Header image  
Associate Professor in Numerical Analysis  
skip navigation
 
 

 
THIS PAGE IS UNDER CONSTRUCTION

58) John Butcher, Raffaele D'Ambrosio, Partitioned general linear methods for separable Hamiltonian problems, Appl. Numer. Math. 117, 69-86 (2017). pdf

57) Kevin Burrage, Angelamaria Cardone, Raffaele D'Ambrosio, Beatrice Paternoster, Numerical solution of time fractional diffusion systems, Appl. Numer. Math. 116, 82--94 (2017). pdf

56) Angelamaria Cardone, Raffaele D'Ambrosio, Beatrice Paternoster, Exponentially fitted IMEX methods for advection-diffusion problems, J. Comput. Appl. Math. 316, 100-108 (2017). pdf

55) Angelamaria Cardone, Raffaele D'Ambrosio, Beatrice Paternoster, High order exponentially fitted methods for Volterra integral equations with periodic solution, Appl. Numer. Math. 114C, 18-29 (2017). pdf

54) Raffaele D'Ambrosio, Martina Moccaldi, Beatrice Paternoster, Adapted numerical methods for advection-reaction-diffusion problems generating periodic wavefronts, Comput. Math. Appl. 74(5), 1029-1042 (2017). pdf

53) Raffaele D'Ambrosio, Martina Moccaldi, Federico Rossi, Beatrice Paternoster, On the employ of time series in the numerical treatment of differential equations modelling oscillatory phenomena. In: Advances in Artificial Life, Evolutionary Computation, and Systems Chemistry - 11th Workshop, WIVACE 2016, Fisciano, Italy, October 4-6, 2016, ed. by F. Rossi, S. Piotto, S. Concilio, Communications in Computer and Information Science, Springer (2017). pdf

52) Angelamaria Cardone, Dajana Conte, Raffaele D'Ambrosio, Beatrice Paternoster, On the numerical treatment of selected oscillatory evolutionary problems. In: Numerical Analysis and Applied Mathematics, ed. by T. E. Simos, G. Psihoyios, Ch. Tsitouras, AIP Conference Proceedings 1836(1), 160004 (2017). pdf

51) Raffaele D'Ambrosio, Beatrice Paternoster, Numerical solution of reaction-diffusion systems of lambda-omega type by trigonometrically fitted methods, J. Comput. Appl. Math. 294 C, 436-445 (2016). pdf

50) Raffaele D'Ambrosio, Beatrice Paternoster, Carmen Scalone, Numerical modeling of T-cell dynamics by reaction-diffusion problems, Int. J. Math. Models Methods Appl. Sci. 10, 321-331 (2016). pdf

49) Angelamaria Cardone, Dajana Conte, Raffaele D'Ambrosio, Beatrice Paternoster, Modified collocation techniques for evolutionary problems, Int. J. Math. Models Methods Appl. Sci. 10, 266-273 (2016). pdf

48) Raffaele D'Ambrosio, Giuseppe De Martino, Beatrice Paternoster. General Nystrom methods in Nordsieck form: error analysis, J. Comput. Appl. Math. 292, 694-702 (2016). pdf

47) Dajana Conte, Raffaele D'Ambrosio, Beatrice Paternoster, GPU acceleration of waveform relaxation methods for large differential systems, Numer. Algorithms 71(2), 293-310 (2016). pdf

46) Angelamaria Cardone, Dajana Conte, Raffaele D'Ambrosio, Beatrice Paternoster, Adapted numerical methods for oscillatory evolutionary problems, Int. J. Mech. 10, 266-273 (2016). pdf

45) Raffaele D'Ambrosio, Some recent advances in the numerical solution of differential equations. In: Numerical Analysis and Applied Mathematics, ed. by T. E. Simos, G. Psihoyios, Ch. Tsitouras, AIP Conference Proceedings 1738, 020002 (2016). pdf

