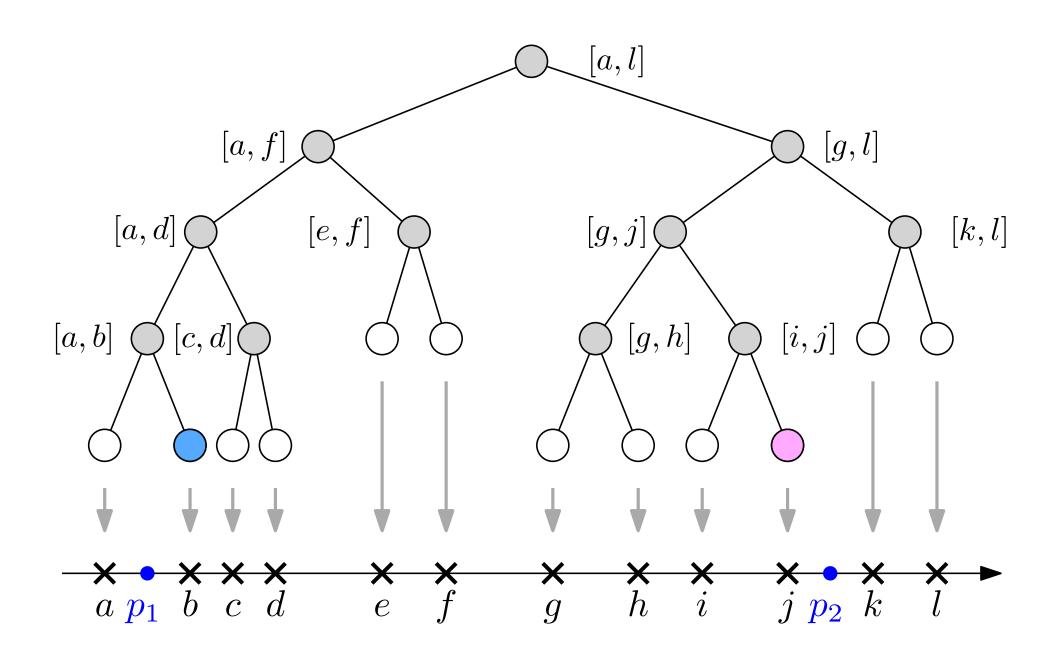
Space complexity: O(n)

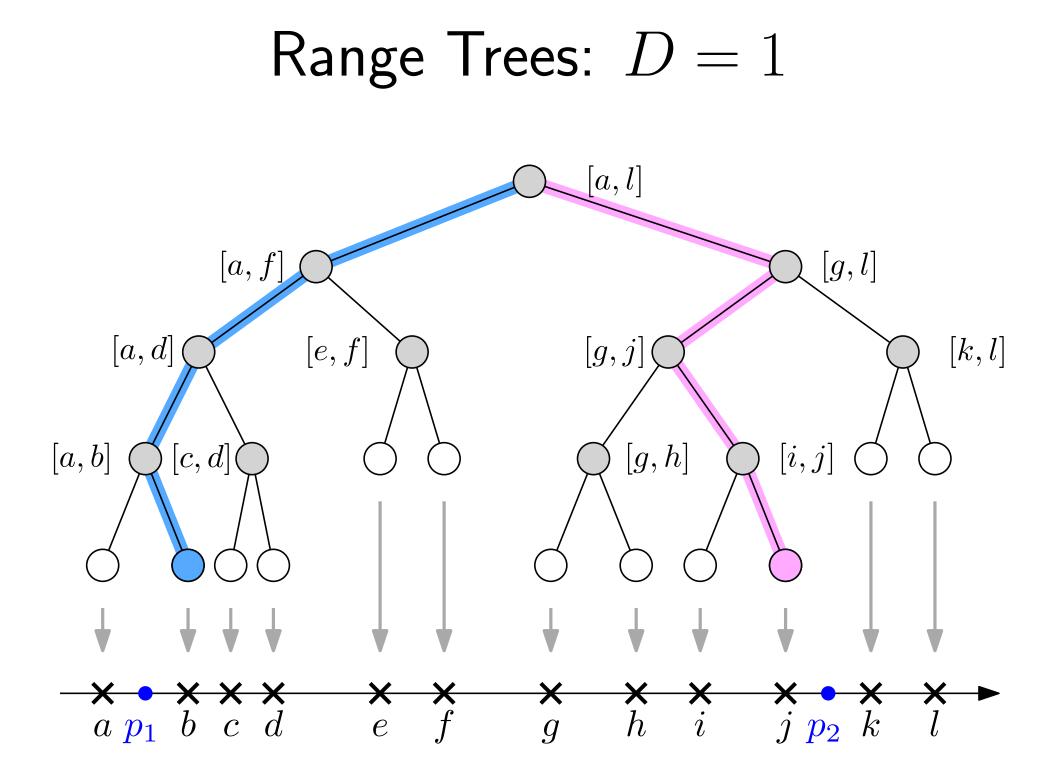


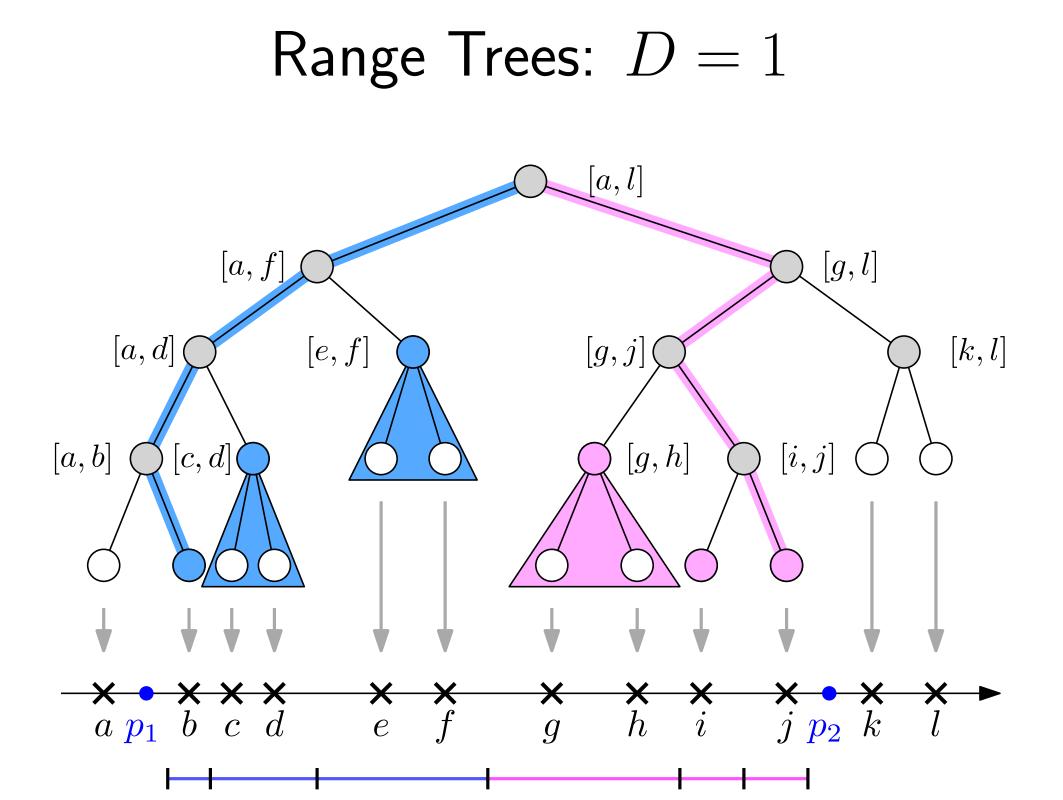












Construction:

- **Preliminarily** sort S (only once!)
- Split S into S_1 and S_2 of $\approx \frac{n}{2}$ elements each. O(1)
- Recursively build T_1 and T_2 from S_1 and S_2 , respectively.
- The root of T has T_1 and T_2 as its left and right subtrees.
- Return T

Construction:

- **Preliminarily** sort S (only once!)
- Split S into S_1 and S_2 of $\approx \frac{n}{2}$ elements each. O(1)
- Recursively build T_1 and T_2 from S_1 and S_2 , respectively.
- The root of T has T_1 and T_2 as its left and right subtrees.
- Return T

Time: $O(n \log n) + T(n)$, where $T(n) = 2 \cdot T(\frac{n}{2}) + O(1)$

Construction:

- **Preliminarily** sort S (only once!)
- Split S into S_1 and S_2 of $\approx \frac{n}{2}$ elements each. O(1)
- Recursively build T_1 and T_2 from S_1 and S_2 , respectively.
- The root of T has T_1 and T_2 as its left and right subtrees.
- Return T

Time: $O(n \log n) + T(n)$, where $T(n) = 2 \cdot T(\frac{n}{2}) + O(1)$ $O(n \log n)$

Construction:

- **Preliminarily** sort S (only once!)
- Split S into S_1 and S_2 of $\approx \frac{n}{2}$ elements each. O(1)
- Recursively build T_1 and T_2 from S_1 and S_2 , respectively.
- The root of T has T_1 and T_2 as its left and right subtrees.
- Return T

Time: $O(n \log n) + T(n)$, where $T(n) = 2 \cdot T(\frac{n}{2}) + O(1)$ $O(n \log n)$

What if S is already sorted?

Construction:

- **Preliminarily** sort S (only once!)
- Split S into S_1 and S_2 of $\approx \frac{n}{2}$ elements each. O(1)
- Recursively build T_1 and T_2 from S_1 and S_2 , respectively.
- The root of T has T_1 and T_2 as its left and right subtrees.
- Return T

Time: $O(n \log n) + T(n)$, where $T(n) = 2 \cdot T(\frac{n}{2}) + O(1)$ $O(n \log n)$

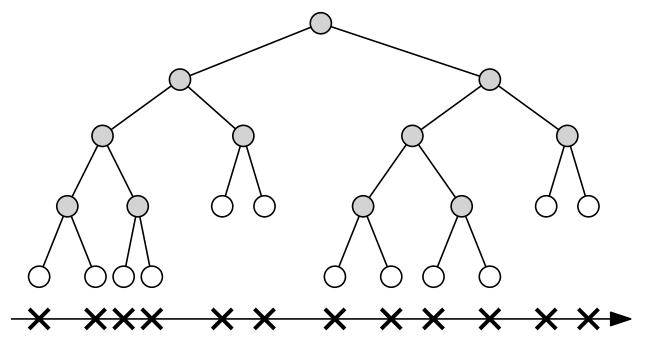
What if S is already sorted? O(n) (we will need this later)

