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Binary searching requires time O(max string length · log k)
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Tries (Prounounced as“try”)

Data structure to store a dynamic collection of k strings over
an alphabet Σ

• Insert(T ): add T to the collection of strings

• Delete(T ): remove T from the collection of strings

• Find(P ): return whether P is in the collection

• Predecessor(T ): return the largest string in the collection
that is “not smaller than” T (w.r.t. the lexicopraphic order)

We will only focus on the static case

Σ = {A, D, E, G, R, S, T}
RAGE RAGSRAD RATERADAR RAG{ }, , , , ,

• Count/return the strings in the collection that start with P



Tries
Pretend that each string ends with a special “end marker” symbol $

RAGE RAGSRAD RATERADAR RAG



Tries
Pretend that each string ends with a special “end marker” symbol $

RAGE RAGSRAD RATE$ $ $RADAR $ RAG$ $



E

Tries

R

A

D G T

$
E
S

$$ $

Pretend that each string ends with a special “end marker” symbol $

Build a tree in which:

• Edges are labelled with a symbol in
Σ ∪ {$} and are sorted

RAGE RAGSRAD RATE$ $ $RADAR $ RAG$ $

A

R

$

$



E

Tries

R

A

D G T

$
E
S

$$ $

Pretend that each string ends with a special “end marker” symbol $

• Each string Ti corresponds to a
root-to-leaf path and vice-versa

Build a tree in which:

• Edges are labelled with a symbol in
Σ ∪ {$} and are sorted

RAGE RAGSRAD RATE$ $ $RADAR $ RAG$ $

A

R

$

$



E

Tries

R

A

D G T

$
E
S

$$ $

Pretend that each string ends with a special “end marker” symbol $

• Each string Ti corresponds to a
root-to-leaf path and vice-versa

Build a tree in which:

• Edges are labelled with a symbol in
Σ ∪ {$} and are sorted

RAGE RAGSRAD RATE$ $ $

• Satellite data is often useful, e.g.:

RADAR $ RAG$ $

A

R

$

$

— Number of leaves in each subtree

1

1 1 11

11

2

1 1 1

3

1

3

1

1

1

6

6

6



E

Tries

R

A

D G T

$
E
S

$$ $

Pretend that each string ends with a special “end marker” symbol $

• Each string Ti corresponds to a
root-to-leaf path and vice-versa

Build a tree in which:

• Edges are labelled with a symbol in
Σ ∪ {$} and are sorted

RAGE RAGSRAD RATE$ $ $

• Satellite data is often useful, e.g.:

RADAR $ RAG$ $

A

R

$

$

— Number of leaves in each subtree
— Pointers to the first/last leaf in the subtree



E

Tries

R

A

D G T

$
E
S

$$ $

Pretend that each string ends with a special “end marker” symbol $

• Each string Ti corresponds to a
root-to-leaf path and vice-versa

Build a tree in which:

• Edges are labelled with a symbol in
Σ ∪ {$} and are sorted

RAGE RAGSRAD RATE$ $ $

• Satellite data is often useful, e.g.:

RADAR $ RAG$ $

A

R

$

$

— Number of leaves in each subtree
— Pointers to the first/last leaf in the subtree

RAGE RATE

— Pointers from leaves to strings

RADAR



E

Tries

R

A

D G T

$
E
S

$$ $

Pretend that each string ends with a special “end marker” symbol $

• Each string Ti corresponds to a
root-to-leaf path and vice-versa

Build a tree in which:

• Edges are labelled with a symbol in
Σ ∪ {$} and are sorted

RAGE RAGSRAD RATE$ $ $

• Satellite data is often useful, e.g.:

RADAR $ RAG$ $

A

R

$

$

— Number of leaves in each subtree
— Pointers to the first/last leaf in the subtree

— Leaves arranged in a (doubly) linked list

— Pointers from leaves to strings



Tries: Find (Sketch)

Find(P ):

• Walk down the tree matching the
characters in P$ with the edge labels

E

D T

$ S

$$ $

A

R

$

$

R

A

G

E



Tries: Find (Sketch)

Find(P ):

• Walk down the tree matching the
characters in P$ with the edge labels

E

D T

$ S

$$ $

A

R

$

$

P = RADAR
R

A

G

E



Tries: Find (Sketch)

Find(P ):

• Walk down the tree matching the
characters in P$ with the edge labels

E

D T

$ S

$$ $

A

R

$

$

P = RAG

To count the number of strings that
start with P :

• Find the node corresponding to P

R

A

G

E



Tries: Find (Sketch)

Find(P ):

• Walk down the tree matching the
characters in P$ with the edge labels

E

D T

$ S

$$ $

A

R

$

$

P = RAG

To count the number of strings that
start with P :

• Find the node corresponding to P

• Return the number of leaves in the
subtree (stored in the node)

3

R

A

G

E



Tries: Find (Sketch)

Find(P ):

• Walk down the tree matching the
characters in P$ with the edge labels
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To count the number of strings that
start with P :

• Find the node corresponding to P

• Return the number of leaves in the
subtree (stored in the node)

• The actual matches can be listed in O(1) additional time
per match by following pointers
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• Find the deepest ancestor of vj of vi
(possibly vi itself) such that Tj has a
strict predecessor u w.r.t. vj .

