
Algorithm Design Laboratory with Applications
Prof. Stefano Leucci

Problem: Phylogenetic Trees.

A phylogenetic tree is a rooted tree in which each vertex represents a species and an edge (u, v)
encodes the fact that v is a direct descendant of u. You are working an interdisciplinary research
project and you often need to consult phylogenetic trees in order to find the most recent common
ancestor of two species.

Tired of dealing with printouts of the diagrams, you decide to design an algorithm that can
preprocess a phylogenetic tree T once for all, and is then able to answer any number of queries
of the following kind: Given two vertices u and v of T , report the deepest vertex of T that is
an ancestor of both u and v.

Input. The input consists of a set of instances, or test-cases, of the previous problem. The first
line contains the number T of test-cases. The first line of each test-case contains the number n
of nodes of T , which are indexed from 0 to n − 1, and the number q of queries. The next line
contains n− 1 integers p1, . . . , pn−1 where pi is the index of the parent of the vertex with index
i in T . The root of T is vertex 0. Finally, the j-th of the following q lines describe a query and
contains the indices of two vertices uj and vj of T .

Output. The output consists of T lines. The i-th line is the answer to the i-th test-case and
contains q integers, r1, r2, . . . , rq separated by a space. The j-th integer rj is the index of the
deepest vertex in T that is an ancestor of both uj and vj in T .

Assumptions. 1 ≤ T ≤ 10; 1 ≤ n ≤ 213; 1 ≤ q ≤ 218.

Example.

5 6 7
Southern African

Wildcat
Domestic CatAsiatic Wildcat

8

African Wildcat

11

Sand Cat

9

Black-Footed Cat

12

Jungle Cat

4

3

1
10

0

2

Figure 1: An example of phylogenetic tree. Note that, while this tree is binary, this does not
need to be the case in general.

Input (corresponding to the tree in Figure 1):

1

13 3

2 3 0 1 4 4 2 1 10 0 3 10

5 8

1 3

9 0

Output:

1 3 0

1



Requirements. Your algorithm should have a preprocessing time of at most O(n log n), where
n is the number of nodes of T , a query time of O(1), and must be able to answer queries online,
i.e., the answer to a query must be returned before the next query is read.

Notes. A reasonable implementation should not require more than 1 second for each input file.
For the sake of simplicity, you can assume that the function std::log2() requires constant
time.

2