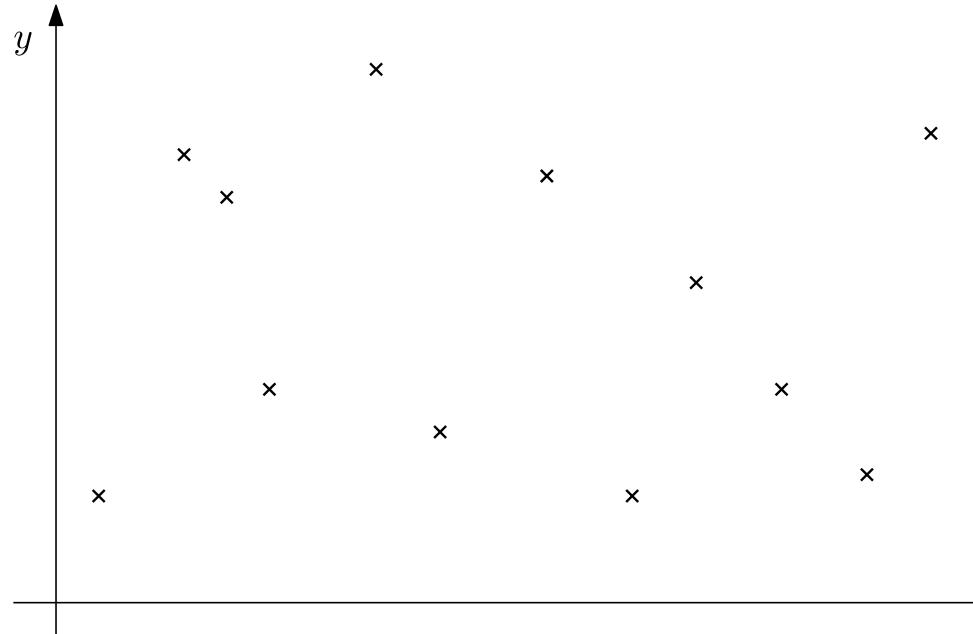
Preprocessing time: $O(n \log n)$

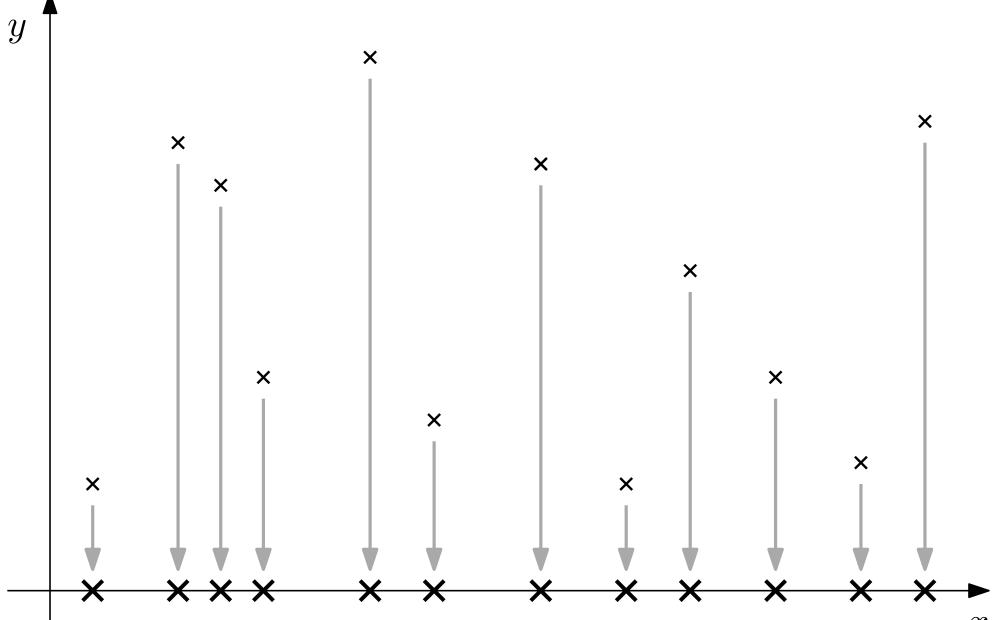
Query time: $O(\log n + k)$

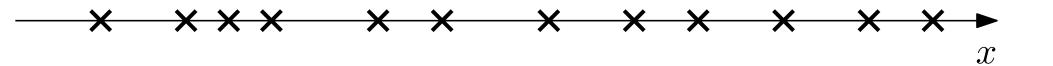
- k = # reported points.
- $k = \Theta(1)$ if we only care about the *number* of points.

Space complexity: O(n)

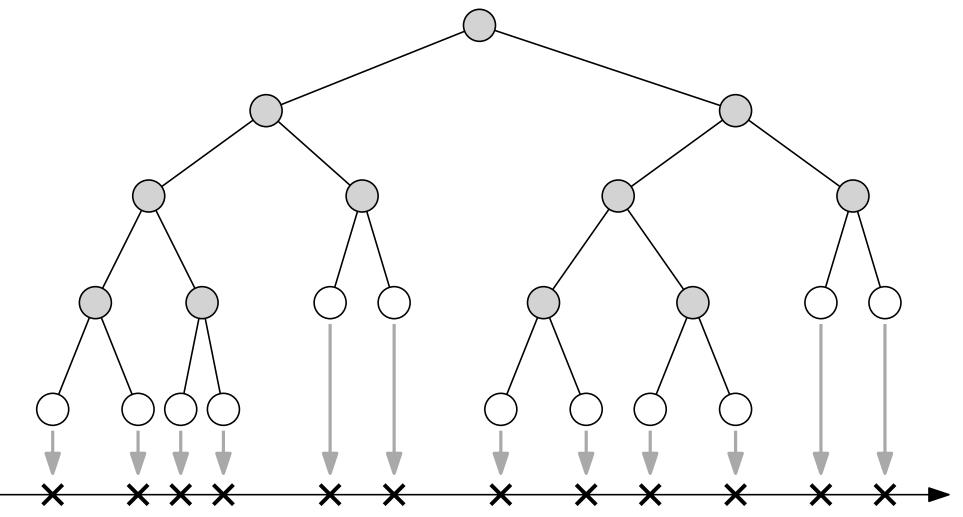




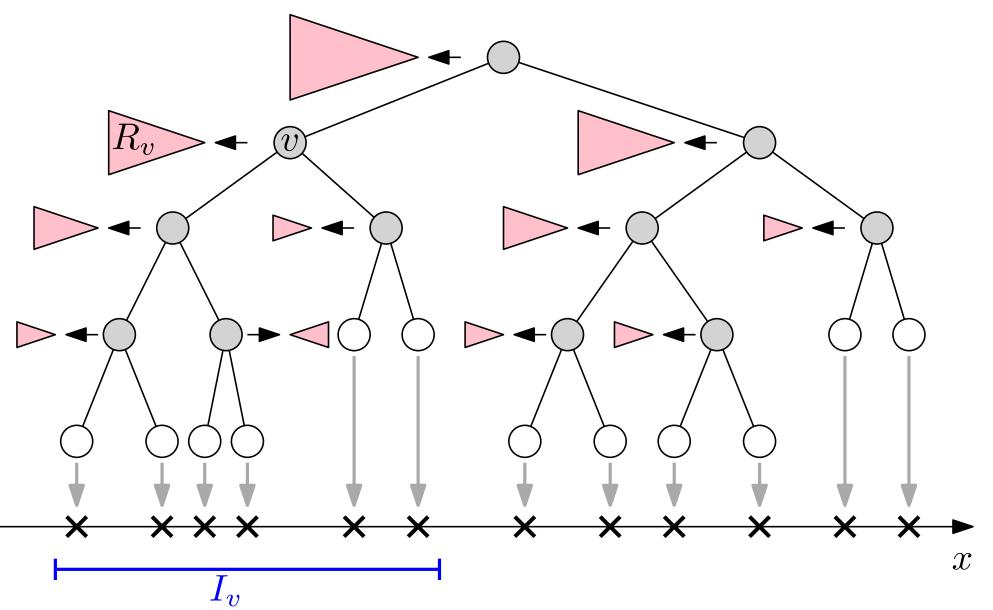


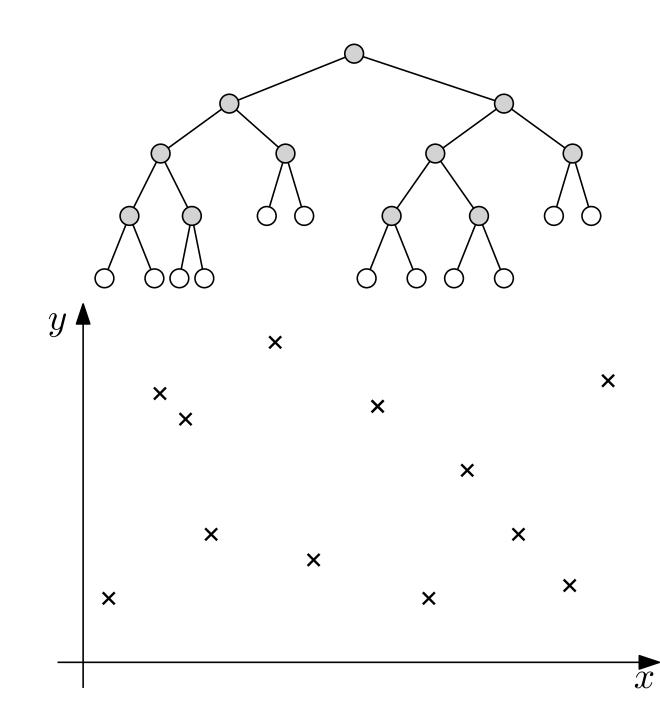


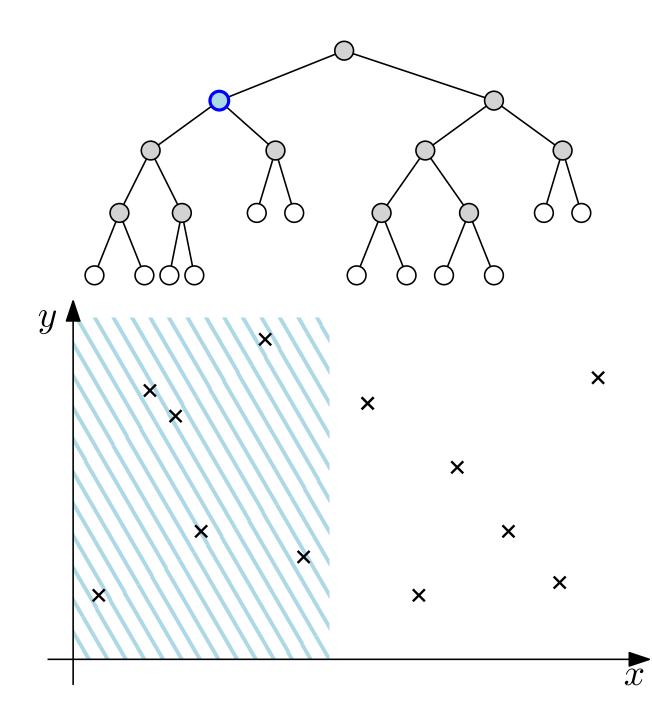
Build a range tree on the set of x-coordinates of the points in S