— Otherwise, stop at the node vi
matching the longest prefix T1T2 . . . Ti
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The strict predecessor of σ ∈ Σ w.r.t. a node v, if it exists, is the child u of
v such that (v, u) has the largest label that is smaller than σ
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Claim: All the grand-children u of v satisfy w(u) ≤ 2
3w(v) or are leaves.

If the interval [ 13w(v),
2
3w(v)] contains more than one segment:
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• The weight of each children of v is at most 2
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Imagine the leaves in the subtree of v as consecutive segments with
lengths equal to their weights
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• w(v′′) ≤ 1
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If the interval [ 13w(v),
2
3w(v)] contains a single segment, let x be the

corresponding leaf

• x is the first or last leaf in the subtree of v′ and w(x) ≥ 1
2w(v

′)

• v splits the segments immediately
before/after x.

• One child of v′ is x and the other child weighs ≤ 1
2w(v

′) ≤ 1
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• Let v′ be the child of v that contains x and let v′′ be the other child
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• Brings us to the next node in the trie, i.e., we advance one character
into P ; or
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Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy w(u) ≤ 2
3 (v) or are leaves.
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Representing Tries
Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy w(u) ≤ 2
3 (v) or are leaves.

Traversing two edges of a weight-balanced BST either:

• Brings us to the next node in the trie, i.e., we advance one character
into P ; or

• Reduces the weight (i.e, the number of leaves in the trie reachable
from the current node) by at least a 2/3 factor

Can only happen O(|P |) times

Can only happen O(log3/2 #leaves) = O(log k) times

Overall space: O(n) Overall time: O(|P |+ log k)
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Representing Tries: Recap

Array (dense)

Array (sparse) / BST

Weight-balanced BST

Space Query Time

O(|Σ| · n) O(|P |)

O(n) O(|P | log |Σ|)

O(n) O(|P |+ log k)

Optimal

Can we get rid
of this term?

Almost. . .
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|Σ|

Fact: A tree with ℓ leaves has at most ℓ− 1 branching nodes
(i.e., nodes with at least 2 children)

• Store leaves using dense arrays

• Store the unique child of each non-branching node explicitly

Storing the top tree:

• Store branching nodes using dense arrays
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The number of leaves of T ′ is at most n
|Σ|

Fact: A tree with ℓ leaves has at most ℓ− 1 branching nodes
(i.e., nodes with at least 2 children)

• Store leaves using dense arrays

• Store the unique child of each non-branching node explicitly

Storing the top tree:

Time to find the next node O(1)

• Store branching nodes using dense arrays

Space

O(n)

O(|Σ| · n
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O(|Σ| · n
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The number of leaves of T ′ is at most n
|Σ|

Fact: A tree with ℓ leaves has at most ℓ− 1 branching nodes
(i.e., nodes with at least 2 children)

• Store leaves using dense arrays

• Store the unique child of each non-branching node explicitly

Storing the top tree:

Storing the bottom trees:

Time to find the next node O(1)

• Store each bottom tree using a weight-balanced BST

Total space of all bottom trees: O(n)

• Store branching nodes using dense arrays
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O(|Σ| · n
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The number of leaves of T ′ is at most n
|Σ|

Fact: A tree with ℓ leaves has at most ℓ− 1 branching nodes
(i.e., nodes with at least 2 children)

• Store leaves using dense arrays

• Store the unique child of each non-branching node explicitly

• Each bottom tree has at most |Σ| leaves

Storing the top tree:

Storing the bottom trees:

Time to find the next node O(1)

• Store each bottom tree using a weight-balanced BST

Time to navigate a bottom tree: O(|P |+ log |Σ|)

Total space of all bottom trees: O(n)

• Store branching nodes using dense arrays

Space

O(n)

O(|Σ| · n
|Σ| ) = O(n)

O(|Σ| · n
|Σ| ) = O(n)
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Representing Tries: Recap

Array (dense)

Array (sparse) / BST

Weight-balanced BST

Space Query Time

O(|Σ| · n) O(|P |)

O(n) O(|P | log |Σ|)

O(n) O(|P |+ log k)

Indirection O(n) O(|P |+ log |Σ|)

Can be made dynamic with a time complexity of
O(|T |+ log |Σ|) per insertion/deletion of T
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Application: String Sorting

