
Algorithm Design Laboratory with Applications
Prof. Stefano Leucci

Problem: Che$$board.
There is an n × n chessboard in which each square has some non-negative amount of coins
placed on it. More precisely, the square at coordinates (i, j) with i, j ∈ {1, . . . , n} has ci,j ∈ N
one-dollar coins placed on it.

Your must place any n rooks (the chess pieces) on distinct squares the chessboard so that no
two distinct rooks attack one another (a rook attacks another if they are placed on the same
row or on the same column). When you place a rook in square (i, j) you collect the ci,j coins on
(i, j).

Design an algorithm that, given n and the amount of coins ci,j on each square (i, j), returns the
maximum amount of dollars that you can collect.

Input. The input consists of a set of instances, or test-cases, of the previous problem. The first
line contains the number T of test-cases. The first line of each test case contains the integer n.
The i-th of the following n lines describes the i-th row of the chessboard and contains the values
ci,1, ci,2, . . . , ci,n.

Output. The output consists of T lines. The i-th line is the answer to the i-th test-case and
contains an integer corresponding to the maximum amount of dollars that can be collected.

Assumptions. 1 ≤ T ≤ 10; 1 ≤ n ≤ 29; ∀i, j ∈ {1, . . . , n} ci,j ≤ 210.

Example.

2

4

8

3

6

51

2 1

00

0

0

0

0

0

Instance Solution

Input (the first test-case corresponds to the example above):

1

4

2 1 0 5

0 0 3 0

6 0 8 0

0 4 2 1

Output:

18

Requirements. Your algorithm should require O(n3) time (with reasonable hidden constants).

Notes. A reasonable implementation should not require more than 5 seconds for each input file.

1