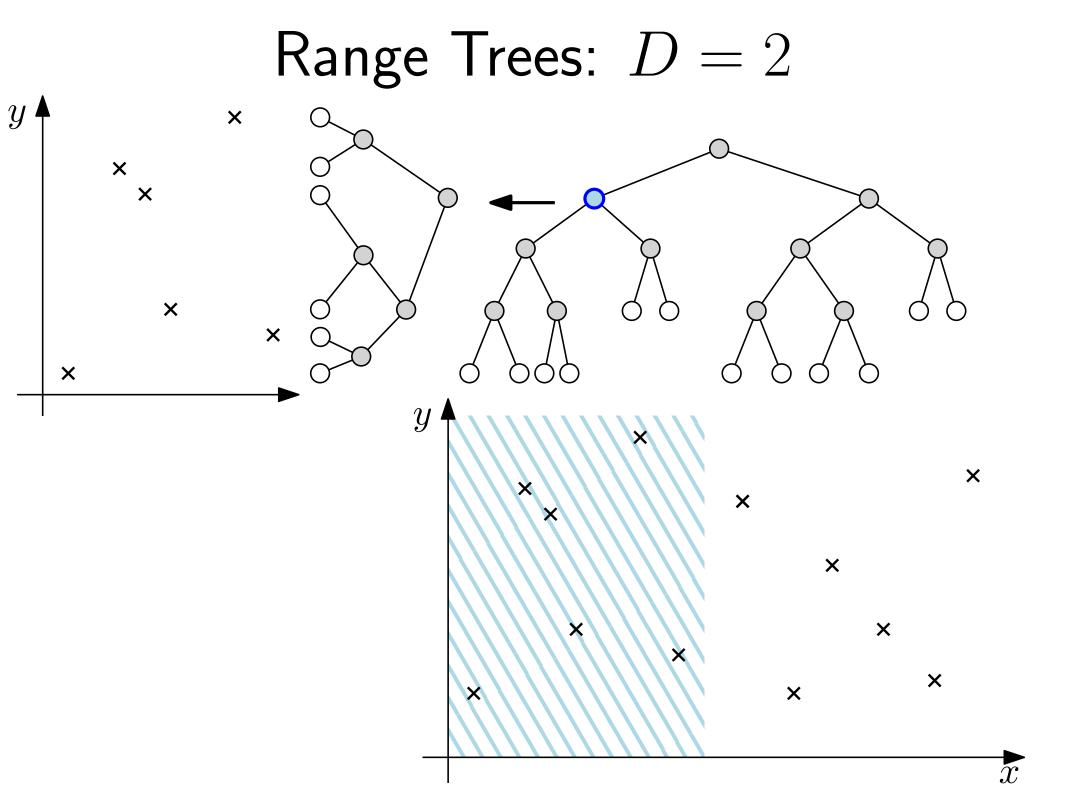


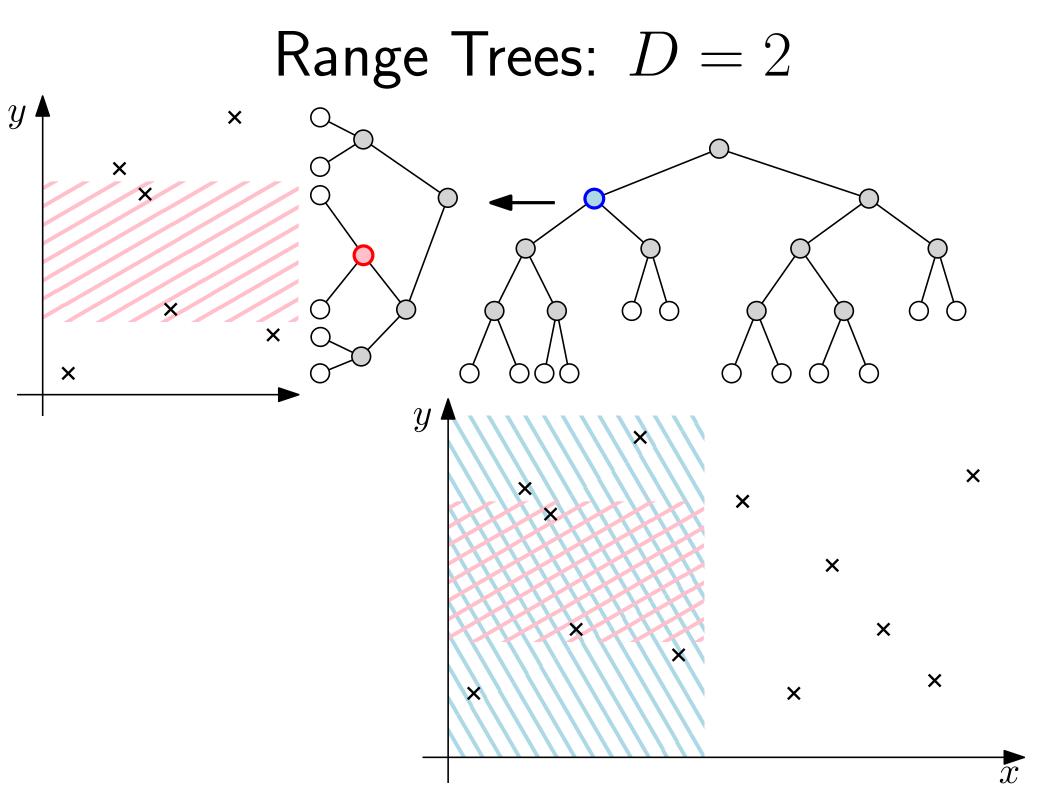
For each node v representing an interval $I_v = [x_1, x_2]$, build a range tree R_v on the y coordinates of the points in S whose x-coordinate is in I_v











Construction:

- **Preliminarily** sort *S* on the *x*-coordinate.
- Split S into S_1 and S_2 of $\approx \frac{n}{2}$ elements each.
- Recursively build T_1 and T_2 from S_1 and S_2 , respectively.
- The root v of T has T_1 and T_2 as its left and right subtrees.
- Store, in $v,\,{\rm a}$ pointer to a new 1D Range Tree on S
- Return T

Construction:

- **Preliminarily** sort *S* on the *x*-coordinate.
- Split S into S_1 and S_2 of $\approx \frac{n}{2}$ elements each.
- Recursively build T_1 and T_2 from S_1 and S_2 , respectively.
- The root v of T has T_1 and T_2 as its left and right subtrees.
- Store, in $v,\,{\rm a}$ pointer to a new 1D Range Tree on S
- Return T

Time: $O(n \log n) + T(n)$, where $T(n) = 2 \cdot T(\frac{n}{2}) + O(n \log n)$

Construction:

- **Preliminarily** sort *S* on the *x*-coordinate.
- Split S into S_1 and S_2 of $\approx \frac{n}{2}$ elements each.
- Recursively build T_1 and T_2 from S_1 and S_2 , respectively.
- The root v of T has T_1 and T_2 as its left and right subtrees.
- Store, in $v,\,{\rm a}$ pointer to a new 1D Range Tree on S
- Return T

Time: $O(n \log n) + T(n)$, where $T(n) = 2 \cdot T(\frac{n}{2}) + O(n \log n)$

$$O(n\log^2 n)$$

can we do better?

Construction: S^y is the set S sorted on the y-coordinate

- **Preliminarily** sort S on the x-coordinate.
- Split S into S_1 and S_2 of $\approx \frac{n}{2}$ elements each.
- Recursively build (T_1, S_1^y) and (T_2, S_2^y) from S_1 and S_2 , respectively.
- The root v of T has T_1 and T_2 as its left and right subtrees.
- Merge S_1^y and S_2^y into S^y .
- Store, in v, a pointer to a new 1D Range Tree on S^y
- Return (T, S^y)

Construction: S^y is the set S sorted on the y-coordinate

- **Preliminarily** sort S on the x-coordinate.
- Split S into S_1 and S_2 of $\approx \frac{n}{2}$ elements each.
- Recursively build (T_1, S_1^y) and (T_2, S_2^y) from S_1 and S_2 , respectively.
- The root v of T has T_1 and T_2 as its left and right subtrees.
- Merge S_1^y and S_2^y into S^y .
- Store, in v, a pointer to a new 1D Range Tree on S^y
- Return (T, S^y)

Time: $O(n \log n) + T(n)$, where $T(n) = 2 \cdot T(\frac{n}{2}) + O(n)$

Construction: S^y is the set S sorted on the y-coordinate

- **Preliminarily** sort S on the x-coordinate.
- Split S into S_1 and S_2 of $\approx \frac{n}{2}$ elements each.
- Recursively build (T_1, S_1^y) and (T_2, S_2^y) from S_1 and S_2 , respectively.
- The root v of T has T_1 and T_2 as its left and right subtrees.
- Merge S_1^y and S_2^y into S^y .
- Store, in v, a pointer to a new 1D Range Tree on S^y
- Return (T, S^y)

Time: $O(n \log n) + T(n)$, where $T(n) = 2 \cdot T(\frac{n}{2}) + O(n)$ $O(n \log n)$

To report the points $p_1 = (x_1, y_1) \le q \le p_2 = (x_2, y_2)$:

- Use T to find the $h = O(\log n)$ subtrees R_1, \ldots, R_h that store the points q = (x, y) with $x_1 \le x \le x_2$.
- For each tree $R_j \in \{R_1, \ldots, R_h\}$ representing the *x*-interval I_j :
 - Query R_j to report the number of/set of points q = (x, y) with $x \in I_j$ and $y_1 \leq y \leq y_2$.

Range Trees: D = 2

To report the points $p_1 = (x_1, y_1) \le q \le p_2 = (x_2, y_2)$:

- Use T to find the $h = O(\log n)$ subtrees R_1, \ldots, R_h that store the points q = (x, y) with $x_1 \le x \le x_2$.
- For each tree $R_j \in \{R_1, \ldots, R_h\}$ representing the *x*-interval I_j :
 - Query R_j to report the number of/set of points q = (x, y) with $x \in I_j$ and $y_1 \leq y \leq y_2$.

Time:
$$O(\log n) \cdot O(\log n) + O(k) = O(\log^2 n + k)$$

Number of *R_is* Time to query *R_i* "size" of the output

Range Trees: D = 2

Preprocessing time: $O(n \log n)$

Query time: $O(\log^2 n + k)$

- k = # reported points.
- $k = \Theta(1)$ if we only care about the *number* of points.

Space complexity:

- Bounded by the overall size of 1D Range Trees
- Each point belongs to $O(\log n)$ 1D Range Tees
- Total space: $O(n \log n)$

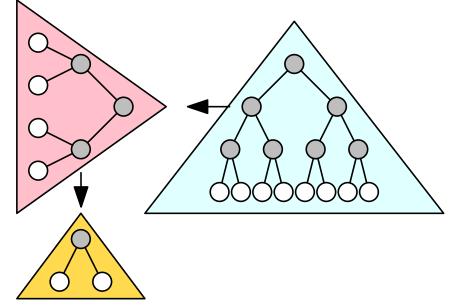
Higher dimensions: construction

To store points p = (x, y, z, w, ...) in D > 2 dimensions: Recursive construction:

- Build a Range Tree T on the first coordinate \boldsymbol{x} of the points:
- For each subtree T_v of T associated with the interval $I_v = [x_1, x_2]$:
 - Construct a range tree R_v on the last D-1 coordinates $(y, z \dots)$ of the set of points $p = (x, y, \dots)$ with $x \in I_v$.
 - Store, in v, a pointer to R_v .

Time: $O(n \log^{D-1} n)$.

Space:
$$O(n \log^{D-1} n)$$
.



Higher dimensions: query

Let
$$p_1 = (x_1, y_1, z_1, \dots)$$
, $p_2 = (x_2, y_2, z_2, \dots)$.

To report the points $p_1 \leq q \leq p_2$:

- Use T to find the $h = O(\log n)$ subtrees R_1, \ldots, R_h that store the points $q = (x, y, z, \ldots)$ with $x_1 \le x \le x_2$.
- For each tree $R_j \in \{R_1, \ldots, R_h\}$ representing the *x*-interval I_j :
 - Recursively query R_i to report the number/set of points q s.t. $x \in I_j$ and $(y_1, z_1, ...) \leq q \leq (y_2, z_2, ...)$.

Query time: $O(\log^D n + k)$.

Recap

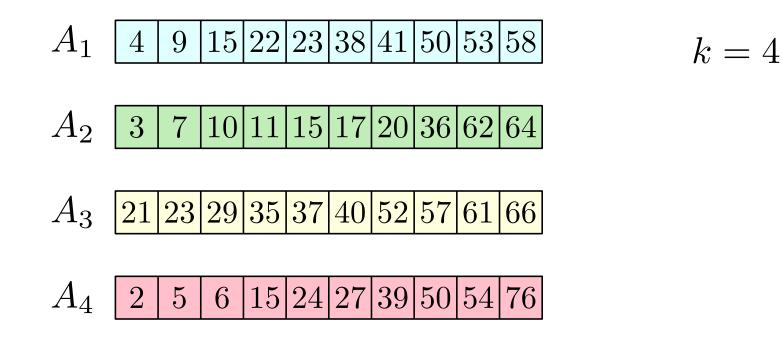
Notes

Preprocessing Query Time Size DTime O(n) $O(n \log n)$ 1 $O(\log n + k)$ $O(\log^2 n + k)$ $O(n\log n)$ $O(n\log n)$ 2 $O(n \log^{D-1} n)$ $O(n \log^{D-1} n)$ $O(\log^D n + k)$ > 2

Fractional Cascading: The problem

Input:

k sorted arrays A_1, \ldots, A_k of n elements each:



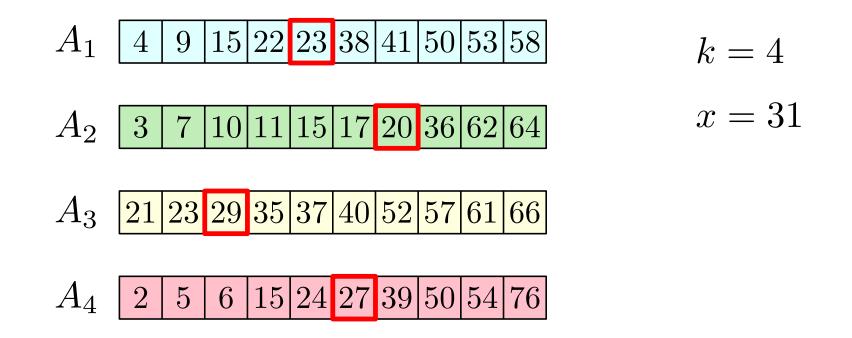
Query:

Given x report, for i = 1, ..., k, x if $x \in A_i$ or its *predecessor* if $x \notin A_i$.

Fractional Cascading: The problem

Input:

k sorted arrays A_1, \ldots, A_k of n elements each:



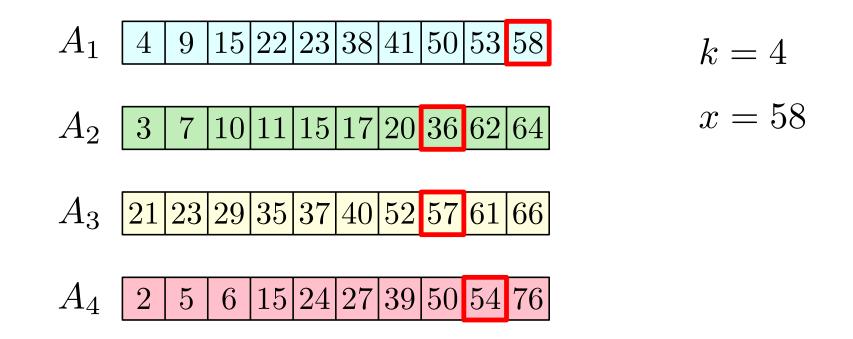
Query:

Given x report, for i = 1, ..., k, x if $x \in A_i$ or its *predecessor* if $x \notin A_i$.

