Papers

UnivAQ | DISIM
  1. C. Lattanzio, P. Marcati and D. Zhelyazov. Dispersive shocks in Quantum Hydrodynamics with viscosity. Preprint 2018 (available as pdf file)
  2. R. Folino, C. Lattanzio and C. Mascia. Metastability and layer dynamics for the hyperbolic relaxation of the Cahn-Hilliard equation. Preprint 2018 (available as pdf file)
  3. C. Lattanzio, C. Mascia, R.G. Plaza and C. Simeoni. Spectral stability of traveling fronts for nonlinear hyperbolic equations of bistable type. Preprint 2018 (available as pdf file)
  4. R. Folino, C. Lattanzio and C. Mascia. Motion of interfaces for a damped hyperbolic Allen-Cahn equation. Preprint 2018 (available as pdf file)
  5. C. Lattanzio, C. Mascia, R.G. Plaza and C. Simeoni. Kinetic schemes for assessing stability of traveling fronts for the Allen-Cahn equation with relaxation. Appl. Numer. Math., in press, 2018
  6. G. Bretti, E. Cristiani, C. Lattanzio, A. Maurizi and B. Piccoli. Two algorithms for a fully coupled and consistently macroscopic PDE-ODE system modeling a moving bottleneck on a road. Mathematics in Engineering, 1:55-83, 2018
  7. R. Folino, C. Lattanzio and C. Mascia. Slow dynamics for the hyperbolic Cahn-Hilliard equation in one space dimension. Preprint 2017 (available as pdf file)
  8. R. Folino, C. Lattanzio and C. Mascia. Metastable dynamics for hyperbolic variations of Allen-Cahn equation. Commun. Math. Sci., 15(7):2055-2085, 2017
  9. R. Folino, C. Lattanzio, C. Mascia and M. Strani. Metastability for nonlinear convection-diffusion equations. NoDEA Nonlinear Differential Equations Appl., 24:art. 35, 20pp, 2017
  10. C. Lattanzio and A.E. Tzavaras. From gas dynamics with large friction to gradient flows describing diffusion theories. Comm. Partial Differential Equations, 42(2):261-290, 2017
  11. J. Giesselmann, C. Lattanzio and A.E. Tzavaras. Relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics. Arch. Ration. Mech. Anal., 223(3):1427-1484, 2017
  12. C. Lattanzio, C. Mascia, R.G. Plaza and C. Simeoni. Analytical and numerical investigation of traveling waves for the Allen-Cahn model with relaxation. Math. Models Methods Appl. Sci., 26(5): 931-985, 2016
  13. C. Lattanzio and A.E. Tzavaras. Relative entropy methods for hyperbolic and diffusive limits. In Hyperbolic Problems: Theory, Numerics, Applications, 163-177, Fabio Ancona, Alberto Bressan, Pierangelo Marcati, Andrea Marson editors, AIMS on Applied Mathematics, Vol. 8, American Institute of Mathematical Sciences, 2014
  14. C. Lattanzio and A.E. Tzavaras. Relative entropy in diffusive relaxation. SIAM J. Math. Anal., 45(3): 1563-1584, 2013
  15. I. Gasser, C. Lattanzio and A. Maurizi. Vehicular traffic flow dynamics on a bus route. Multiscale Model. Simul., 11(3): 925-942, 2013
  16. S.-Y. Ha, M.-J. Kang, C. Lattanzio and B. Rubino. A class of interacting particle systems on the infinite cylinder with flocking phenomena. Math. Models Methods Appl. Sci., 22(7): 1250008 (25 pages), 2012
  17. C. Lattanzio, A. Maurizi and B. Piccoli. Moving bottlenecks in car traffic flow: a PDE-ODE coupled model. SIAM J. Math. Anal., 43(1): 50-67, 2011
  18. S.-Y. Ha, C. Lattanzio, B. Rubino and M. Slemrod. Flocking and synchronization of particle models. Quart. Appl. Math., 69(1): 91-103, 2011
  19. C. Lattanzio and B. Piccoli. Coupling of microscopic and macroscopic traffic models at boundaries. Math. Models Methods Appl. Sci., 20(12): 2349-2370, 2010
  20. C. Lattanzio, A. Maurizi and B. Piccoli. Modeling and simulation of vehicular traffic flow with moving bottlenecks. In F. Pistella and R. M. Spitaleri, editors, MASCOT09 Proceedings, volume 15 of IMACS Series in Computational and Applied Mathematics, pages 181–190, Rome, 2010
  21. C. Lattanzio, C. Mascia, T. Nguyen, R.G. Plaza and K. Zumbrun. Stability of scalar radiative shock profiles. SIAM J. Math. Anal., 41(6): 2165-2206, 2009