Sort a collection of k strings T1, T2, . . . , Tk over Σ

• Create an empty trie

• For i = 1, . . . , k:

• Insert Ti into the trie

• An in-order visit of the trie returns the strings in
lexicographic order

O (n+ k log |Σ|))

O(n)

Obs: A string comparison requires time O(L).
Naive sorting algorithms take time O(Lk log k) or O(L(k + |Σ|))

)

Overall time: O (n+ k log |Σ|)

Time

L = maxi=1,...,k |Ti|



Application: Packet Routing
Among all the destinations that match, a packet gets routed to the one
with the most specific rule

Routing TablePacket

Destination InterfaceSrc:

Dst:

169.48.0.0/12

169.0.0.0/11

169.128.0.0/10

169.160.0.0/11

eth1
ppp0

eth1

96.0.0.0/3
eth0

101.167.200.15

192.168.42.10

default wlan0

100.0.0.0/8 eth0
127.0.0.0/8 lo

tun0

tun1
96.0.0.0/6
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Application: Packet Routing
Among all the destinations that match, a packet gets routed to the one
with the most specific rule

Routing TablePacket

Destination InterfaceSrc:

Dst:

Given a pattern P we want the longest string in our collection that
appears as a prefix of P

eth1
ppp0

eth1

eth0

192.168.42.10

wlan0

0110010110100111. . .

1010100110$

10101001101$

01100100$

01111111$

$

P
| {z }

eth0

lo

10101001000$

101010010011$

011000$ tun0

011$ tun1
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Application: Packet Routing
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Build a trie T with all the addresses in the routing table.
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0 11
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$ $ $ $
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0 100
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Application: Packet Routing

10101001
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$ 1

011
$

00 11111
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lo

Build a trie T with all the addresses in the routing table.

• Find the node v corresponding to the maximal prefix that matches P

• Walk up the tree searching for the deepest ancestor u of v incident
to a“$” edge towards a leaf ℓ

Time: O(address length)
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Contract non-branching paths to a single edge labelled with the
corresponding substring
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Compressed Tries (Radix Trees)

Contract non-branching paths to a single edge labelled with the
corresponding substring

Previous constructions apply

Use the first character on each
edge as the key

Store edge labels as indices in the
input strings

T2= RADAR$
0:1

T6= RATE

2:3

S$

$



Suffix Trees



Back to String Matching

Problem: Given an alphabet Σ, a text T ∈ Σ∗ and a pattern
P ∈ Σ∗, find some occurrence/all occurrences of P in T .

T = Bart played darts at the party

P = art

Σ = {A, B, . . . , Z, a, b, . . . , z, }

Want: A data structure that can preprocesses T and answer
string matching queries
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Suffix Trees

T = BANANASΣ = {A, B, N, S} $
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The suffix tree of T is the compressed trie of all the suffixes of T$
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Applications: String Matching
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Searching for a pattern P returns a compact representation of all
occurrences of P in T

• Find the node v corresponding to P

• The occurrences of P are all and only the leaves in the subtree of v

• Arrange leaves in a linked list to find the next match in O(1) time

Time: O(|P |+ log |Σ|+#desired matches)
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Applications: String Matching
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Searching for a pattern P returns a compact representation of all
occurrences of P in T

• Find the node v corresponding to P

• The occurrences of P are all and only the leaves in the subtree of v

• Arrange leaves in a linked list to find the next match in O(1) time

Time: O(|P |+ log |Σ|+#desired matches)

1

Number of matches in time O(|P |+ log |Σ|)
Each vertex stores the # of

leaves in its subtrees

P = NA

T = BANANAS
01234567

$



Applications: Longest Common Prefix

Given indicies i and j, find the longest common prefix of T [i :] and T [j :]
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B
A
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4 2
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S$ NAS$

T = BANANAS
01234567
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• Look at the leaves ui, uj corresponding to T [i :] and T [j :]

i j

T [i :] =

T [j :] = NANAS

NAS



Applications: Longest Common Prefix

Given indicies i and j, find the longest common prefix of T [i :] and T [j :]
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• Start from the leaf corresponding to T [i :]
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Given an occurrence T [i : j] of P in T , find all other occurrences of P :

• We want to quickly find the node that corresponds to P

• Start from the leaf corresponding to T [i :]

P = T [2 : 3] = NA

• Walk up the tree for “|T |− j” characters
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Preprocess collection of documents T1, T2, . . . , Tk to quickly find all
documents that contain a pattern P
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ji

Store an array A where A[i] poinst to the document of leaf i
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Find all distinct documents (colors) in A[i : j]
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Index the leaves from left to right
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ji

Store an array A where A[i] poinst to the document of leaf i
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Find all distinct documents (colors) in A[i : j]

Searching for a pattern P returns the interval A[i : j] containing all and
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