Fractional Cascading: The problem

Input:

k sorted arrays A_1, \ldots, A_k of n elements each:



Query:

Given x report, for i = 1, ..., k, x if $x \in A_i$ or its *predecessor* if $x \notin A_i$.

Fractional Cascading: A Trivial solution

- For i = 1, ..., k:
 - Binary search for x in A_i

Time: $O(k \log n)$

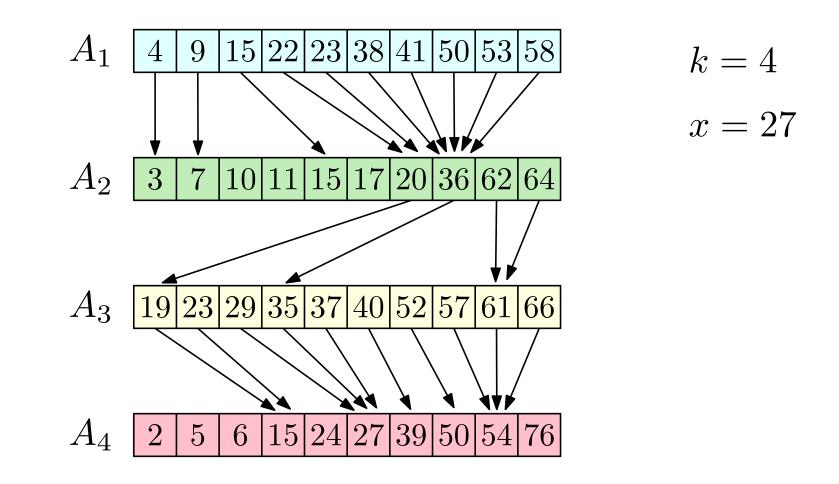
Fractional Cascading: A Trivial solution

- For i = 1, ..., k:
 - Binary search for x in A_i

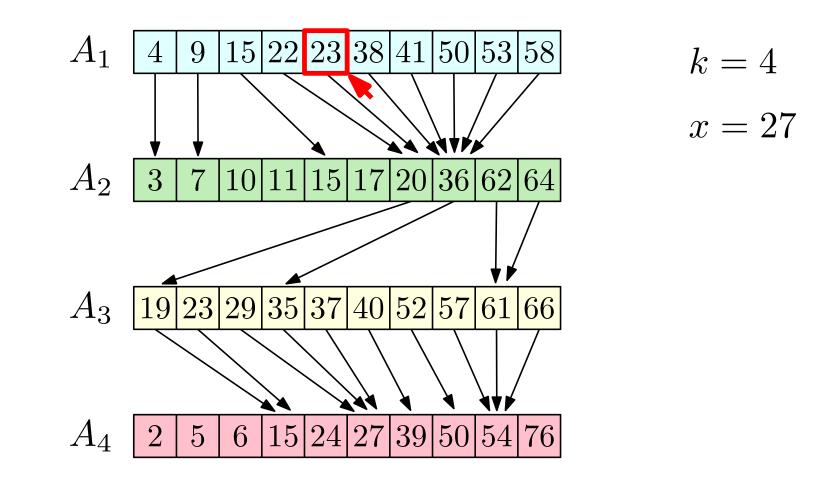
Time: $O(k \log n)$

We can do better!