44) Raffaele D'Ambrosio, Beatrice Paternoster, A general framework for numerical methods solving second order differential problems, Math. Comput. Simul. 110(1), 113-124 (2015). pdf

43) Raffaele D'Ambrosio, Giuseppe De Martino, Beatrice Paternoster, A symmetric nearly preserving general linear method for Hamiltonian problems, Discrete Contin. Dyn. Syst., 330-339 (2015). pdf

42) Raffaele D'Ambrosio, Martina Moccaldi, Beatrice Paternoster (2015). Highly stable multivalue numerical methods. In: Numerical Analysis and Applied Mathematics, ed. by T. E. Simos, G. Psihoyios, Ch. Tsitouras, AIP Conference Proceedings 1648, 150005. pdf

41) Raffaele D'Ambrosio, Multi-value numerical methods for Hamiltonian systems. In: ENUMATH 2013, the 10th European Conference on Numerical Mathematics and Advanced Applications, Lausanne, August 2013, ed. by A. Abdulle, S. Deparis, D. Kressner, F. Nobile, M. Picasso, Lecture Notes in Computer Science and Engineering vol. 103, Springer (2015). pdf

40) Raffaele D'Ambrosio, Ernst Hairer, Long-term stability of multi-value methods for ordinary differential equations, J. Sci. Comput. 60(3), 627-640 (2014). pdf

39) Raffaele D'Ambrosio, Giuseppe De Martino, Beatrice Paternoster, Numerical integration of Hamiltonian problems by G-symplectic methods, Adv. Comput. Math. 40(2), 553-575 (2014). pdf

38) Raffaele D'Ambrosio, Beatrice Paternoster, Exponentially fitted singly diagonally implicit Runge-Kutta methods, J. Comput. Appl. Math. 263, 277-287 (2014). pdf

37) Raffaele D'Ambrosio, Giuseppe De Martino, Beatrice Paternoster, Order conditions of general Nystrom methods, Numer. Algorithms 65(3), 579-595 (2014). pdf

36) Raffaele D'Ambrosio, Beatrice Paternoster, Giuseppe Santomauro, Revised exponentially fitted Runge-Kutta-Nystrom methods, Appl. Math. Lett. 30, 56-60 (2014). pdf

35) Raffaele D'Ambrosio, Beatrice Paternoster, P-stable general Nystrom methods for y''=f(x,y), J. Comput. Appl. Math. 262, 271-280 (2014). pdf

34) Dajana Conte, Raffaele D'Ambrosio, Giuseppe Izzo, Zdzislaw Jackiewicz, Natural Volterra Runge-Kutta methods, Numer. Algorithms 65(3), 421-445 (2014). pdf

33) Raffaele D'Ambrosio, Beatrice Paternoster, Numerical solution of a diffusion problem by exponentially ?tted ?nite difference methods, Springer Plus 3(1), 425-431 (2014). pdf

32) Raffaele D'Ambrosio, Ernst Hairer, Christophe Zbinden, G-symplecticity implies conjugate-symplecticity of the underlying one-step method, BIT Numer. Math. 53, 867-872 (2013). pdf

31) Dajana Conte, Raffaele D'Ambrosio, Zdzislaw Jackiewicz, Beatrice Paternoster, Numerical search for algebrically stable two-step continuous Runge-Kutta methods, J. Comput. Appl. Math. 239, 304-321 (2013). pdf

30) Michal Bras, Angelamaria Cardone, Raffaele D'Ambrosio, Implementation of explicit Nordsieck methods with inherent quadratic stability, Math. Model. Anal. 18(2), 289-307 (2013). pdf

29) Raffaele D'Ambrosio, Giuseppe De Martino, Beatrice Paternoster, Construction of nearly conservative multivalue numerical methods for Hamiltonian problems, Commun. Appl. Ind. Math. 3(2), e-412, doi:10.1685/journal.caim.412 (2012). pdf