  22. D. Donatelli and C. Lattanzio. On the diffusive stress relaxation for multidimensional viscoelasticity. Commun. Pure Appl. Anal., 8(2): 645-654, 2009
  23. C. Lattanzio, C. Mascia and D. Serre. Nonlinear hyperbolic-elliptic coupled systems arising in radiation dynamics. In Hyperbolic Problems: Theory, Numerics, Applications, 661-669, S. Benzoni-Gavage and D. Serre editors, Springer, Berlin, 2008
  24. C. Lattanzio, C. Mascia and D. Serre. Shock waves for radiative hyperbolic-elliptic systems. Indiana Univ. Math. J., 56:2601--2640, 2007
  25. J.A. Carrillo, M. Di Francesco and C. Lattanzio. Contractivity and asymptotics in Wasserstein metrics for viscous nonlinear scalar conservation laws. Proceedings of the Joint SIMAI-SMAI-SMF-UMI Meeting Mathematics and its applications (Torino, 2006). Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 10:277-292, 2007
  26. C. Lattanzio and A.E. Tzavaras. Structural properties of stress relaxation and convergence from viscoelasticity to polyconvex elastodynamics. Arch. Ration. Mech. Anal., 180:449-492, 2006
  27. C. Lattanzio. Diffusive relaxation limit for hyperbolic systems. Proceedings of the 6th European Conference on Numerical Mathematics and Advanced Applications – ENUMATH 2005 (Santiago de Compostela, 2005). Numerical Mathematics and Advanced Applications, 396-403, 2006
  28. M. Di Francesco and C. Lattanzio. Optimal L1 decay rate to diffusion waves for the Hamer model of radiating gases. Appl. Math. Lett., 19:1046-1052, 2006
  29. J.A. Carrillo, M. Di Francesco and C. Lattanzio. Contractivity of Wasserstein metrics and asymptotic profiles for scalar conservation laws. J. Differential Equations, 231:425-458, 2006
  30. C. Lattanzio and B. Rubino. Asymptotic Behavior and Strong Convergence for Hyperbolic Systems of Conservation Laws with Damping. Quart. Appl. Math., 62(3):529-540, 2004
  31. M. Di Francesco and C. Lattanzio. Diffusive relaxation 3x3 model for a system of viscoelasticity. Asymptot. Anal., 40:235-253, 2004
  32. C. Lattanzio and P. Marcati. Global Well-Posedness and Relaxation Limits of a Model for Radiating Gas. J. Differential Equations, 190:439-465, 2003
  33. C. Lattanzio and R. Natalini. Convergence of Diffusive BGK Approximations for Nonlinear Strongly Parabolic Systems. Proc. Roy. Soc. Edinburgh Sect. A, 132(2):341-358, 2002
  34. C. Lattanzio and W.-A. Yong. Hyperbolic-Parabolic Singular Limits for First-Order Nonlinear Systems. Comm. Partial Differential Equations, 26:939-964, 2001
  35. C. Lattanzio and D. Serre. Convergence of a Relaxation Scheme for Hyperbolic Systems of Conservation Laws. Numer. Math., 88:121-134, 2001
  36. C. Lattanzio. On the 3-D Bipolar Isentropic Euler-Poisson Model for Semiconductors and the Drift-Diffusion Limit. Math. Models Methods Appl. Sci., 10:351-360, 2000
  37. C. Lattanzio and D. Serre. Shock Layers Interactions for a Relaxation Approximation to Conservation Laws. NoDEA Nonlinear Differential Equations Appl., 6:319-340, 1999
  38. C. Lattanzio and P. Marcati. The Zero Relaxation Limit for 2x2 Hyperbolic Systems. Nonlinear Anal., 38:375-389, 1999
  39. C. Lattanzio and P. Marcati. The relaxation to the drift-diffusion system for the 3-D isentropic Euler-Poisson model for semiconductors. Discrete Contin. Dynam. Systems, 5(2):449-455, 1999
  40. C. Lattanzio and P. Marcati. Asymptotic Stability of Plane Diffusion Waves for the 2-D Quasilinear Wave Equation. Contemp. Math., 238:163-182, 1999
  41. C. Lattanzio and P. Marcati. Diffusive Profile for the 2-D Nonlinear Damped Wave Equation. Proceedings of the IX International Conference on Waves and Stability in Continuous Media (Bari, 1997). Rend. Circ. Mat. Palermo (2) Suppl., 57:293-302, 1998
  42. C. Lattanzio and P. Marcati. The Zero Relaxation Limit for the Hydrodynamic Whitham Traffic Flow Model. J. Differential Equations, 141:150-178, 1997
(Last updated January 18, 2019)