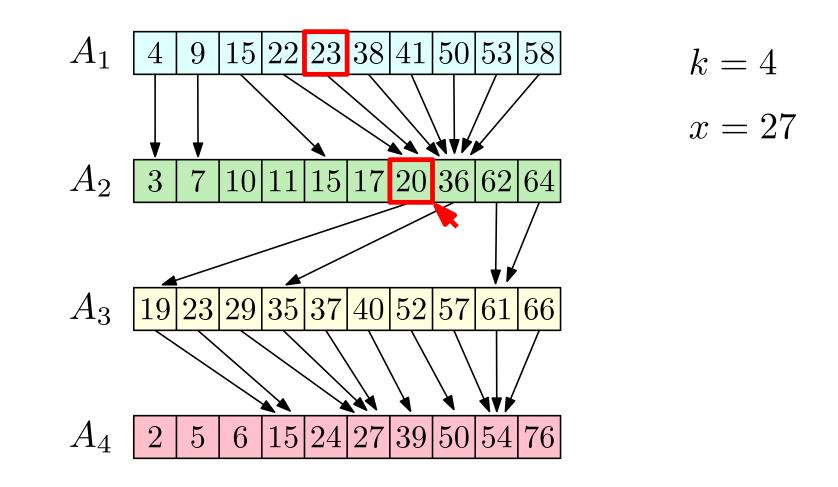
First idea: cross linking



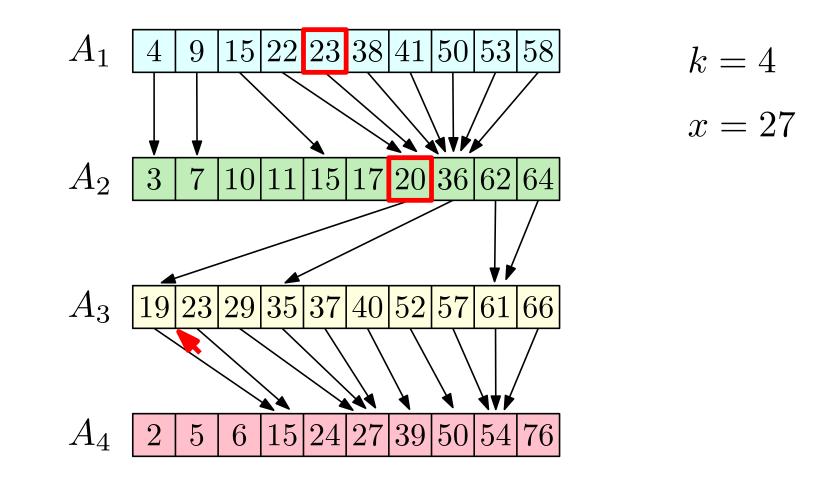
First idea: cross linking



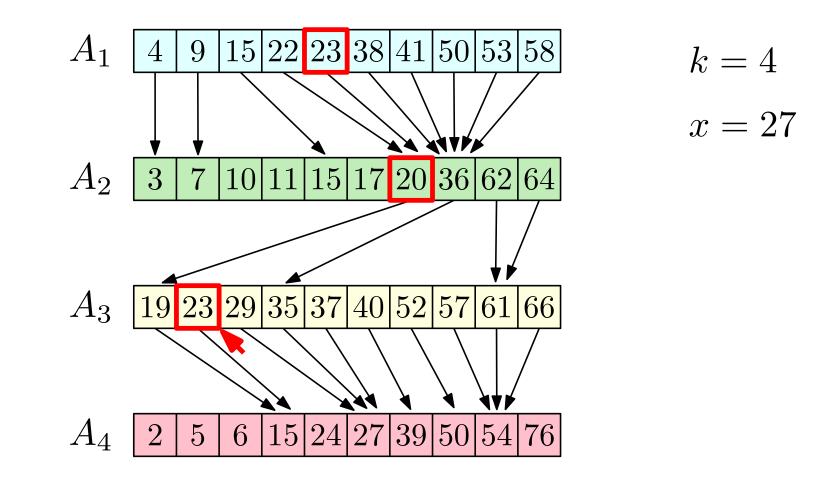
First idea: cross linking



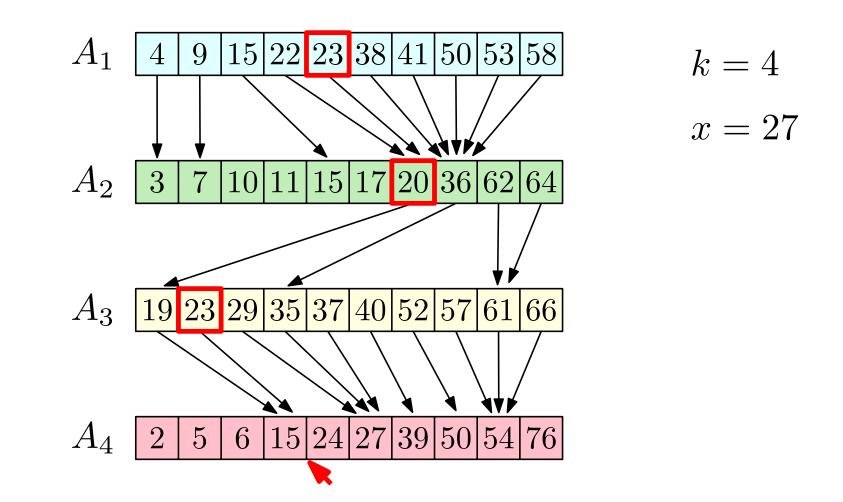
First idea: cross linking



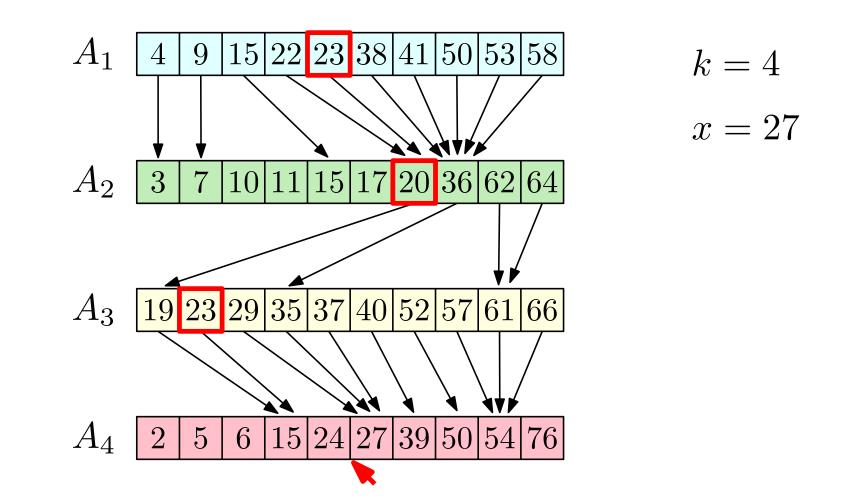
First idea: cross linking



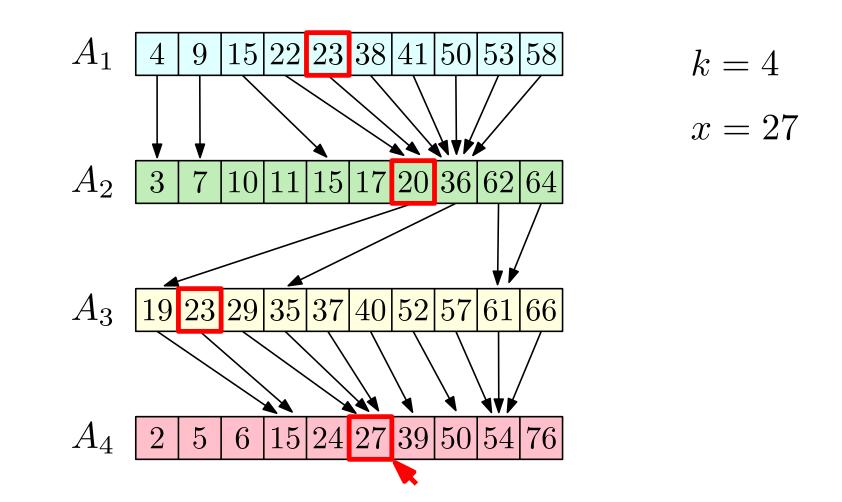
First idea: cross linking

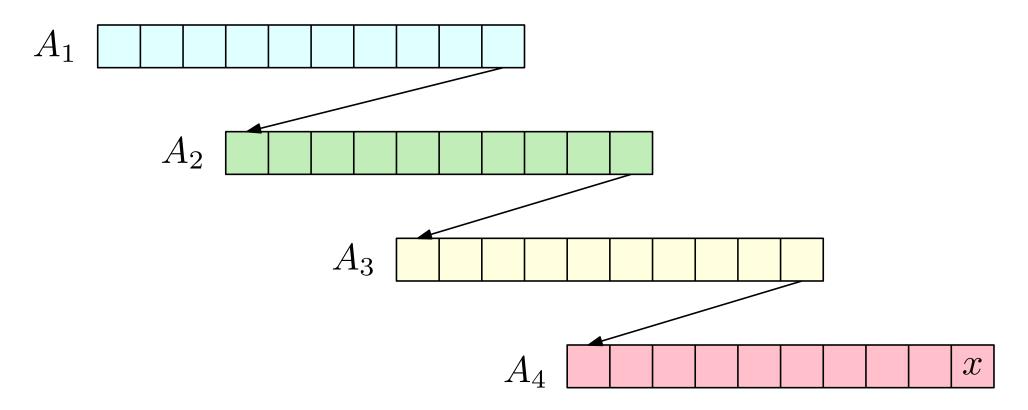


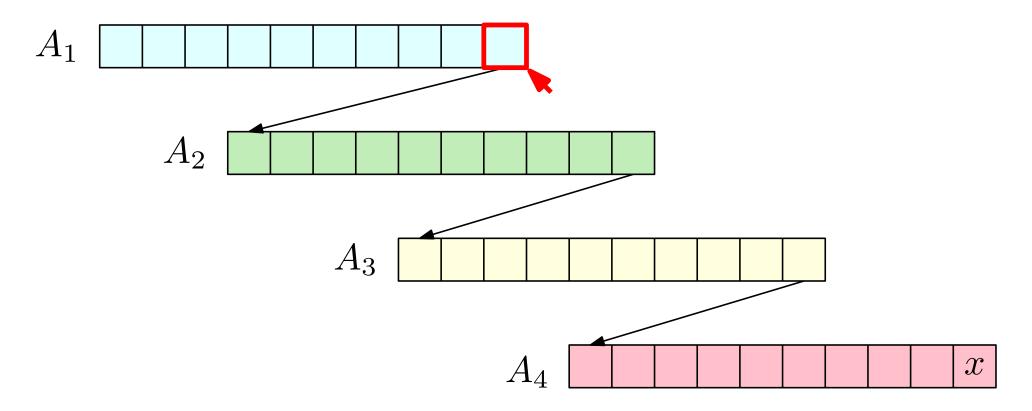
First idea: cross linking

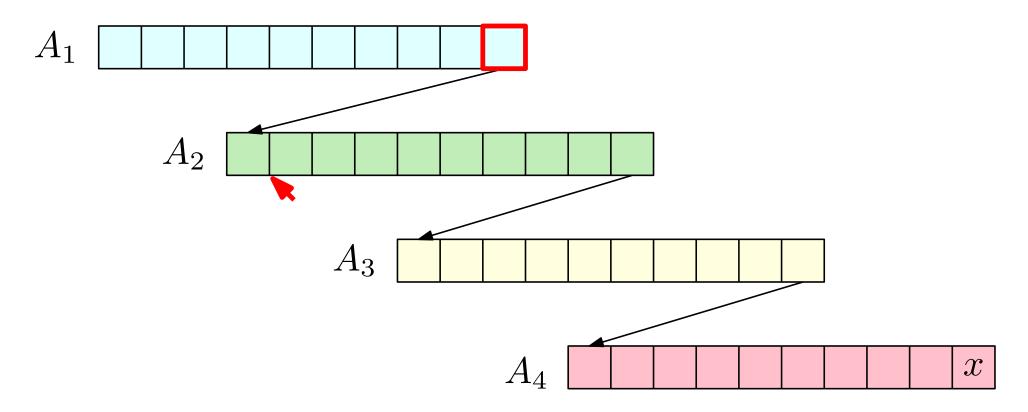


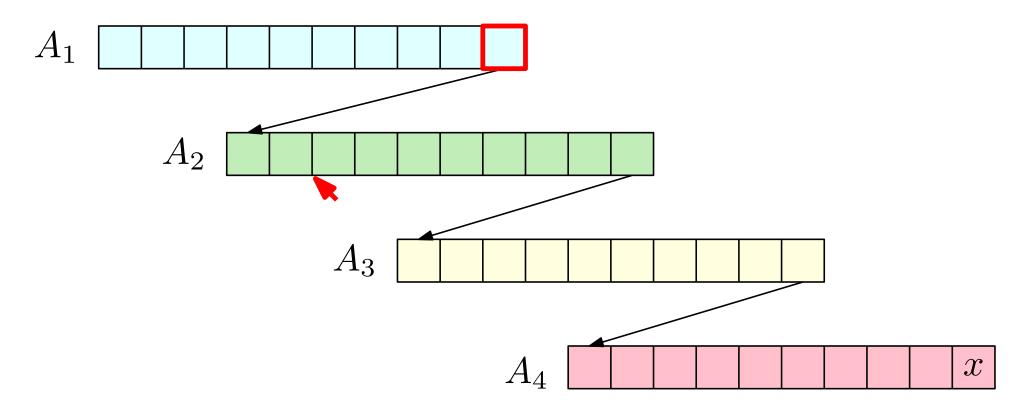
First idea: cross linking

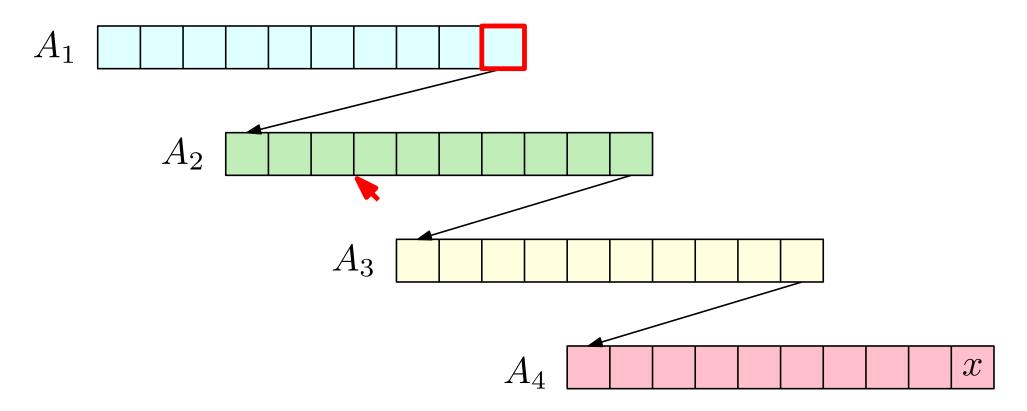


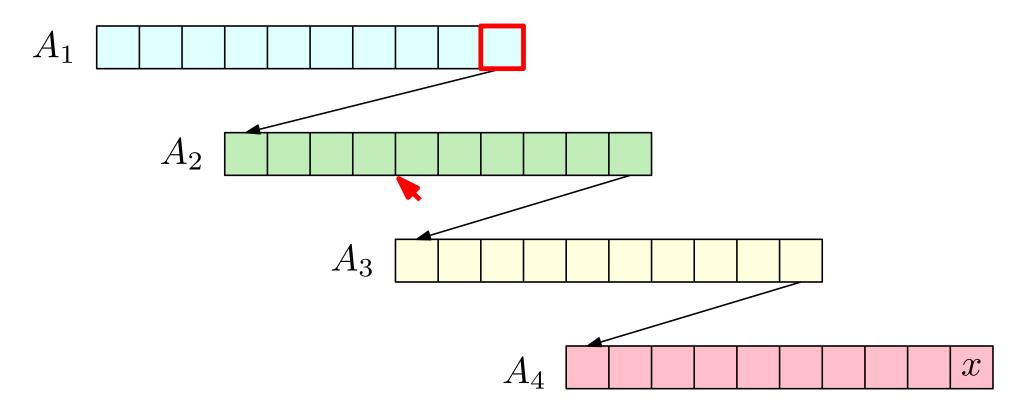


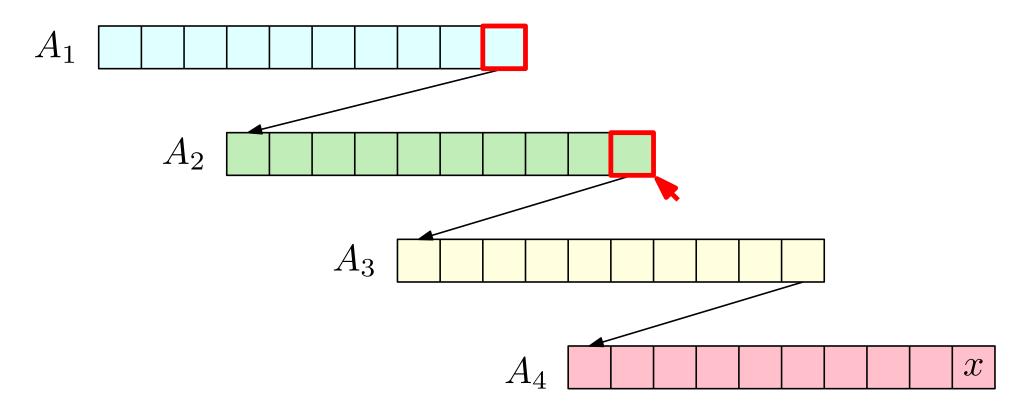