28) Raffaele D'Ambrosio, Elena Esposito, Beatrice Paternoster, Parameter estimation in two-step hybrid methods for second order ordinary differential equations, J. Math. Chem. 50(1), 155-168 (2012). pdf

27) Dajana Conte, Raffaele D'Ambrosio, Zdzislaw Jackiewicz, Beatrice Paternoster, A pratical approach for the derivation of algebraically stable two-step Runge-Kutta methods, Math. Model. Anal. 17(1), 65-77 (2012). pdf

26) Raffaele D'Ambrosio, Giuseppe Izzo, Zdzislaw Jackiewicz, Search for highly stable two-step Runge-Kutta methods for ODEs, Appl. Numer. Math. 62(10), 1361-1379 (2012). pdf

25) Dajana Conte, Raffaele D'Ambrosio, Beatrice Paternoster, Two-step diagonally-implicit collocation-based methods for Volterra Integral Equations, Appl. Numer. Math. 62(10), 1312-1324 (2012). pdf

24) Raffaele D'Ambrosio, Beatrice Paternoster, Two-step modified collocation methods with structured coefficients matrix for Ordinary Differential Equations, Appl. Numer. Math. 62(10), 1325-1334 (2012). pdf

23) Raffaele D'Ambrosio, Elena Esposito, Beatrice Paternoster, Exponentially fitted two-step Runge-Kutta methods: Construction and parameter selection, Appl. Math. Comp. 218(14), 7468-7480 (2012). pdf

22) Raffaele D'Ambrosio, Elena Esposito, Beatrice Paternoster, General linear methods for y''=f(y(t)), Numer. Algorithms 61(2), 331-349 (2012). pdf

21) Raffaele D'Ambrosio, On the G-symplecticity of two-step Runge-Kutta methods, Commun. Appl. Ind. Math. 3(1), doi: 10.1685/journal.caim.000403 (2012). pdf

20) Raffaele D'Ambrosio, Giuseppe Izzo, Zdzislaw Jackiewicz, Perturbed MEBDF methods, Comput. Math. Appl. 63(4), 851-861 (2012). pdf

19) Raffaele D'Ambrosio, Beatrice Paternoster, Diagonally implicit exponentially ?tted Runge-Kutta methods with equation dependent coef?cients. In: AIP Conference Proceedings, Numerical Analysis and Applied Mathematics, ed. by T. E. Simos, G. Psihoyios, Ch. Tsitouras. Vol. 1479, p. 1185--1188 (2012). pdf

18) Raffaele D'Ambrosio, Metodi numerici altamente stabili per equazioni funzionali, La Matematica nella Società e nella Cultura, Serie I, Vol. IV, p. 43-46 (2011). pdf

17) Raffaele D'Ambrosio, Liviu Gr. Ixaru, Beatrice Paternoster, Construction of the EF-based Runge-Kutta methods revisited, Comput. Phys. Commun. 182, 322-329 (2011). pdf

16) Raffaele D'Ambrosio, Elena Esposito, Beatrice Paternoster, Exponentially fitted two-step hybrid for $y''=f(x,y)$, J. Comput. Appl. Math. 235, 4888-4897 (2011). pdf

15) Raffaele D'Ambrosio, Zdzislaw Jackiewicz, Construction and implementation of highly stable two-step continuous methods for stiff differential systems, Math. Comput. Simul. 81(9), 1707-1728 (2011). pdf

14) Raffaele D'Ambrosio, Maria Ferro, Beatrice Paternoster, Trigonometrically fitted two-step hybrid methods for special second order ordinary differential equations, Math. Comput. Simul. 81, 1068-1084 (2011). pdf

13) Dajana Conte, Raffaele D'Ambrosio, Beatrice Paternoster, Construction of diagonally implicit almost collocation methods for Volterra Integral Equations, Rivista di Matematica dell'Università di Parma 2, 125-146 (2011). pdf

