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The Problem

Given T', design a data structure that is able to preprocess 1T’ to
answer LCA queries:

e Query(u,v): report LCAp(u,v).

Trivial solutions:
n = # of nodes

e Preprocessing time: none Size: O(n) Query time: O(n)
e Preprocessing time: O(n?) Size: O(n?) Query time: O(1)
e Preprocessing time: O(n?) Size: O(n?) Query time: O(1)

LCAT(u,v) = u if u is an ancestor of v
LCA7(u,v) = LCAp(parent(u),v) otherwise

LCAT (u,v) = {
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A Related Problem

Given an array A = (aq,...,a,), design a data structure that is
able to preprocess A to answer range minimum queries:

¢ RMQ(7,j): report an element in argkmin ag.
=1,...,]

RMQ(3, 7)=5
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Trivial solutions:
e Preprocessing time: none Size: O(n) Query time: O(n)

e Preprocessing time: O(n?) Size: O(n?) Query time: O(1)

e Preprocessing time: O(n?) Size: O(n?) Query time: O(1)
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Reducing LCA Queries to RMQ

Let u,v € T and i (resp. j) be the index of the any
occurrence of u (resp. v) in F such that ¢ < j

Claim: LCA¢(u,v) = E[RMQ(i, 7)]

Proof: Let d,, be the depth of w = LCAr(u,v) in T

The Euler tour from ¢ to 7 must pass
through w, hence d,, € D|i : j]

Except for w, no other vertex with
depth at most d,, appears in the Euler
tour from 7 to

ERMQ(z, )] = LCAr(u,v)



Solutions to the RMQ problem



“Sparse Table” Solution to RMQ
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“Sparse Table” Solution to RMQ

Fori=1,...,nand ¢ =20 21 . . 2loen] define:

M|i,f] = arg min ay

1<k<it+/
Preprocessing:
Mli, /] = < arg min , ¢ ¢7) %k it £>1
ke Mli, = |, Mit o,
e{ 1 5 1+ 579 }
Answering a query:
__ollog(j—i+1 ,]) = 1
| et ¢ — 9llog(y )] RMQ(4, 5) argke{M[i,g]{nA}%—£+l,é]}ak
1 2 3 45 6 7 8 9 10
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“Sparse Table” Solution to RMQ

Fori=1,...,nand ¢ =20 21 . . 2loen] define:

Mi, f] = arg min ag

i <k<i+l
Preprocessing:
? if £ =1
Mli, f] = aufgnrlinlZCG M{ q M[.Jr / g] ap if€>1
ol T g
Answering a query:
| et ¢ — 9llog(j—i+1)] RMQ(i, j) = arg min ar

ke{M[i 0], M[j—0+1,0]}
e Preprocessing time: O(nlogn)
e Size: O(nlogn)
e Query time: O(1)
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We want to get rid of the logn factor!
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o Logically split A into O(g5;5;) “blocks” of d = ©(logn)
elements each.

1 2 ... n
A
N — N —
B1 Bo

e Store the minimum of each block in a new array A’

1 - n’

A/

Time needed to build A”: O(n)
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A more compact RMQ oracle

1 2 n

A/

Preprocessing:

e Build the “Sparse Table” oracle © on A’

Size / time:  O(n' -logn’) = O(=2= - log =) = O(n)

logn $ 108 logn
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To answer RMQ(z, 7):

e If ¢,5 € By return the position of the minimum in Ali : j]

o If 1 € By, and 5 € By, with k > h, answer with the position
of the smallest element among:

1) The minimum in A

2) The minimum in A

i : hd)|

(k—1)d+1:j]

3) A query to O to get min Alhd+1: (k — 1)d|



A more compact RMQ oracle
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A/
Answering a query: T
To answer RMQ(t, 7): O(logn)

e If ¢,5 € By return the position of the minimum in Ali : j]

o If 1 € By, and 5 € By, with k > h, answer with the position
of the smallest element among:

1) The minimum in Ali : hd] O(logn)
2) The minimum in A[{(k —1)d+ 1 : j] O(logn)
3) A query to O to get min Alhd+1: (k — 1)d] O(1)
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A more compact RMQ oracle (alternative)

1 2 n

A

A/

Preprocessing:
e Build the “Sparse Table” oracle O on A’
Size / time:  O(n-logn’) = O(5;5; - 10g 15,7,) = O(n)

logn

e Build the “Sparse Table” oracle O; each B,

Size / time:  O(g; - (logn)(loglogn)) = O(nloglogn)

Total size / time: O(nloglogn)



A more compact RMQ oracle
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Answering a query: L1

8) ime:
To answer RMQ(z, 7): Time: O(1)

e If 7 and j are in the same block By: query Oy

o If 1 € By, and 5 € By, with k > h, answer with the position
of the smallest element among those returned by:

1) A query to Oy, to get the minimum in Al: : hd]

2) A query to Oy to get the minimum in A[(k —1)d + 1 : j]
3) A query to O to get the minimum Alhd + 1 : (kK — 1)d]
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A Special Case

e Assume that ;11 —a; € {+1,—1}.
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e Assume that ;11 —a; € {+1,—1}.

e T his is the case of the instances obtained from LCA |
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A Special Case

n

Logically split A into ©(y5,+) "blocks” of d = clogn elements.