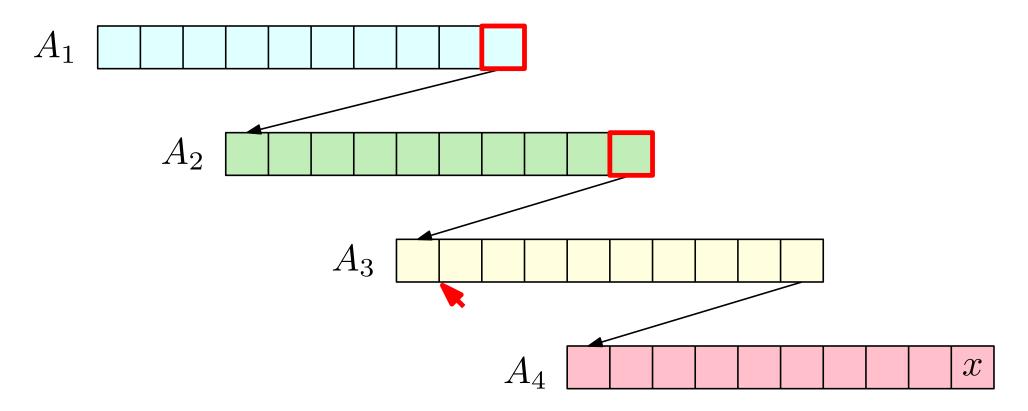


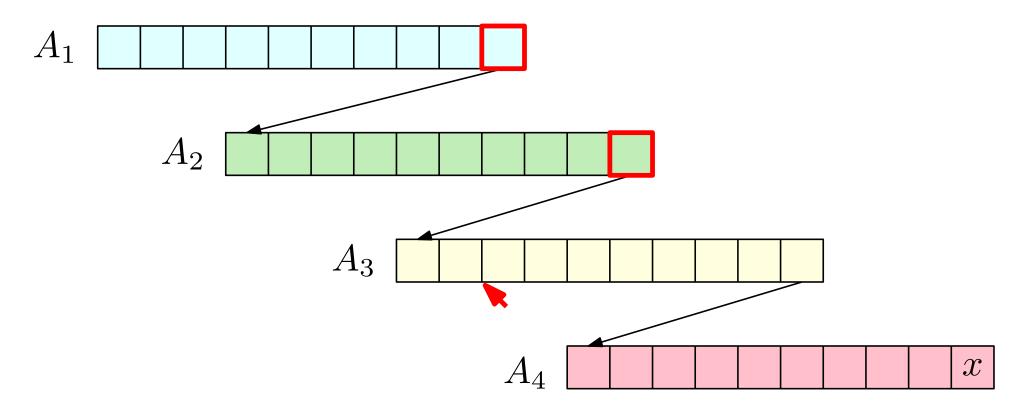


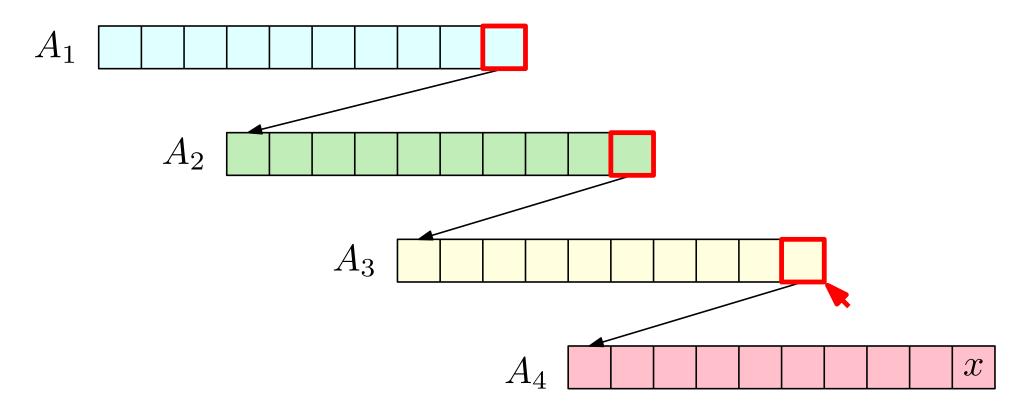


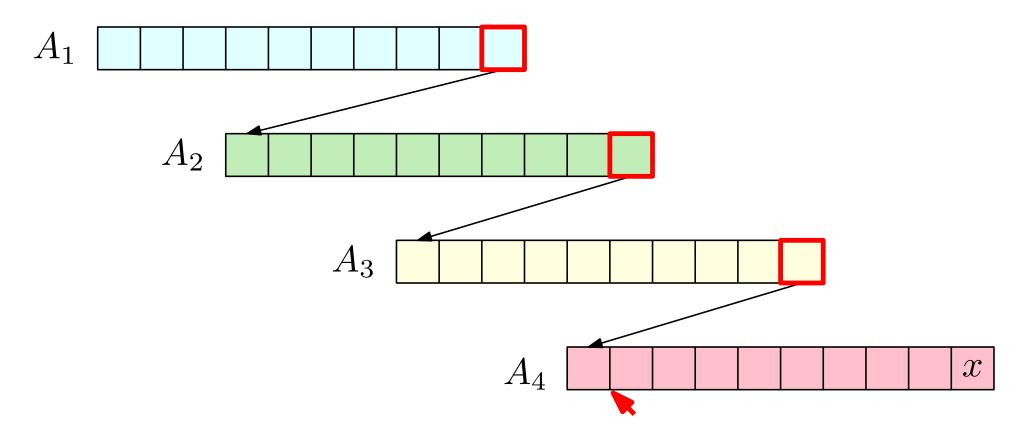


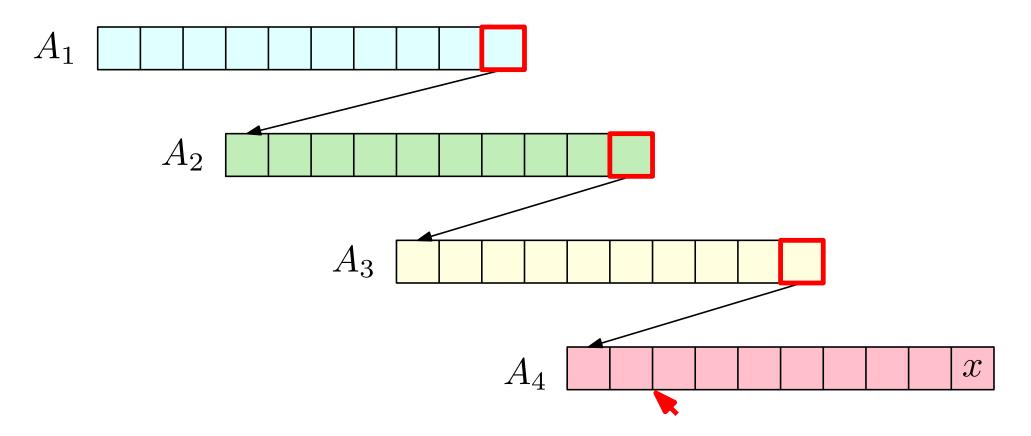


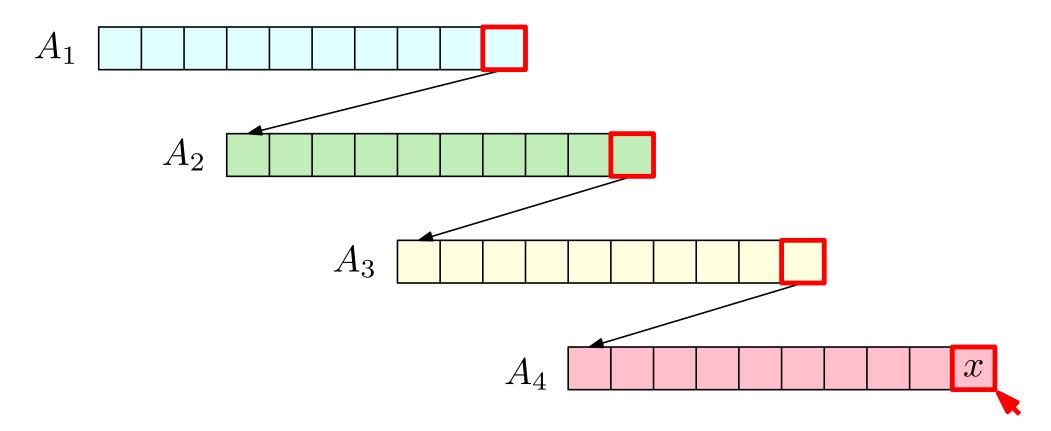




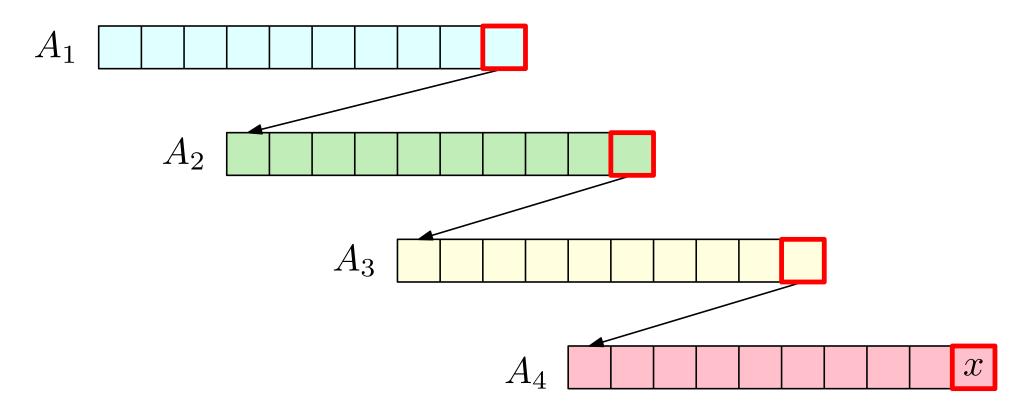








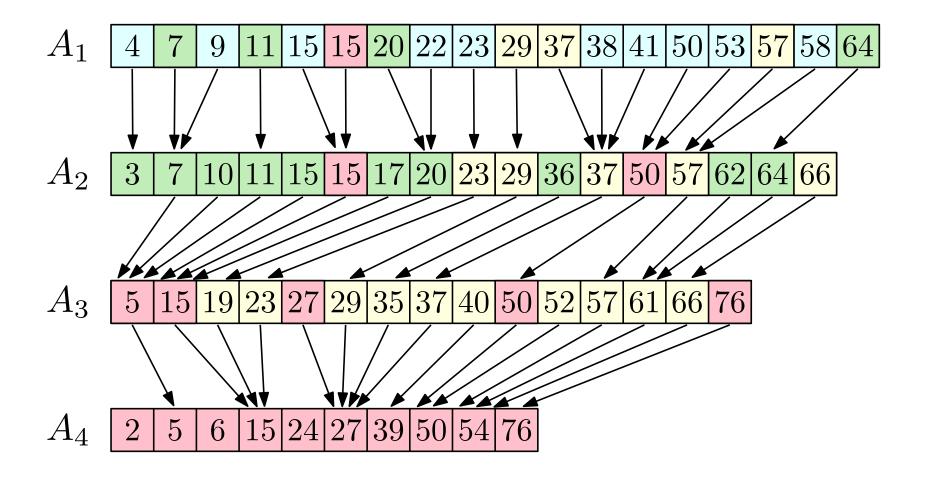
How much time does it take?



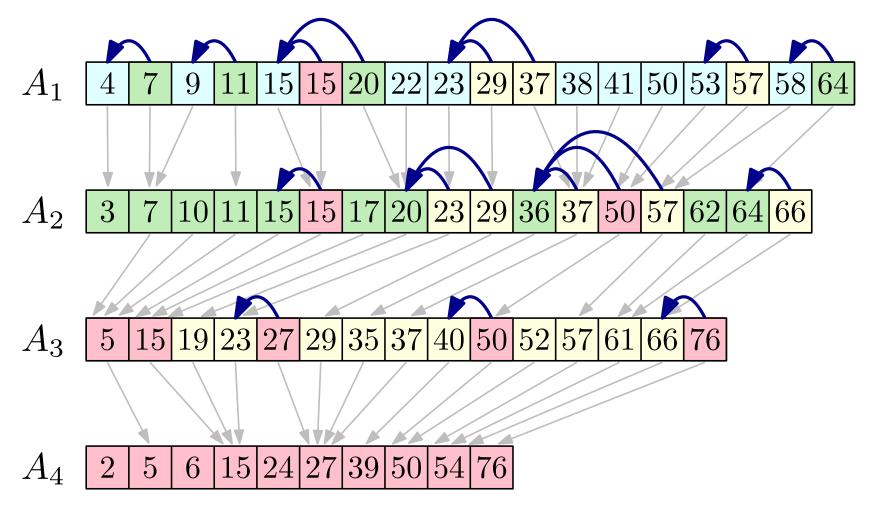
Worst-case time: O(kn)

Second idea: fractional cascading

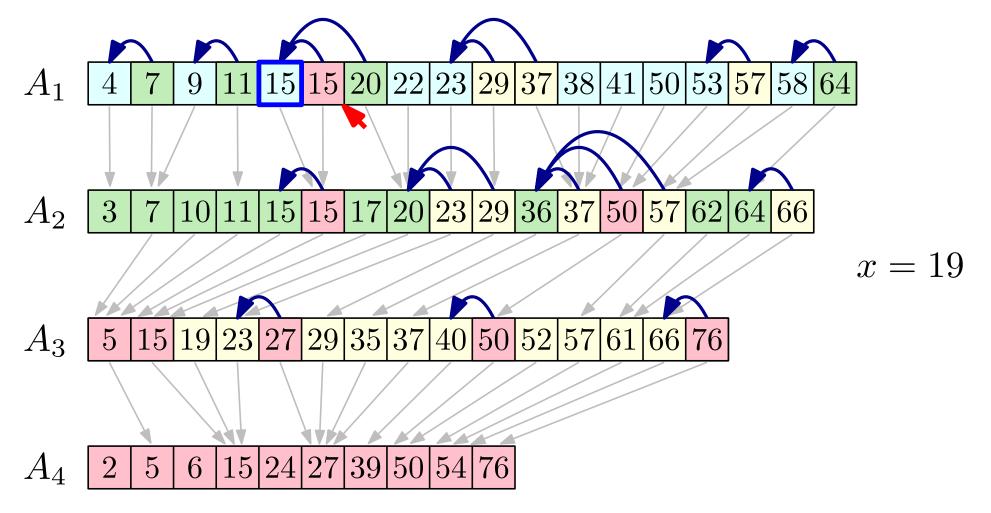
For $i = k, k - 1, \ldots, 2$: Add every other element of A_i to A_{i-1} .

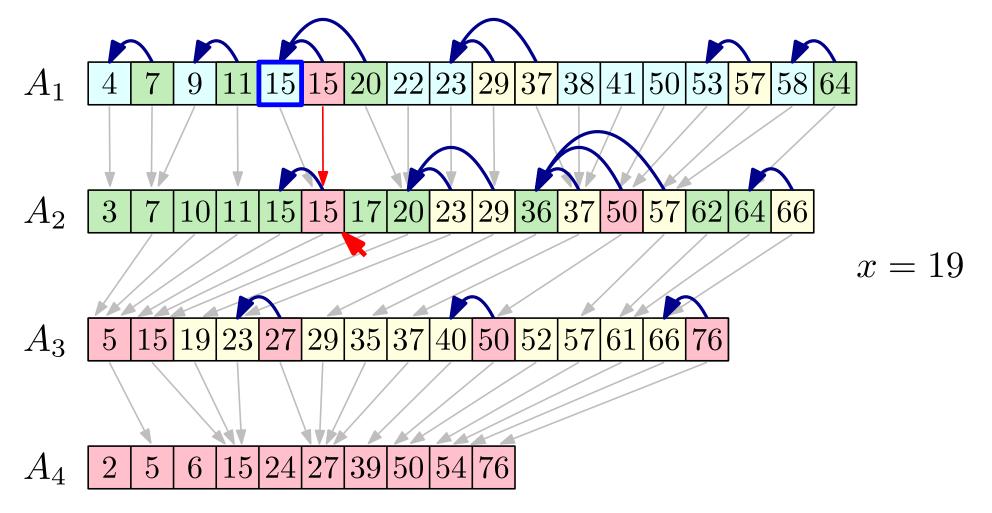


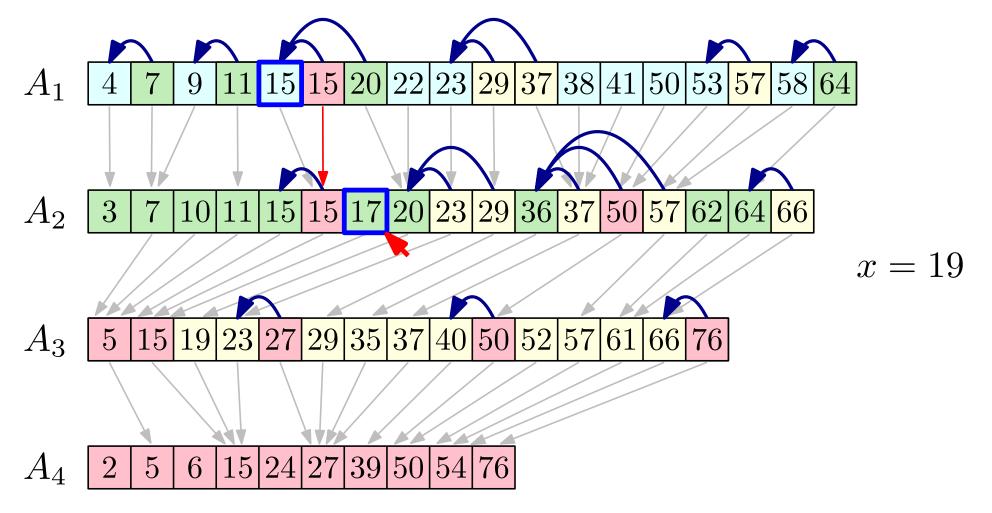
Keep pointers from newly added elements to A_i to their predecessor among the original elements of A_i