12) Dajana Conte, Raffaele D'Ambrosio, Zdzislaw Jackiewicz, Two-step Runge-Kutta methods with quadratic stability functions, J. Sci. Comput. 2, 191-218 (2010). pdf

11) Raffaele D'Ambrosio, Maria Ferro, Zdzislaw Jackiewicz, Beatrice Paternoster, Two step almost collocations methods for Ordinary Differential Equations, Numer. Algorithms 53(2-3), 195-217 (2010). pdf

10) Raffaele D'Ambrosio, Zdzislaw Jackiewicz, Continuous Two-Step Runge-Kutta Methods for Ordinary Differential Equations, Numer. Algorithms 54(2), p. 169-193 (2010). pdf

9) Dajana Conte, Raffaele D'Ambrosio, Beatrice Paternoster, Advances on collocation based numerical methods for Ordinary Differential Equations and Volterra Integral Equations. In: Recent Advances in Computational and Applied Mathematics, ed. by Theodore E. Simos (Springer). p. 41--66, ISBN: 9789048199808 (2010). pdf

8) Dajana Conte, Raffaele D'Ambrosio, Maria Ferro, Beatrice Paternoster, Piecewise-polynomial approximants for solutions of Functional Equations. In: I. Capuzzo Dolcetta, M. Transirico, A. Vitolo. Percorsi Incrociati (in ricordo di Vittorio Cafagna). p. 101-113, Rubbettino Editore, ISBN: 9788849828542 (2010). pdf

7) Raffaele D'Ambrosio, Maria Ferro, Beatrice Paternoster, Two-Step Hybrid Collocation Methods for y''=f(x,y), Appl. Math. Lett. 22(7), 1076-1080 (2009). pdf

6) Raffaele D'Ambrosio, Giuseppe Izzo, Zdzislaw Jackiewicz, Highly Stable General Linear Methods for Differential Systems. In: AIP Conference Proceedings, Numerical Analysis and Applied Mathematics, ed. by T. E. Simos, G. Psihoyios, Ch. Tsitouras. Vol. 1168(1), 21-24 (2009). pdf

5) Dajana Conte, Raffaele D'Ambrosio, Maria Ferro, Beatrice Paternoster, Practical construction of Two-Step Collocation Runge-Kutta methods for Ordinary Differential Equations. In: Applied and Industrial Mathematics in Italy III, ed. by E. De Bernardis; R. Spigler; V. Valente, 278-288 (World Scientific Publishing), ISBN: 9789814280297 (2009). pdf

4) Raffaele D'Ambrosio, Beatrice Paternoster, Runge-Kutta-Nystrom Stability for a Class of General Linear Methods for y''=f(x,y). In: AIP Conference Proceedings, Numerical Analysis and Applied Mathematics, ed. by T. E. Simos, G. Psihoyios, Ch. Tsitouras. Vol. 1168 (1), p. 444-447 (2009). pdf

3) Dajana Conte, Raffaele D'Ambrosio, Maria Ferro, Beatrice Paternoster, Modified Collocation Techniques for Volterra Integral Equations. In: Applied and Industrial Mathematics in Italy III, ed. by E. De Bernardis; R. Spigler; V. Valente. p. 268-277, World Scientific Publishing, ISBN: 9789814280297 (2009). pdf

2) Raffaele D'Ambrosio, Maria Ferro, Beatrice Paternoster, Collocation-Based Two-Step Runge-Kutta Methods for Ordinary Differential Equations. In: Computational Science and Its Applications ICCSA 2008. Lecture Notes in Computer Science, vol. 5073/2008, p. 736-751, Springer. ISBN: 9783540698401, ISSN: 1611-3349 (2008). pdf

1) Raffaele D'Ambrosio, Maria Ferro, Beatrice Paternoster, A general family of two step collocation methods for Ordinary Differential Equations. In: AIP Conference Proceedings, NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, ed. by T. E. Simos, G. Psihoyios, Ch. Tsitouras. Vol. 936, p. 45-49 (2007). pdf