Definition: Two blocks have the same type if they have the
same sequence of 1 differences between consecutive elements.

B; |314131415|6|5(6 B; |71 8171819110/9 10
+1-1+1+1 +1 -1 +1 +1-1+1+1 +1 -1 +1

Observation: The answer to the same RMQ query on two
blocks of the same type is the same.

How many block types are there?

e Encode a block by its sequence of differences.

o At most 2°1°8™ = n¢ block types.
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A Special Case

Logically split A into ©(=2-) “blocks” of d = clogn elements.
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A

e Compute A’ and build the “Sparse Tab
e Size/time: O(n)

e For each type t of the at most n¢ block

A/

e’ oracle @ on A’.

types:

e Build the RMQ oracle O; with quadratic preprocessing

time/size and constant query time.
o Size/time: O(n°log®n)

e For each block B;, store the index ¢; of

e Size/time: O( -logn®) = O(n).
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Its type.



A Special Case

Logically split A into ©(=2-) “blocks” of d = clogn elements.

logn

A

e Compute A’ and build the “Sparse Tab
e Size/time: O(n)

e For each type t of the at most n¢ block

A/

e’ oracle @ on A’.

types:

e Build the RMQ oracle O; with quadratic preprocessing

time/size and constant query time.
o Size/time: O(n°log®n)

e For each block B;, store the index ¢; of

e Size/time: O( -logn®) = O(n).

_n_
logn

Its type.

Total size/time: O(n + n° log? n) For (constant) ¢ < 1: O(n)
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of the smallest element among those returned by:

1) A query to O;, to get the minimum in Ali : hd]
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Answering a query: A’

To answer RMQ(, 7):

e If 2 and j are in the same block By: query Oy,

o If s € By, and j € By, with k£ > h, answer with the position
of the smallest element among those returned by:

1) A query to O;, to get the minimum in A
2) A query to Oy, to get the minimum in A

1 : hd]

(k—1)d+1: j]
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Answering a query:
To answer RMQ(, 7): ©

e If 2 and j are in the same block By: query Oy,

o If s € By, and j € By, with k£ > h, answer with the position
of the smallest element among those returned by:

1) A query to O;, to get the minimum in Ali : hd]
2) A query to O, to get the minimum in A[(k —1)d+ 1 : j]
3) A query to O to get the minimum A[hd + 1 : (k — 1)d]
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Answering a query:
To answer RMQ(4, 5): © Time: O(1)

e If 2 and j are in the same block By: query Oy,

o If s € By, and j € By, with k£ > h, answer with the position
of the smallest element among those returned by:

1) A query to O;, to get the minimum in Ali : hd]
2) A query to O, to get the minimum in A[(k —1)d+ 1 : j]
3) A query to O to get the minimum A[hd + 1 : (k — 1)d]
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O(nloglogn)
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What about the general case?
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Cartesian Trees

1 2 3 45 6 7 8 9 10
A |8]2]5]7]2]1]9|3[4]|6

e [he root r of the Cartesian tree is the index 7 of a
minimum element a; of A

e The left and right subtrees r are the Cartesian trees of
All 7 —1] and A[t + 1 : n] (if not empty).



Cartesian Trees

1 2 3 45 6 7 8 9 10
A |8]2]5]7]2]1]9|3[4]|6




Cartesian Trees

1 2 3 45 6 7 8 9 10
A |8]2]5]7]2]1]9|3[4]|6




Cartesian Trees

1 2 3 45 6 7 8 9 10
A |8]2]5]7]2]1]9|3[4]|6




Cartesian Trees

1 2 3 45 6 7 8 9 10
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Cartesian Trees

1 2 3 4 56 6 7 8 9 10

A 812572119346

Observation: A symmetric visit of T4 visits the nodes in increasing order
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e When a new vertex a; Is inserted, it iIs compared with
1 + n; vertices ug, u1, ..., uy,, on the rightmost path of T'.