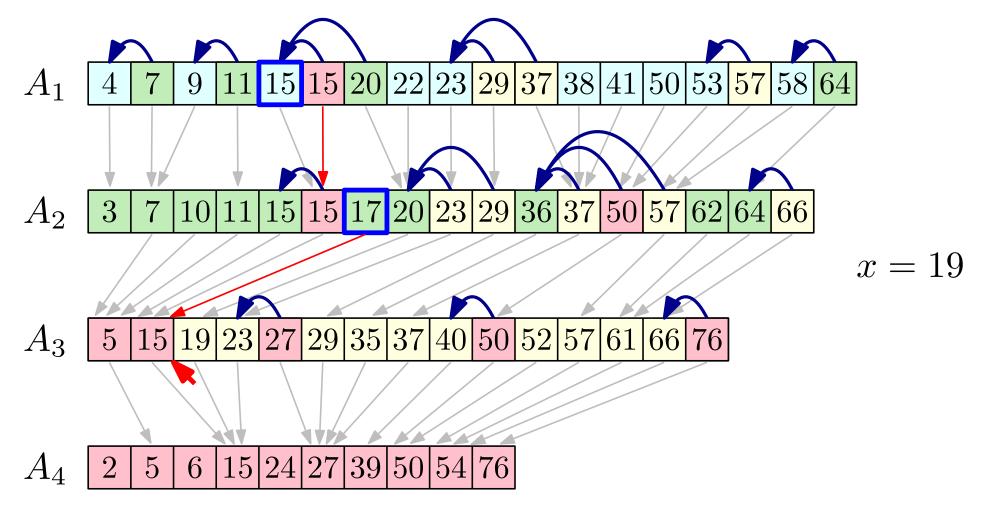


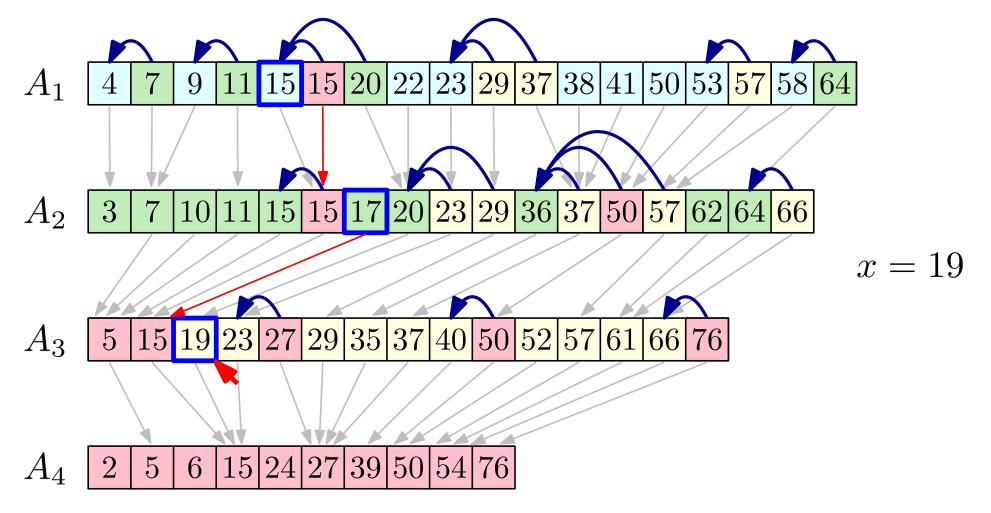
Keep pointers from newly added elements to A_i to their predecessor among the original elements of A_i

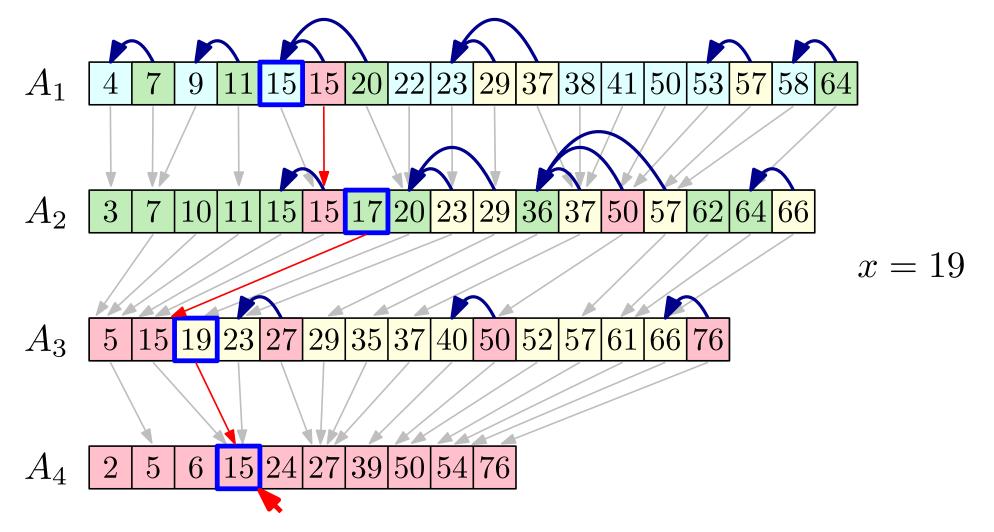




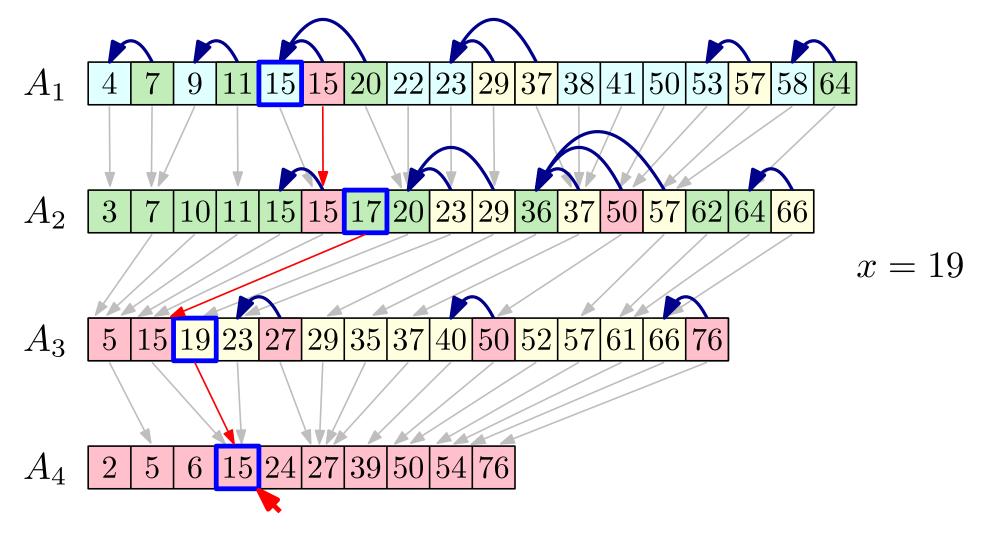






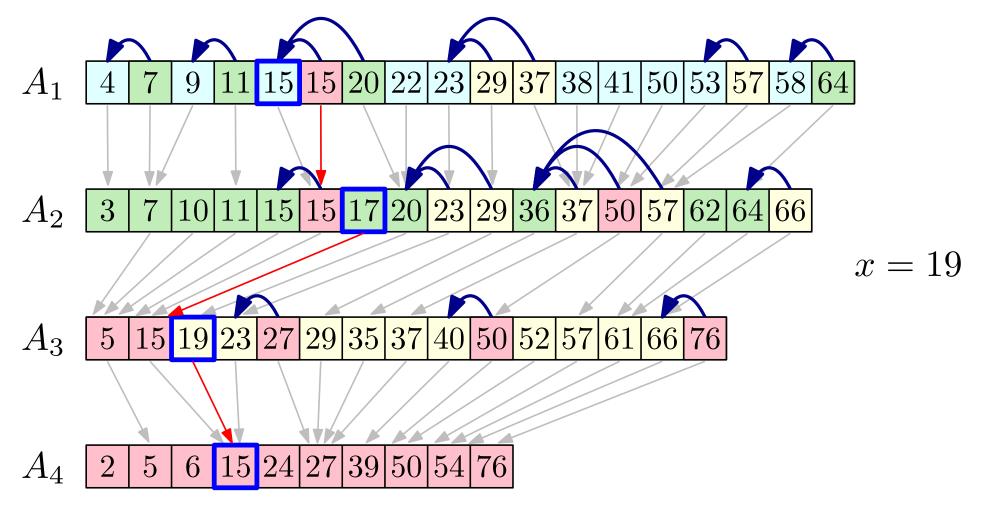


Keep pointers from newly added elements to A_i to their predecessor among the original elements of A_i



Observation: the red pointer advances at most once per array

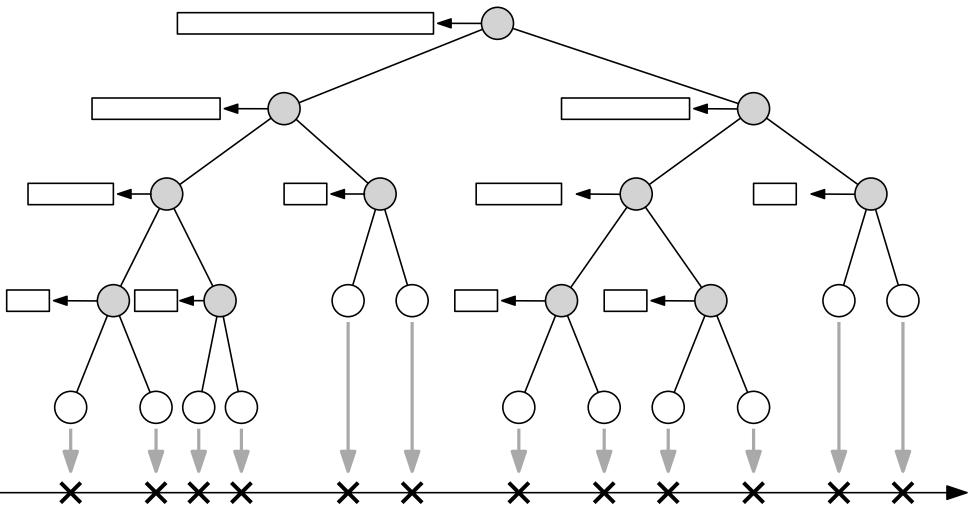
Keep pointers from newly added elements to A_i to their predecessor among the original elements of A_i



Size: O(kn) **Preprocessing:** O(kn) **Query:** $O(k + \log n)$

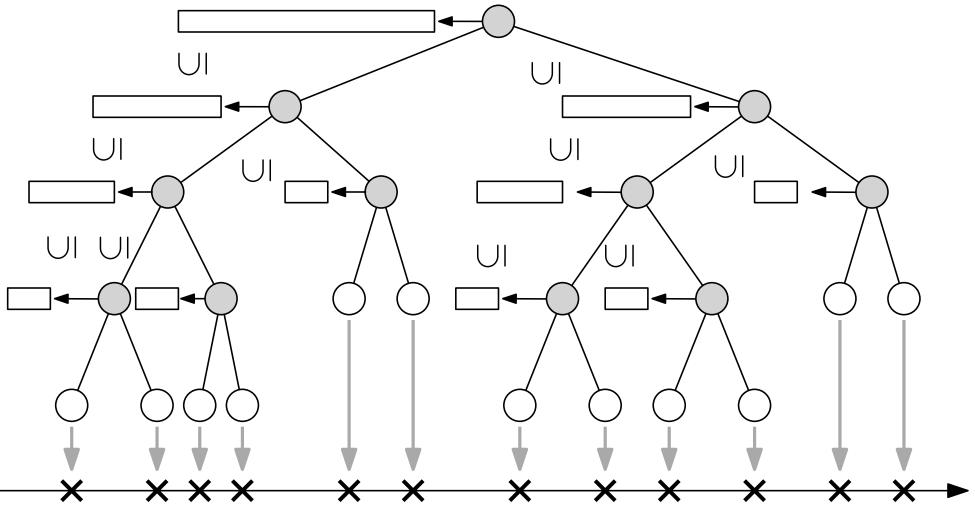
Layered Range Trees

Build a 2D range tree in which the inner 1D range trees are implemented with arrays



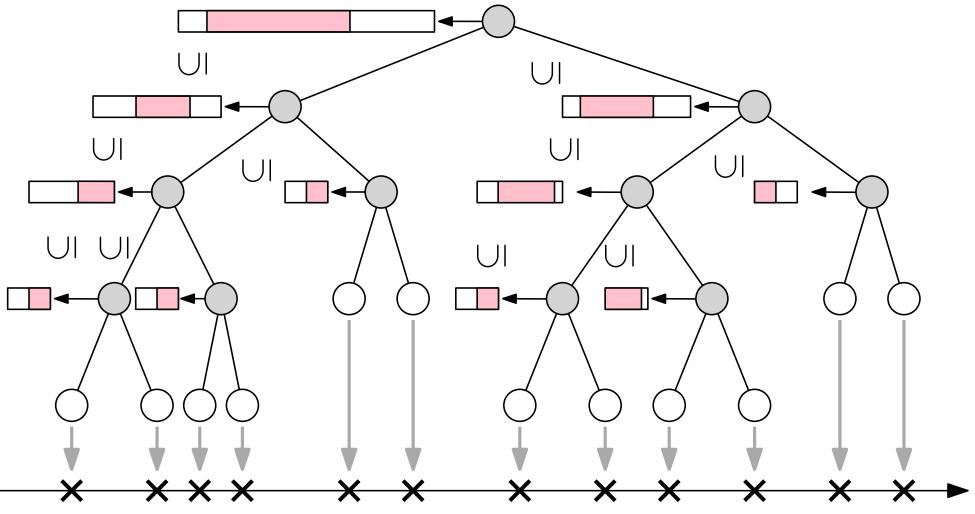
Layered Range Trees, D=2

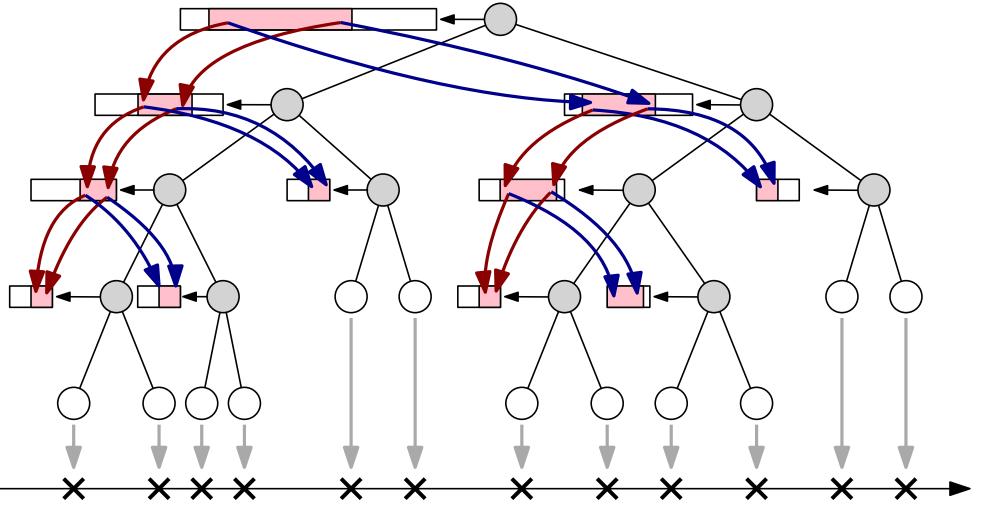
Reuse the cross-linking idea from fractional cascading

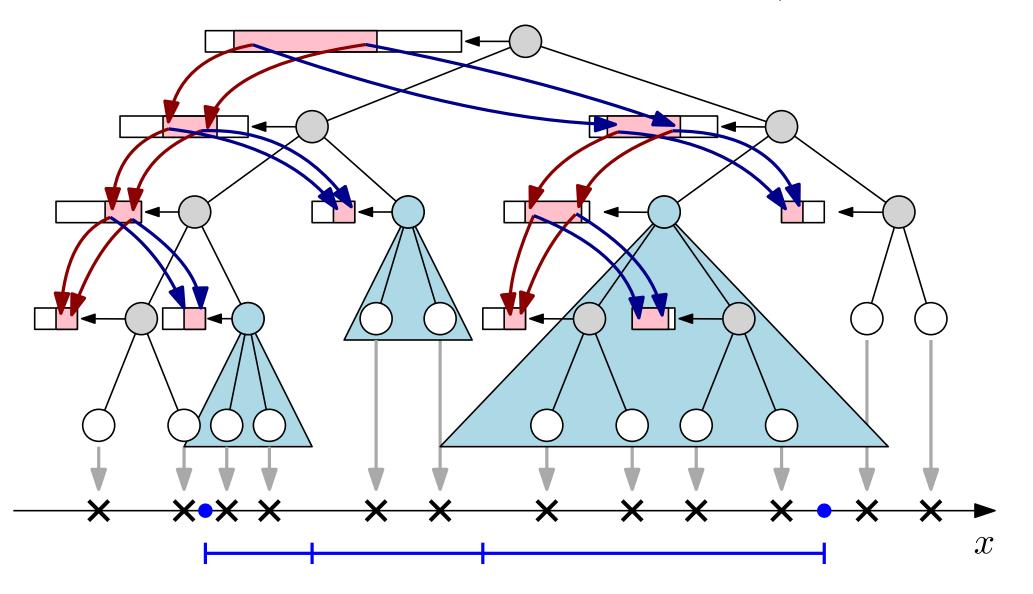


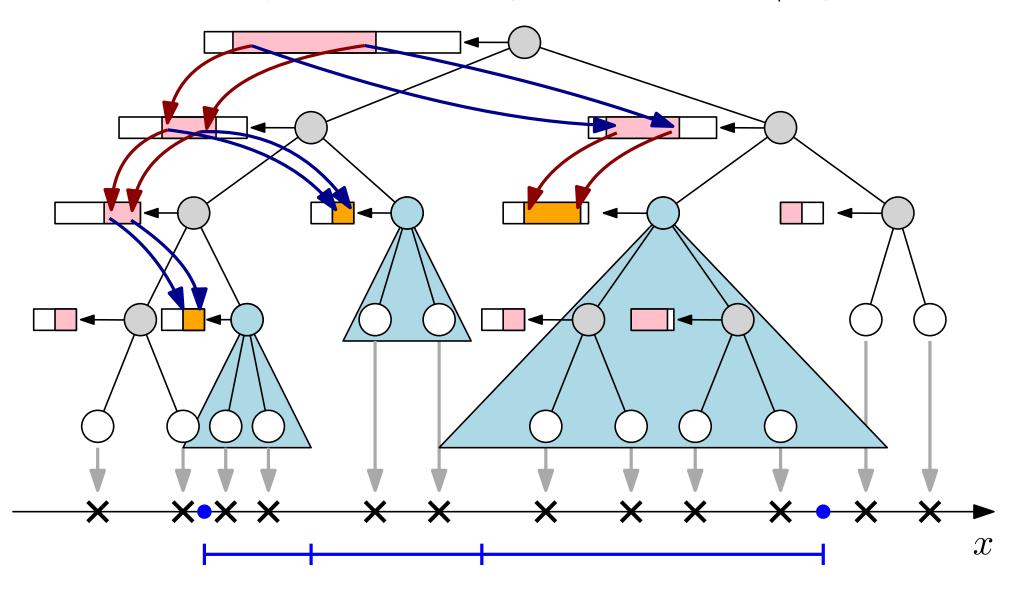
Layered Range Trees, D=2

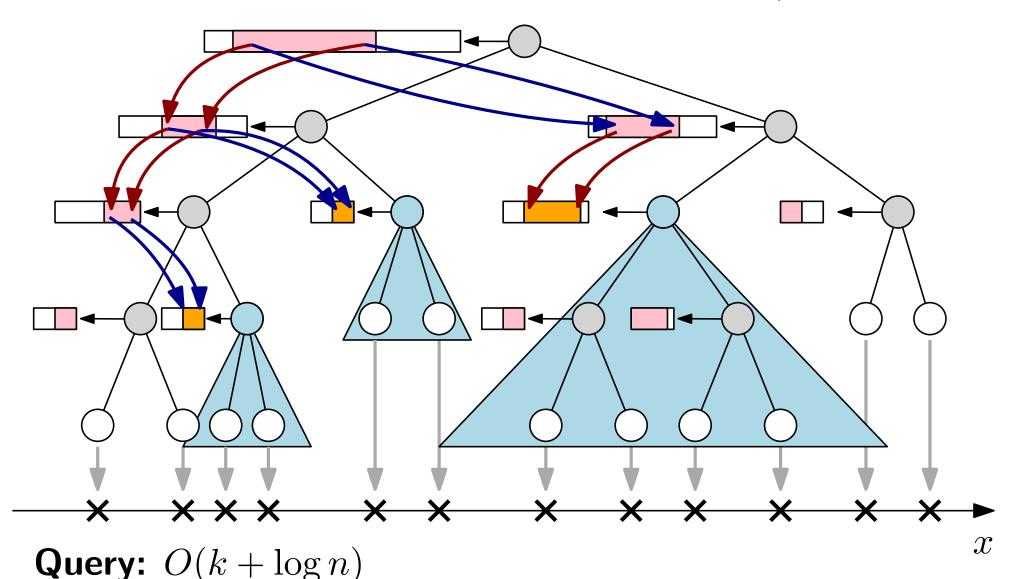
Reuse the cross-linking idea from fractional cascading











Notes

Preprocessing Query Time Size DTime O(n) $O(n \log n)$ 1 $O(\log n + k)$ $O(\log^2 n + k)$ $O(n\log n)$ $O(n\log n)$ 2 $O(n \log^{D-1} n)$ $O(n \log^{D-1} n)$ $O(\log^D n + k)$ > 2

D	Size	Preprocessing Time	Query Time	Notes
1	O(n)	$O(n\log n)$	$O(\log n + k)$	
2	$O(n\log n)$	$O(n \log n)$	$O(\log^2 n + k)$	
> 2	$O(n\log^{D-1}n)$	$O(n \log^{D-1} n)$	$O(\log^D n + k)$	
2	$O(n\log n)$	$O(n \log n)$	$O(\log n + k)$	with cross-linking

D	Size	Preprocessing Time	Query Time	Notes
1	O(n)	$O(n \log n)$	$O(\log n + k)$	
2	$O(n\log n)$	$O(n \log n)$	$O(\log^2 n + k)$	
> 2	$O(n\log^{D-1}n)$	$O(n \log^{D-1} n)$	$O(\log^D n + k)$	
2	$O(n\log n)$	$O(n \log n)$	$O(\log n + k)$	with cross-linking
> 2	$O(n\log^{D-1}n)$	$O(n\log^{D-1}n)$	$O(\log^{D-1} n + k)$	with cross-linking

D	Size	Preprocessing Time	Query Time	Notes
1	O(n)	$O(n \log n)$	$O(\log n + k)$	
2	$O(n\log n)$	$O(n \log n)$	$O(\log^2 n + k)$	
> 2	$O(n\log^{D-1}n)$	$O(n \log^{D-1} n)$	$O(\log^D n + k)$	
2	$O(n\log n)$	$O(n\log n)$	$O(\log n + k)$	with cross-linking
> 2	$O(n\log^{D-1}n)$	$O(n \log^{D-1} n)$	$O(\log^{D-1} n + k)$	with cross-linking

Can be made dynamic (supports point insertion / deletion) in $O(\log^D n)$ amortized time per update.