Constructing a Cartesian Tree
(2)
(1) (5) ai
(3) w1
(4) u2

e When a new vertex a; Is inserted, it iIs compared with
1 + n; vertices ug, u1, ..., uy,, on the rightmost path of T'.

o After a; is inserted, all vertices uq, ..., u,, will leave the
rightmost path of T (and will never join the path again).



Constructing a Cartesian Tree
(2)
(1) (5) ai
(3) w1
(4) u2

e When a new vertex a; Is inserted, it iIs compared with
1 + n; vertices ug, u1, ..., uy,, on the rightmost path of T'.

o After a; is inserted, all vertices uq, ..., u,, will leave the
rightmost path of T (and will never join the path again).

e Total number of comparisons:

Yo (I4m) =n+3 0 =n+0(n)=0(n),



Cartesian Trees and RMQs

1 23 45 6 7 8 9 10
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e Let 7" be the Cartesian tree of A.
o AIRMQ(s,j)] = A[LCAT(7, )]



Cartesian Trees and RMQs

1 23 45 6 7 8 9 10
A |8[12|5|7]2[1]9]3]4]|6

e Let 7" be the Cartesian tree of A.
o AIRMQ(s,j)] = A[LCAT(7, )]



Cartesian Trees and RMQs

Proof of A[LCA7(,5)] > A[RMQ(4, )]

o Let u =LCA7(i,5), V; and V,. be the set vertices in the
left and right subtree of wu, respectively.

e i cV,U{u} and j € V. U{u}
o 1 <u<y
e Alu| > min Ali : j] = A[RMQ(4, 7)]



Cartesian Trees and RMQs

Proof of A[LCA7(i,5)] < A[RMQ(3, §)]

e All vertices k in the subtree T” of T' rooted in LCA7 (i, j)
are such that A[k] > A[LCAT(i,7)]
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e All subtrees of T' correspond to contiguous subarrays of A




Cartesian Trees and RMQs

Proof of A[LCA7(i,5)] < A[RMQ(3, §)]

e All vertices k in the subtree T” of T' rooted in LCA7 (i, j)
are such that A[k] > A[LCAT(i,7)]

e All subtrees of T' correspond to contiguous subarrays of A

e Sincei,j €T’ all ke {i,...,j} also belong to T"




Cartesian Trees and RMQs
Proof of A|LCA1(7,7)] < AIRMQ(4, 5)]

e All vertices k in the subtree T” of T' rooted in LCA7 (i, j)
are such that A[k] > A[LCAT(i,7)]

e All subtrees of T' correspond to contiguous subarrays of A
e Sincei,j €T’ all ke {i,...,j} also belong to T"
e RMQ(i, j) € {i.....j} = ARMQ(i, j)] > A[LCA7(i, )]




The General Case

Oracle
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General case



Finding Distinct ltems in a Range

Input: An array A of not necessarily distinct items (colors).

O 1 2 3 4 5 6 7 8 9 1011 12 13 14 15

Goal: Preprocess A to answer queries of the following form:

Given two indices i, j, find the distinct items (colors) in
Alt, 7] and, for each of them, return the index of its first
occurrence in Ali, j|.
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Finding Distinct ltems in a Range

Input: An array A of not necessarily distinct items (colors).

O 1 2 3 4 5 6 7 8 9 1011 12 13 14 15

+ +.
? J
Goal: Preprocess A to answer queries of the following form:

Given two indices i, j, find the distinct items (colors) in
Alt, 7] and, for each of them, return the index of its first
occurrence in Ali, j|.

Target time complexity: O(#returned items)



Finding Distinct ltems in a Range

Hint 1: Label each A[h] with the largest index ¢}, < h such
that A[¢;] = A[h] (or —1 if no such index exists).

O 1 2 3 4

5 10 11 12 13 14 15
—1{—-1—1f 2 [—1]| 4

119 (11(10| 7|8

6 7 8 9
O[5]|3|6




Finding Distinct ltems in a Range

Hint 1: Label each A[h] with the largest index ¢}, < h such
that A[¢;] = A[h] (or —1 if no such index exists).
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Hint 2: For i < h < j, A|h] is the first occurence of an item
In A[Z ; ]] iff £, < 1.



Finding Distinct ltems in a Range

Hint 1: Label each A[h] with the largest index ¢}, < h such
that A[¢;] = A[h] (or —1 if no such index exists).

0 1 2 3 45 6 7 8 9 101112 13 14 15

—1—1-1/ 2 |-14|0|5|3|6|1]9|11]10|7 |8
) )
1 J

Hint 2: For i < h < j, A|h] is the first occurence of an item
In A[Z ; ]] iff £, < 1.

Hint 3: The index h such that ¢ < h < 5 that minimizes £}, is
the first occurrence of some item. How should Ali : h — 1]

and Alh + 1 : j| be handled?



